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Abstract: Sirtuin 2 (SIRT2), an NAD+-dependent deacetylase, is crucial for regulating vital physio-
logical processes, including aging, DNA repair, and cell cycle progression. Its abnormal activity is
linked to diseases such as Parkinson’s disease, cancer, and metabolic disorders, making it a potential
target for therapeutic intervention. While small molecule inhibitors have been studied, peptide-based
inhibitors offer a promising alternative due to their selectivity and bioavailability. This study ex-
plores the effects of converting the naturally occurring cyclic inhibitor peptide of SIRT2 (S2iL5) into
a non-cyclic form by replacing a residue with FAK (LYS + CF3CO−). The new peptide sequence,
Tyr-His-Thr-Tyr-His-Val-FAK (LYS)-Arg-Arg-Thr-Asn-Tyr-Tyr-Cys, was modeled to confirm its stable
conformation. Docking studies and MM/GBSA calculations showed that the non-cyclic peptide had a
better binding free energy (−50.66 kcal/mol) compared to the cyclic S2iL5 (−49.44 kcal/mol). Further
mutations generated 160,000 unique peptides, screened using a machine learning-based QSAR model.
Three promising peptides (Peptide 1: YGGNNVKRRTNYYC, Peptide 2: YMGEWVKRRTNYYC, and
Peptide 3: YGGNGVKRRTNYYC) were selected and further modeled. Molecular dynamics (MD)
analyses demonstrated that Peptide 1 and Peptide 2 had significant potential as SIRT2 inhibitors,
showing moderate stability and some structural flexibility. Their best binding free energies were
−59.07 kcal/mol and −46.01 kcal/mol, respectively. The study aimed to enhance peptide flexibility
and binding affinity, suggesting that optimized peptide-based inhibitors can interact effectively
with SIRT2. However, further experimental validation is necessary to confirm these computational
predictions and evaluate the therapeutic potential of the identified peptides.

Keywords: SIRT2 inhibitors; cyclic peptides; molecular dynamics simulation; computational biology;
binding free energy calculations

1. Introduction

Sirtuin 2 (SIRT2), an NAD+-dependent deacetylase that is present in the central ner-
vous system (CNS) and serves as a lysine deacetylase and defatty-acylase, has been associ-
ated with neurological disorders [1,2]. Conserved regulators of aging, sirtuin proteins have
lately come to be recognized as significant moderators of a number of diseases that often
manifest later in life, including cancer, diabetes, cardiovascular disease, and neurodegener-
ative diseases [3]. Aberrant activity of SIRT2 has been associated with neurodegenerative
diseases, particularly Parkinson’s disease [4]. SIRT2 is implicated in the regulation of
alpha-synuclein, a protein that aggregates abnormally in Parkinson’s disease [5]. SIRT2
has been linked to various types of cancer [6]. Its role in cell cycle regulation and apoptosis
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suggests that dysregulation of SIRT2 activity may contribute to tumorigenesis. SIRT2 is
involved in metabolic regulation, and its dysfunction is associated with metabolic disorders,
including obesity and diabetes [7].

While SIRT2 is widely recognized for its role in promoting the progression of neu-
rological disorders, it also serves to safeguard the brain under specific conditions [1]. Of
the seven known mammalian sirtuin isoforms (SIRT1–7), SIRT2, which is mostly cytosolic,
is one of the least understood [8,9]. This includes the nuclear proteins SIRT6 and SIRT7,
mitochondrial proteins SIRT3, SIRT4, and SIRT5, and both the nucleus and the cytoplasm
include SIRT1 and SIRT2 [10]. Both increased SIRT1 and decreased SIRT2 reduce neurode-
generation, which may raise cautionary flags for the creation of widely acting sirtuin-based
medications for these kinds of diseases [11]. Sirtuins influence repair pathways by altering
chromatin accessibility or deacetylating repair factors [12]. Inducing cell death requires
the silencing of both SIRT1 and SIRT2, emphasizing the critical nature of inactivating both
proteins in order to achieve cytotoxic effects [13]. SIRT2 modulates the expression of genes
involved in lipid metabolism, which is vital for maintaining liver integrity and regulating
lipid metabolic homeostasis [14].

Several small-molecule inhibitors are found for the direct inhibition of SIRT2. AGK2,
SirReal2, Tenovin-6, and TM are sirtuin inhibitors that have been designed to selectively
inhibit SIRT2 [15]. Similarly, inhibition of SIRT2 by AEM1 and AEM2 compounds causes
increased activation of p53 by decreasing SIRT2-dependent p53 deacetylation. The most
potent inhibitor of SIRT2 (6,8-dibromo-2-pentylchroman-4-one (I)) was identified through
in vitro and in silico analysis, including pharmacophore screening and potency evaluation
for potential therapeutic applications [16]. SIRT2 is identified as a potential therapeutic
target for neurodegenerative disease [17].

Compared to medium-sized inhibitors like peptides, small molecules may struggle to
provide the necessary structural complexity and stability required for effective binding to
protein surfaces [18]. Peptide-based inhibitors offer a novel approach that may overcome
some limitations of small molecules, such as specificity and bioavailability [19]. Many
other small-molecule inhibitors are found, but they lack peptide-based inhibitors. Thus,
this study identifies a peptide-based inhibitor for SIRT2 using an advanced computational
approach and machine learning algorithms.

Peptide-based inhibitors offer a novel approach that may overcome some limitations
of small molecules, such as specificity and bioavailability. This study employed machine
learning models to generate non-cyclic peptides, which were subsequently screened using
the Quantitative Structure–Activity Relationship (QSAR). In addition, the stability and
flexibility of the peptides were confirmed using molecular docking and molecular dynamics
simulation. Additionally, the technique of MM/GBSA was employed to determine the
binding free energy and assess the strength of the peptide–protein interaction with SIRT2.
Ultimately, a novel inhibitor peptide was found that exhibited superior efficacy compared
to the previously identified inhibitor of SIRT2.

2. Results and Discussion
2.1. Peptide Modeling and Docking

S2iL5 forms a binding interaction with the active site of SIRT2 in the PDB structure.
The peptide’s macrocyclic structure enables it to assume a conformation that precisely fits
into the enzyme’s binding pocket. The trifluoroacetyllysine moiety binds to certain residues
in the active site, hence increasing the inhibition of SIRT2’s deacetylase activity. S2iL5 has
demonstrated superior efficacy in inhibiting SIRT2 activity compared to numerous other
known inhibitors. The enhanced effectiveness of this substance is ascribed to its distinct
structural characteristics, such as the presence of a large cyclic ring and the inclusion of
a trifluoroacetyllysine residue. These traits contribute to a greater ability to bind to and
specifically target SIRT2.

As shown in Figure 1, the native peptide sequence Acy-Tyr-His-Thr-Tyr-His-Val-FAK-
Arg-Arg-Thr-Asn-Tyr-Tyr-Cys-NH2 was modified to exclude the peptide linker and the
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modified residue, FAK (LYS + CF3CO), resulting in the new non-cyclic peptide sequence
Tyr-His-Thr-Tyr-His-Val-LYS)-Arg-Arg-Thr-Asn-Tyr-Tyr-Cys. The native cyclic structure
is dependent on the presence of the peptide linker and the modified residue, which fa-
cilitates the cyclization process. When these elements are excluded, the peptide can no
longer form a closed ring structure, hence converting it into a linear or non-cyclic peptide
form. This linear form retains the amino acid sequence but lacks the specific conforma-
tional constraints and properties imparted by cyclization. This modification aimed to
investigate the impact of FAK on the peptide’s structure and interaction with the target
protein, potentially enhancing stability or binding affinity. Figure 2 shows five different
peptides, each characterized by distinct sequences and structures. The peptides, labeled
with sequences YHTYHVFAKRRTNYYC, YHTYHVKRRTNYYC, YGGNNVKRRTNYYC,
YGGNVKRRTNYYC, and YGCGNVKRRTNYYC are depicted in both 2D chemical struc-
tures and 3D conformations. While the peptide in Figure 2a displays a cyclic structure,
suggesting increased stability or specific activity due to its constrained loop, the peptides
in Figure 2b through Figure 2e demonstrate helical conformations, which are indicative of
structural stability and potential biological functions. The presence of cysteine residues in
some sequences points to possible disulfide bonds, enhancing the peptides’ rigidity. These
structural characteristics hint at the peptides’ potential applications in drug development,
structural biology, and interaction studies, where specific sequences and conformations
may offer targeted therapeutic or functional benefits.

The modified peptide, excluding the ε-trifluoroacetyllysine, was subjected to structure
prediction using PEP-FOLD3. This tool employs a de novo approach to generate plausible
three-dimensional structures of peptides, leveraging the structure prediction algorithm for
accurate modeling. The predicted structure of the modified peptide was docked onto the
SIRT2 protein using the H-Dock server. The residues PHE131, TYR114, ARG97, GLU116,
ASN168, ILE169, ALA117, PHE119, PHE244, PHE243, MET247, PRO268, PHE269, ILE300,
LEU300, LEU272, SER271, GLU120, PHE234, VAL233, ILE232, HIS187, PHE235, GLN167,
LEU239, GLY236, GLU237, SER238, GLN267, VAL266, MET301, ALA270, ARG97, LEU264,
GLN265, PHE269, GLN267, PRO268, MET247, PHE243, PHE244, GLY298, MET299, LEU297,
LYS275, PHE296, PRO295, ASP294, MET301, ILE300, MET299, and GLY298 are the binding
site residues around the known inhibitor that are used for docking, as shown in Figure 3.
In Figure 3, the brown color stick model shows the cyclic peptide S2iL5, and the protein
SIRT2 is shown in rainbow color (Figure S1). A total of 100 docking models were generated
to explore the possible binding modes of the peptide to the protein.

2.2. MMGBSA for the Docked Complex of New Peptide

The evaluation of the altered non-cyclic peptide’s binding interactions with SIRT2
encompassed a thorough process that incorporated docking investigations, estimations
of binding free energy, and molecular dynamics (MD) simulations. All 100 docked mod-
els were utilized for subsequent binding free energy research. Subsequently, molecular
dynamics simulations were performed to achieve energy minimization for all changed
peptide variations, aiming to achieve ideal conformations and avoid any steric conflicts.
The calculation of binding free energy was used to rank the models as shown in Supple-
mentary Table S1. Model number 54, which exhibited the highest binding free energy of
−37.19 kcal/mol, was selected for a 100 ns molecular dynamics (MD) simulation. The con-
trol, S2iL5, was also included in the simulation for comparative analysis. This methodology
ensured a comprehensive evaluation of the peptide’s ability to inhibit SIRT2, identifying
model 54 as a highly promising option for further investigation.

2.3. MD of Native Peptide and Modified Peptide (100 ns)

The RMSD of the protein is shown in Figure 4a. The protein, which complexes with
native cyclic peptide, showed stable confirmation up to 50 ns at 0.2 nm. At 50 ns, it
slightly deviated from 0.2 nm to 0.28 nm, and afterward, it showed a stable configuration at
0.2 nm. However, the protein complex with the modified cyclic peptide initially exhibited
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fluctuations at a distance of 0.3 nm, which subsequently increased to higher fluctuations
at 0.4 nm. Eventually, the complex reached a state of stability. This suggested the RMSD
for the modified non-cyclic peptide increases and then stabilizes at a higher value than
the native cyclic peptide, indicating more significant structural deviations. Moreover, the
RMSD of the peptide is shown in Figure 4b. Here, at the initial stage, the native cyclic
peptide showed stability at 0.5 nm up to 55 ns, and after 55 ns, it showed slight fluctuation
at 0.55 nm, then showed stability during the run. Nevertheless, the modified non-cyclic
peptide exhibited a highly unstable and minimal variation ranging from 0.5 nm to 1.8 nm
within the first 25 ns. Subsequently, over the time interval from 25 ns to 70 ns, the value
fluctuated within the range of 1.5 nm to 2 nm. Finally, in the last 20 ns, it reached a steady
state at 1.5 m. Overall, it suggested that the native cyclic peptide is more structurally stable
over time compared to the modified non-cyclic peptide, as evidenced by its consistently
lower RMSD values in both RMSD.
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Figure 2. Structural and molecular representations of various peptides with different sequences.
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peptide, (c) peptide 1, (d) peptide 2, (e) peptide 3.
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Figure 3. The binding residues were identified using the PyMOL tool, the binding residues are those
located within a 6 Å radius around the known inhibitor (S2iL5) in the crystal structure SIRT2.

2.4. MM/GBSA

The binding free energy of the protein–peptide complex was determined in Figure 5.
Here, the total binding energy of the native cyclic peptide complex was −49.44 kcal/mol,
which is the combination of GGAS and GSOLV, and the total binding energy of the mod-
ified non-cyclic peptide complex was −50.66 kcal/mol with the combination of GGAS
and GSOLV. When evaluating the binding interactions and stability of peptides, the non-
cyclic peptide emerges as potentially superior despite the small difference in total binding
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energy. The van der Waals interactions (−53.58 kcal/mol for the non-cyclic peptide and
−75.95 kcal/mol for the cyclic peptide) suggest that the non-cyclic form offers greater
flexibility, allowing it to adapt more readily to different binding environments. This adapt-
ability can be crucial in dynamic biological systems where flexibility enhances molecular
recognition. Furthermore, the significant electrostatic energy difference (−181.22 kcal/mol)
indicates that the non-cyclic peptide provides more favorable charge–charge interactions,
enhancing specificity and binding strength through precise complementary positioning.
The differences in generalized Born electrostatic solvation energy (EGB) imply that the
non-cyclic peptide interacts more effectively with the solvent, stabilizing polar regions
and potentially improving solvation dynamics. Despite the total binding energy difference
being only 1.22 kcal/mol, the non-cyclic peptide’s superior charge distribution, flexibil-
ity, and solvation dynamics may contribute to enhanced binding affinity and specificity,
making it a more promising candidate for applications where adaptability and precise
molecular interactions are vital. This showed that the non-cyclic peptide complex showed
the strongest binding affinity. Therefore, the modified non-cyclic peptide was selected for
further analysis.
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2.5. Energy Decomposition and Interaction

Figure 6a shows the energy decomposition of the non-cyclic peptide S2Li5. The
residue Phe236 contributes significantly to the stability with an energy of −5.99 kcal/mol,
indicating strong interactions, possibly through hydrogen bonds or hydrophobic forces.
Other residues, like A:Phe:244 and A:Phe:119, also play important stabilizing roles with
energies of −3.17 kcal/mol and −2.80 kcal/mol, likely due to aromatic interactions. In
contrast, A:Glu:116 has a positive energy contribution of 0.90 kcal/mol, suggesting a
potentially destabilizing effect, possibly from electrostatic repulsion or steric hindrance.
Figure 6b,c shows the energy decomposition and interactions of the modified non-cyclic
peptide. Here, residue Tyr13 showed −7.03 kcal/mol decomposition energy; this residue
has the most negative binding energy, indicating a strong interaction, which corresponds to
the multiple hydrogen bonds it forms in the interaction diagram. This highlights its crucial
role in stabilizing the complex. Another residue Tyr12 showed −4.50 kcal/mol, aligning
with its significant pi-stacking interactions in the diagram. Aromatic interactions are known
for their contribution to binding stability. Arg9 shows moderate binding energies (−2.53
and −1.55 kcal/mol, respectively). The interaction diagram suggests that Arg8 (close to
Arg9) may participate in electrostatic interactions, which, while not as strong as hydrogen
bonds or pi-stacking, still contribute to the binding. Overall, the energy decomposition
graph and interaction analysis offer a complete overview of how specific residues in the
B chain contribute to the overall binding energy through different molecular interactions.
Notably, Tyr13(B) and Tyr12(B) play a significant role, with Tyr13(B) contributing through
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hydrogen bonds and Tyr12(B) through pi-stacking. Additionally, Arg8(B) and the region
around it contribute through electrostatic interactions, although these have a lesser impact
compared to the previously mentioned interactions.
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2.6. Combination Mutation, QSAR, and Clustering

The residues of the non-cyclic modified peptide that did not show any interactions
were modified. Further, mutations were performed in these positions. The original peptide
sequence was “YHTYHVKRRTNYYC” by targeting mutations at positions 2, 3, 4, and 5. The
selection of positions 2, 3, 4, and 5 for single mutations was based on their lack of significant
interactions with the protein. These residues are crucial for maintaining the peptide’s
secondary structure and stability, allowing them to be altered without compromising the
peptide’s integrity. While positions 6, 7, and 11 showed van der Waals interactions, as
indicated in Figure 6c, the focus remained on positions 2, 3, 4, and 5 because of their specific
roles in preserving the peptide’s overall conformation. By targeting these positions, the
mutations were designed to explore functional changes without disrupting the peptide’s
essential structural properties. All possible single-residue mutations were produced using
the 20 standard amino acids at the specified positions with Python’s itertools product,
resulting in 160,000 unique peptide variants. Combining all amino acid possibilities, and
substituting them into the original sequence, these variants were constructed.

Furthermore, the Quantitative structure–activity relationship (QSAR) model was
developed to predict protein–ligand interactions. Data of 1049 protein–peptide complexes
was taken from the PDBbind database for training and modeling QSAR. After cleaning the
data, 876 complexes were used further for training. The protein and peptide sequences were
encoded using multiple techniques before being split into training, validation, and testing
sets. Various models, including Random Forest, Ridge Regression, Gradient Boosting, and
XGBoost, were trained and optimized with hyperparameter tuning via Optuna to minimize
the root mean square error (RMSE). An Isolation Forest was employed to detect and remove
outliers, enhancing the robustness of the models.

The models’ performances were evaluated using R2 scores, and the final model was
saved using pickle. R2, or the coefficient of determination, is a statistical measure that
represents the proportion of the variance in the dependent variable that is predictable
from the independent variables in a regression model. It is a key metric used to assess the
goodness-of-fit of a model According to the data presented in Table 1, the XGBoost model
demonstrated the highest R2 value (0.995 for the training set and 0.696 for the test set),
indicating superior performance. Therefore, it was selected to screen the altered peptides.
In order to predict activity, a total of 160,000 distinct peptide variants were obtained and
prepared. These variants included a target protein sequence (SIRT2) and the associated
altered peptides. The sequences were encoded using the Conjoint Triad technique and
labeled for prediction. The dataset was divided into separate training and testing sets. In
post-screening using this XGBoost model, 23,889 mutant peptides had superior predictive
activity in comparison to the non-cyclic control peptide, S2iL5. A flow chart regarding the
mutation and QSAR is given in Figure 7.

Table 1. R2 or the coefficient of determination of the models for the four models Random Forest,
Ridge, GradientBoostingRegressor, and XGBRegressor.

Model R2 on Training Set R2 on Test Set

Random Forest 0.934 0.672
Ridge 0.952 −1.482

GradientBoostingRegressor 0.887 0.647
XGBRegressor 0.995 0.696
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2.7. Clustering

Further, clustering of the 23,889 mutant peptides was performed. Hydrophobicity
values and molecular weights were calculated for each peptide using predefined scales.
Subsequently, the data were normalized using standard scaling. Principal Component
Analysis (PCA) was then applied to reduce the dimensionality of the feature space to two
components. Silhouette analysis was performed using a range for k′′ (or clusters) from 2
to 10. For each k, the silhouette score is calculated, which identifies the ideal number of
clusters (or k) to perform k-means clustering. The silhouette score, along with the number
of clusters, is given in Supplementary Table S2. The optimal number of clusters shown
by the silhouette analysis is three, so the number of clusters required for the analysis is
three. K-means clustering is performed on the reduced data from PCA, with the number
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of clusters set to three. The cluster assignments and centroids are visualized on a scatter
plot, where each point represents a peptide, and the centroids are marked with red crosses.
The peptides that are closest to each centroid are determined by calculating their Euclidean
distances to the centroids in the reduced space as shown in Figure 8. Three peptides that are
nearest to each centroid are gathered for additional investigation. These closest peptides
were Peptide 1: YGGNNVKRRTNYYC, Peptide 2: YMGEWVKRRTNYYC, and Peptide 3:
YGGNGVKRRTNYYC.
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2.8. Peptide Modeling and Docking

PEPFOLD.3 was used for peptide modeling of the three peptides: Peptide 1: YGGN-
NVKRRTNYYC, Peptide 2: YMGEWVKRRTNYYC, Peptide 3: YGGNGVKRRTNYYC, and
the top models were selected for further analysis. Target docking was performed using the
H-Dock server for the top three peptides using the same protocol as used for the modified
non-cyclic peptide. One hundred models retrieved from docking were further used for an
MD simulation run till the energy minimization and free binding energy were calculated
using MMGBSA. It was found that the best models were model number 16 for Peptide 1
(−37.62 kcal/mol), model number 30 for Peptide 2 (−40.93 kcal/mol), and model number
65 for Peptide 3 (−32.45 kcal/mol), which had the highest free binding energy. These three
models were selected for further MD simulation of 300 ns. The ADME properties of these
three peptides were identified using the ProtParam tool, which is given in Table 2. The
comparison of the three peptides reveals distinct differences in their molecular character-
istics, despite sharing the same number of amino acids (14). Peptide 2 has the highest
molecular weight (1869.15) and a slightly lower theoretical pI (9.11) compared to Peptide
1 and Peptide 3 (both with a pI of 9.63). The presence of a negatively charged residue in
Peptide 2 may contribute to its lower pI. The instability index categorizes all three peptides
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as unstable, with Peptide 2 being the most unstable (78.71) and Peptide 3 being the least
(55.46). Despite differences in atomic composition, all three peptides share an identical
aliphatic index (20.71), suggesting similar aliphatic content and structural characteristics.
However, the grand average of the hydropathicity (GRAVY) scores varies, with Peptide
2 being the least hydrophilic (−1.229), indicating slightly higher hydrophobicity, while
Peptide 1 is the most hydrophilic (−1.579). Overall, the variations in molecular weight, pI,
and GRAVY scores suggest differences in solubility and stability that could impact their
biological functions and interactions.

Table 2. ADME prediction of the peptides using ProtParam tool.

Parameter Peptide 1 Peptide 2 Peptide 3

Molecular Weight 1707.88 1869.15 1650.83

Theoretical pI 9.63 9.11 9.63

Total Negatively Charged Residues (Asp + Glu) 0 1 0

Total Positively Charged Residues (Arg + Lys) 3 3 3

Total Number of Atoms 230 252 223

Aliphatic Index 20.71 20.71 20.71

Grand Average of Hydropathicity (GRAVY) −1.579 −1.229 −1.357

2.9. Molecular Dynamics Simulation
2.9.1. RMSD

Figure 9a shows the RMSD of the protein while interacting with the native non-cyclic
peptide and the other three mutated peptides, 1, 2, and 3, during the 300 ns run. Here, the
protein complex with Peptide 3 shows stable conformation at 0.1 nm throughout the run.
While initially protein complex peptide 2 for the first 60 ns showed stable conformation at
0.5 nm, later it fluctuated and reached 1.2 nm and showed stability from 60 ns to 120 ns.
Then, it fluctuated slightly downward and showed stability from 150 ns to 300 ns at 0.8 nm.
Moreover, the protein complex with Peptide 1 fluctuated between 1 and 1.2 nm and showed
stable confirmation. Additionally, the protein complex with the native non-cyclic peptide
continuously fluctuated from 0.5 nm to 1.8 nm for the first 20 ns, then deviated from 1.5 nm
to 2 nm, then deviated downwards and showed stable confirmation from 60 ns to 150 ns.
Later, it highly deviated downwards at 1 nm. Subsequently, it deviates upwards at 1.8 nm
and fluctuates between 2 nm and 2.2 nm. Overall, it showed after the mutation. Peptide 3
shows the most significant improvement in stability, followed by Peptide 2 and Peptide 1.
The native non-cyclic peptide is the least stable, exhibiting the highest structural deviations
over time.

Figure 9b shows the RMSD of the peptides. Here, Peptide 3 showed various fluc-
tuations, and after 200 ns, it moved out of the system. Peptide 2 exhibits a consistently
steady root mean square deviation (RMSD) ranging from 0.5 to 1.0 nm during the sim-
ulation, suggesting that it maintains a stable structure with minimal deviation from its
initial conformation. Peptide 1 exhibits comparable stability to Peptide 2, as indicated
by RMSD values ranging from 0.5 to 1.5 nm. Although there are slight variations, the
general pattern indicates a consistent conformation throughout the simulation. In addition,
the native non-cyclic peptide exhibits higher RMSD values than Peptide 1 and Peptide 2.
Nevertheless, it remains relatively stable in comparison to Peptide 3. The RMSD values
vary between 1.0 and 2.5 nm, which suggests moderate differences in structure. Overall,
the analysis indicates that Peptide 2 and Peptide 1 are potentially more suitable options for
maintaining structural integrity in the simulated conditions.
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Figure 9c shows the RMSD of Peptide 1, Peptide 2, and native non-cyclic peptide.
The native non-cyclic peptide exhibits RMSD ranging from 1.0 to 2.5 nm, suggesting
considerable variations in its structure. Initially, there is a sharp increase in RMSD up to
approximately 2.0 nm, following that it reaches an almost stable state but still exhibits
variations, suggesting the presence of conformational flexibility or instability. Following
an initial increase, the RMSD stabilizes within the range of 0.5 to 1.5 nm. This suggests
that Peptide 1 consistently maintains a stable conformation with little deviations from its
original structure. Peptide 2 exhibits the highest level of stability compared to the other two
peptides, as seen by its constantly low RMSD values ranging from 0.5 to 1.0 nm. Peptide
2 exhibits minimal variations, but overall, it maintains its structural integrity effectively
during the 300 ns simulation. Overall, Peptide 2 showed good stability with the lowest
RMSD value.

2.9.2. RMSF

The RMSF (Root Mean Square Fluctuation) analysis of the protein residues, when
bound to various peptides (native non-cyclic peptide, Peptide 1, Peptide 2), provides
valuable insights into the protein’s stability and flexibility. The RMSF values of the native
non-cyclic peptide (black line) are consistently higher throughout the sequence, with
significant maxima near the end, around residues 100, and 250, reaching up to 0.5 nm. This
suggests that the protein is moderately flexible and less stable when bound to the native
non-cyclic peptide. Alternatively, Peptide 1 (red line) induces lower RMSF values, which
implies increased stability and reduced flexibility, particularly in the vicinity of residues
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100, 200, and the end. The fluctuations in this region are of lower amplitude than those
of the native peptide. The RMSF values of Peptide 2 (green line) are marginally higher
than those of Peptide 1 but lower than those of the native non-cyclic peptide, suggesting
moderate flexibility and stability. The most stable binding is provided by Peptide 1, as
evidenced by the lowest RMSF values, according to comparative analysis. Peptide 2 offers
reasonable stability with a slightly higher degree of flexibility. The RMSF values of the
native non-cyclic peptide indicate that it is the least stable and the most flexible. This
analysis emphasizes the stabilizing influence of Peptide 1 on the protein structure, thereby
emphasizing its potential as the most effective peptide among the analyzed.

2.9.3. SASA

Figure 10b shows the SASA of the peptides. The SASA values for the native non-cyclic
peptide are approximately 150 to 170 nm2. This indicates a certain degree of structural
flexibility, as evidenced by the consistent fluctuations around these values. However,
the solvent exposure remains relatively consistent throughout the simulation. Peptide 1
exhibits SASA values that are within the range of approximately 150 to 175 nm2. The SASA
values exhibit fluctuations that resemble those of the native peptide, however, with a little
elevated peak. Peptide 1 exhibits a relatively larger surface area that is accessible to the
solvent, suggesting a moderate level of stability with periodic variations in its form. Peptide
2 exhibits Solvent Accessible Surface Area (SASA) values ranging from approximately 140
to 170 nm2. Significant fluctuations are observed throughout the simulation, indicative of
dynamic changes in solvent exposure. Notably, the overall SASA values of Peptide 2 are
marginally lower than those of Peptide 1, implying a more compact conformation with
reduced solvent accessibility. Overall, this indicates that Peptide 2 is the most stable and
compact option, with low fluctuations in solvent exposure. Therefore, it is an improved
option for applications that require stable structures.
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2.9.4. Radius of Gyration

Figure 10c shows the radius of gyration of peptides 1, 2, and the native non-cyclic
peptide. In this context, The Rg values for the native non-cyclic peptide range between
approximately 2.05 and 2.15 nm. The numbers exhibit fluctuations, suggesting that the
native peptide maintains a consistent degree of compactness while maintaining structural
flexibility over the simulation. The Rg values of Peptide 1 range from approximately 2.10
to 2.20 nm. The Rg values for Peptide 1 exhibit higher values compared to the native
non-cyclic peptide, indicating that Peptide 1 possesses a slightly less condensed structure.
The Rg values of Peptide 2 range from about 2.00 to 2.10 nm. The Rg values for Peptide 2
exhibit consistently lower and more stable values in comparison to both the native non-
cyclic peptide and Peptide 1. This suggests that Peptide 2 maintains a highly compact
structure with little variations during the simulation. Overall, it suggested that peptide 2
maintains the lowest Rg value indicating the most compact and stable structure among the
three peptides.

It was identified that structural flexibility plays a crucial role in the inhibitory efficacy
of peptides. The non-cyclic peptides demonstrated increased flexibility compared to the
original cyclic S2Li5 peptide, which might contribute to their enhanced binding affinities
and inhibitory activities. Specifically, the flexibility allows for better adaptation to the en-
zyme’s active site, optimizing interactions and leading to higher inhibition. In comparison,
the cyclic S2Li5, with its constrained structure, may have limited conformational adapt-
ability, potentially resulting in lower inhibition. The root-mean-square fluctuation (RMSF)
values indicated that the non-cyclic peptides exhibited greater mobility in certain regions,
allowing for more effective engagement with the active site residues of the deacetylase
enzyme. Root-mean-square deviation (RMSD) analysis was used to compare the stabil-
ity and conformational changes of the peptides during the MD simulations. The RMSD
values of the non-cyclic peptides were higher than those of the cyclic S2Li5, indicating
greater structural fluctuations and flexibility. This increased flexibility allows the non-cyclic
peptides to adapt more effectively to the enzyme’s active site, optimizing interactions that
enhance inhibition.

In contrast, the cyclic S2Li5 peptide exhibited lower RMSD values, suggesting a more
rigid and stable structure. While this rigidity contributes to a well-defined conformation,
it limits the peptide’s ability to adjust and form optimal interactions with the enzyme’s
active site, potentially resulting in lower inhibition efficiency. Furthermore, the increased
RMSD observed in non-cyclic peptides correlates with their higher binding affinities, as
the flexibility enables them to explore a broader conformational space and stabilize more
favorable interactions with the enzyme. This adaptability is crucial for enhancing binding
and inhibitory activity.

2.10. Hydrogen Bonds

Hydrogen bonds between the protein and peptide at 300 ns are shown in Figure 11.
It can be observed in Figure 11a that there are more fluctuations; initially, the number of
hydrogen bonds is very low, i.e., 3–5, but later it changes to 10–12 at around 100 ns of the
simulation. Then, later still, it starts showing a decreased number of hydrogen bonds in
the range of 2–4. Gradually, the hydrogen bonds start to increase to 12 at around 200 ns of
the simulation. In the case of Figure 11b, the hydrogen bonds show a stable state without
further fluctuations compared to Figure 11a. The hydrogen bonds are in a range between
3 and 13 throughout the simulation, and there are no fluctuations shown. Similarly, in
the case of peptide 2 (Figure 11c), the number of hydrogen bonds decreases slightly but
remains within a narrower range of approximately 3 to 9. These differences imply varying
environmental conditions or interaction strengths across the simulations; from the plot, we
can identify that Figure 11a is less stable and that Figure 11b is more stable.
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2.11. PCA and FEL

The Principal Component Analysis (PCA) is a scatter plot representation of the tra-
jectory produced by the Molecular Dynamics (MD) simulation. Figure 12a features a
U-shaped pattern, indicating two clusters connected by a smooth transition path, suggest-
ing the presence of intermediate states by the native non-cyclic peptide during the MD
run, showing its transition from the initial state to the final state. This implies moderate
conformational changes, likely involving binding pocket dynamics and varying interaction
strengths between compact and extended conformations. Similarly, in Figure 12c, peptide 1
forms two distinct clusters with some overlap, indicating distinct conformational states
that may reflect specific binding poses or allosteric effects. The larger spread along the PC1
axis suggests significant structural changes or ligand binding modes, while the separation
of clusters implies higher energy barriers between states, reflecting rigid conformational
selectivity. In addition, in Figure 12e, peptide 2 presents a butterfly-shaped distribution
with central convergence, indicating that the system frequently samples intermediate states,
suggesting flexible binding dynamics and conformational adaptability. This pattern is
indicative of a system that is energetically favorably exploring multiple conformations,
possibly involving allosteric sites or multiple binding pathways.

Figure 12 shows the free energy landscape (FEL) and PCA of the peptides. In
Figure 12b, the free energy landscape exhibits multiple distinct basins, with the regions of
lowest free energy (dark blue) representing the most thermodynamically stable conforma-
tions. The basins are divided by areas of elevated free energy (yellow to red), indicating
substantial energy barriers between distinct conformational states. This suggests that the
native non-cyclic peptide exists in several stable structural states, with noticeable transitions
occurring between them. Similarly, the landscape of peptide 1 formed several free energy
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basins, which are more interconnected than those of the original peptide. The existence of
clearly defined basins characterized by low levels of free energy (shown by the dark blue
color) signifies the presence of stable conformations. On the other hand, the connecting
regions, which exhibit higher energy levels ranging from yellow to red, signify the presence
of moderate energy barriers. In addition, peptide 2 formed multiple basins; however, the
basins are less defined and more interconnected, with lower energy barriers (lighter shades
of blue) between states, suggesting greater conformational flexibility. Overall, Peptide 2
exhibits a broader range of possible shapes with low energy barriers, resulting in more
flexibility and a greater number of stable configurations.
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2.12. MM/GBSA

The binding free energy of the protein–ligand complex was measured, including
different energetic components. Here, in Figure 13a, the total binding free energy of the
native non-cyclic peptide complex was −41.14 kcal/mol ± 7.43, with the combination of
GGAS and GSOLV. Figure 13b shows the total binding free energy of the peptide 1 complex
as −59.07 kcal/mol ± 6.33, and Figure 13c shows the total binding energy of the peptide
2 complex as −46.01 kcal/mol ± 7.15. The error bar is also shown in Table 3. The van
der Waals interactions are most favorable in peptide 2, suggesting robust hydrophobic
interactions, while electrostatic energy (EEL) is most significant in the non-cyclic peptide
(−520.80 kcal/mol ± 68.37). The non-polar solvation energy (ESURF) is highest in peptide
2 (−10.55 kcal/mol ± 0.77), indicating potential hydrophobic surface interactions. Overall,
peptide 1’s combination of favorable van der Waals and solvation energies, along with
relatively balanced electrostatic and polar contributions, makes it the most potent candidate,
suggesting higher affinity and stability in the binding environment. This suggests that the
peptide 1 complex shows a strong binding affinity with the protein molecule.
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Table 3. Comparative MMGBSA Results for Non-cyclic Peptide, Peptide 1, and Peptide 2.

Compounds VDWAALS EEL EGB ESURF GGAS GSOLV Total

Non-cyclic
peptide −35.95 ± 7.36 −520.80 ± 68.37 522.12 ± 71.38 −6.51 ± 0.86 −556.76 ± 71.39 515.61 ± 76.78 −41.14 ± 7.43

Peptide 1 −44.01 ± 5.65 −459.97 ± 45.95 453.03 ± 45.51 −8.12 ± 45.51 −503.98 ± 46.37 444.91 ± 45.29 −59.07 ± 6.33
Peptide 2 −67.04 ± 5.42 −472.62 ± 54.15 504.20 ± 50.26 −10.55 ± 0.77 −539.66 ± 54.83 493.65 ± 49.87 −46.01 ± 7.15

3. Methodology
3.1. Protein Structure

The 3D protein structure of sirtuin 2 (SIRT2) was retrieved from the Protein Data Bank
(PDB) database with the PDB ID: 4L3O [20]. A peptide structure was bound to SIRT2 in
the PDB structure. This ε-trifluoroacetyllysine-containing macrocyclic peptide can inhibit
SIRT2 activity more potently than most other known inhibitors [19]. The crystal structure
of human SIRT2 in complex with a macrocyclic peptide inhibitor, S2iL5, at 2.5 Å resolution
was retrieved. S2iL5 contains ε-trifluoroacetyllysine and is part of a series of macrocyclic
peptides that exhibit potent inhibitory activity against SIRT2. S2iL5 binds to the active
site of SIRT2, inducing significant conformational changes, including an open-to-closed
domain movement and a helix-to-coil transition in a specific region of the enzyme. This
dynamic structural change is crucial for its potent inhibitory effect. The structure revealed
that S2iL5 binds to the active site of SIRT2 through extensive interactions. The polymer
sequence of S2iL5 is ACY-TYR-HIS-THR-TYR-HIS-VAL-FAK-ARG-ARG-THR-ASN-TYR-
TYR-CYS-NH2, as shown in Figure 1.

Further, PEP-FOLD3 [21], a web-based tool for peptide structure prediction, was used
to model the modified non-cyclic peptide. The top model generated by PEP-FOLD3 was
selected for further analysis, ensuring the best structural representation of the modified
peptide.

3.2. Native-Protein Peptide Docking

The target protein’s binding residues were found using the PyMOL program [22]. The
binding residues were selected within a 6 Å radius of the ligand in the crystal structure. The
H-Dock server [23], a novel web server designed for molecular docking, particularly for
protein–protein and protein–DNA/RNA interactions. It uses a hybrid docking algorithm
that combines template-based modeling with free docking, which delivers accurate protein–
peptide docking predictions, to target dock the newly modified peptide. In total, 100 models
were extracted from the docking procedure for further investigation.

3.3. MMGBSA

The energy minimization of protein–peptide was performed using the GROMACS
2022.4 package [24]. CHARMM36 [25] was employed to establish the molecular topology
and force field parameters, which were assigned to both proteins and peptides. Later, the
generation of the force-field parameters and topologies of the compounds and the control
inhibitor, the CGenFF [26] server, was used. The Ewald Particle Mesh method was utilized
in order to calculate the electrostatic force [27]. The system was solvated in the cubic box
with the TIP3P water solvent model [28]. Na+ and Cl− ions were subsequently introduced
to perform the neutralization. Further, to eliminate steric conflicts, the system underwent
50,000 minimization steps utilizing the steepest descent (SD) method. Subsequently, the
LINCS algorithm [29] was implemented to restrict the bonds, thus attaining system stability.
Further, the MM/GBSA (Molecular Mechanics Generalized Born Surface Area) technique
was used in this study [30,31]. The GROMACS tool gmx_MM/PBSA was used to calculate
the binding free energy of the complexes until energy minimization. The equation involved
in calculating binding free energy is described below:

∆G = Gcomplex −
[
Greceptor +Gligand

]
(1)
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∆Gbinding = ∆H − T∆S (2)

∆H = ∆GGAS + ∆GSOLV (3)

∆GGAS = ∆EEL + ∆EVDWAALS (4)

∆GSOLV = ∆EGB + ∆ESURF (5)

∆ESURF = γ.SASA (6)

In Equation (1), the variables Gcomplex, Greceptor, and Gligand represent the total free
energies of the protein–peptide complex, the free enzyme, and the peptide in the solvent,
respectively. The remaining Equations in (2)–(6) illustrated the alterations in gas-phase
energy ∆GGAS, the solvation free energy change ∆GSOLV, the conformational entropy
change −T∆S, and the enthalpy change ∆H. The investigation incorporated the solvent-
accessible surface area (SASA) and the solvent’s surface tension (γ), both of which were
displayed graphically. Changes in electrostatic and van der Waals energies were denoted
by ∆EVDWAALS and ∆EEL, respectively. Furthermore, as indicated in the research, the polar
and nonpolar solvation energy changes were accurately represented by ∆EGB and ∆ESURF.
The model with the highest free binding energy was selected for molecular dynamics
simulation.

3.4. Molecular Dynamics (MD) Simulation (100 ns)

The best model of the modified non-cyclic peptide and the known cyclic peptide
complexed with SIRT2 was used for MD simulation of 100 ns. The method for energy
minimization is given in Section 3.3. Later, the temperature of the entire system was
increased to 310 K with a timestep of 2 fs throughout a 100 ps simulation in the NVT
ensemble. The coordinates of the structure were stored at 10 ps intervals for the duration of
the production run, which spanned 300 ns. In addition, the velocity scaling [32] method
was employed as a temperature coupling in order to maintain stimulation at a consistent
temperature. The Parrinello–Rahman [33] pressure coupling method was subsequently
implemented to maintain constant pressure during the manufacturing process.

3.5. Mutation and QSAR

Further, mutation of the original peptide sequence was performed by targeting muta-
tions at different positions. Using Python’s itertools.product, all possible single-residue
mutations were generated using the 20 standard amino acids at the designated sites, yield-
ing distinct peptide variations. These variations were generated by combining all possible
amino acid combinations and inserting them into the original sequence. The dataset for
training was downloaded from the PDBbind database (http://pdbbind.org.cn/ accessed on
25 January 2024) [34], and the protein and ligand sequences were encoded using multiple
techniques before being split into training, validation, and testing sets. The quantitative
structure–activity relationship (QSAR) approach has yielded precise and flexible findings in
the realm of drug discovery. Since the traditional machine learning approach was employed
in QSAR, the rise of big data and deep learning technologies has purposefully enhanced
the processing of unstructured data and unlocked QSAR’s potential [35]. Here, Python,
DeepPurpose [36], Matplotlib [37], NumPy [38], and Scikit-learn [39] were the primary tools
used within a Jupyter Notebook environment. Later, for QSAR, three regression models
were used, random forest regressor, Ridge regression, XGBoost, and gradient boosting
regression model, which were trained and optimized with hyperparameter tuning. The best
(hyperparameter) settings for every model must be identified in order to evaluate a model’s
prediction potential with less bias. For machine learning algorithms to operate at their best,
their hyperparameters must be adjusted [40]. Here, hypermeter tuning via Optuna [41] is
carried out for the minimization of the root mean square error (RMSE). Later, an isolation
forest was employed to detect and remove outliers, enhancing the robustness of the models.
Subsequently, the QSAR model was built after compound properties were calculated using

http://pdbbind.org.cn/
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the RDkit programs [42]. Additionally, the models’ coefficients of determination (R2) were
calculated in order to validate the trained models, and the model with the greatest value
was chosen to be employed in the screening procedure. The model is deemed to have
a good fit since the R2 value indicates that there is a substantial correlation between the
predicted values and the actual values. The performances of the models were based on the
R2 scores and RMSE, and the final model was saved using Pickle. In order to predict the
activity, the data were sourced and processed, which included a target protein sequence
and corresponding mutated peptides. These sequences were encoded using the Conjoint
Triad method [43] and they are labeled for prediction. Lastly, 70% of the compounds were
used in the training of the model, while the remaining 30% were used as test compounds.
The isolation forest was employed to detect and remove the outliers, which helped to
enhance the data quality. The predictions were made on the cleaned dataset, and the results
were visualized for the evaluation of the model’s performance. The peptides that showed
greater predictive activity compared to the non-cyclic control peptide were taken further
for clustering.

3.6. Clustering

Clustering was performed after calculating the hydrophobicity values and molecular
weights for each peptide using predefined scales. Subsequently, the data were normalized
using standard scaling. Later, Principal Component Analysis (PCA) was performed to
reduce the dimensionality of the feature space to two components. After PCA, the k-
means function of the cluster module was utilized for clustering in the sklearn package of
Python [39]. The matplotlib module in Python [44] was used to generate all of the plots.
Following the clustering process, each cluster’s centroid—which represented the cluster
as a whole—was retrieved. For each centroid, i.e., for 3 clusters, the closest peptides are
identified based on their Euclidean distances. The three closest peptides to each centroid
are selected for further analysis.

3.7. Peptide Modeling and Docking

The three closest peptides were used for modeling, and PEPFOLD.3 [21] was used for
the modeling from which top models were selected for docking purposes. The method for
docking is similar to the method given in Section 3.2. Later, the MD of all the top models
was run till energy minimization and binding free energy using MMGBSA was calculated
with the same method described in Section 3.3. The model that had the highest binding
free energy was selected for MD analysis.

3.8. Molecular Dynamics Simulation (300 ns)

The detailed method of MD simulation is given in Sections 3.3 and 3.4.

3.9. PCA and FEL

Principal component analysis (PCA) was performed on protein–ligand complexes
using GROMACS’s default configurations. In order to prepare the trajectory to undergo
principal component analysis, it was subjected to rigorous preparation that involved the
elimination of periodic circumstances. Further, with the g‘mx covar’ tool included in
GROMACS, the covariance matrix was calculated in order to calculate the better trajec-
tory [45,46]. It is the covariance matrix that is responsible for characterizing the link between
the atomic variation in the protein–ligand complex. The eigenvalues and eigenvectors
of the covariance matrix were determined by employing the gmx anaeig function in the
computation process. The PC coordinates for each frame were calculated utilizing the g‘mx
anaproj’ GROMACS program so that the trajectory could be observed on the PCs.

A more comprehensive understanding of various processes, such as biomolecule
identification, aggregation, and folding, can be attained through the investigation of the
dynamics of biological systems [47]. The analysis of the system’s equilibrium state, as
represented by the Free Energy Landscape (FEL) minima, and its non-equilibrium condition,
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as marked by the FEL barriers, can accomplish this purpose. In order to determine the FEL,
the following equation was applied:

∆G(X) = −kBTln P(X) (7)

The ∆G represents Gibbs free energy, the Boltzmann constant is denoted by kB, the
absolute temperature is denoted by T, X denotes the reaction coordinate, and P(X) denotes
the probability distribution of the system along the reaction coordinate.

3.10. MM/GBSA

The detailed method of binding free energy is given in Section 3.2.

4. Conclusions

SIRT2, an NAD+-dependent deacetylase, plays a critical role in the regulation of ag-
ing, DNA repair, and cell-cycle progression. Abnormal SIRT2 activity is associated with
diseases such as Parkinson’s, cancer, and metabolic disorders, making it an important
focus for therapeutic discovery. Peptide based inhibitors have potential benefits in terms of
selectivity and bioavailability. Thus, this study transformed a cyclic peptide inhibitor of
SIRT2 into a non-cyclic form by removing the modified residue, FAK (LYS + CF3CO−). The
tweaked peptide exhibited enhanced binding affinity in comparison to the already-known
cyclic inhibitor S2iL5. The 3D structures of the peptides reveal distinct conformations
that highlight their structural diversity and potential biological roles. The cyclic peptide
exhibits a compact loop and beta-sheet-like features, suggesting a stable structure poten-
tially suited for specific interactions. The alpha-helical peptides show varying degrees of
helix formation, which is indicative of their flexibility and potential for diverse functional
interactions. The presence of cysteine residues in some peptides suggests the formation
of disulfide bridges, which can enhance stability and influence their biological activity.
These structural insights provide valuable information for understanding the peptides’
potential applications in drug development and molecular interactions. The cyclic peptide
S2iL5, with the sequence ACY-TYR-HIS-THR-TYR-HIS-VAL-FAK-ARG-ARG-THR-ASN-
TYR-TYR-CYS-NH2, exhibited a binding free energy of −49.44 kcal/mol. Upon conversion
to a non-cyclic form, the new sequence demonstrated an improved binding free energy
of −50.66 kcal/mol. Through additional modification and screening, three peptides were
discovered to be particularly promising. Among these, Peptide 1 and Peptide 2 demon-
strated the most favorable binding free energy, with a value of −59.07 kcal/mol and
−46.01 kcal/mol, respectively. The significant energy differences in van der Waals (vdW),
electrostatic (EEL), and generalized Born electrostatic solvation (EGB) components among
the peptides highlight the complexity of their interactions. Larger vdW differences suggest
variations in surface complementarity, while substantial EEL differences indicate changes
in electrostatic interactions due to specific mutations. Variations in EGB reflect different
solvation effects. These energy component discrepancies emphasize the need to consider
multiple factors in evaluating binding affinities and designing effective peptide inhibitors.
Molecular dynamics analyses revealed that Peptide 1 and Peptide 2 not only maintained
significant stability but also displayed structural flexibility, which is advantageous for
effective inhibition. While Peptide 1 had a higher binding affinity than the original cyclic
S2iL5, Peptide 2’s binding affinity was slightly lower, yet both non-cyclic peptides demon-
strated potential enhancements in peptide-based inhibition over the original cyclic form.
The results emphasize the potential of peptide-based inhibitors to improve the strength of
binding and effectiveness, indicating that they could serve as viable alternatives to small
molecules for targeting SIRT2. However, additional experimental studies are necessary
to confirm these computational forecasts and evaluate the therapeutic capabilities of the
discovered peptides.
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