Algerian Prickly Pear Seed By-Products: Fatty Acids Composition, Antioxidant, Enzyme Inhibitory Activities towards Tyrosinase, Urease, α-Amylase, and Cholinesterase, along with the Ability to Protect from Thermal Protein Denaturation
Abstract
:1. Introduction
2. Results
2.1. Oil Fatty Acids Composition
2.1.1. Oil Yield
2.1.2. Fourier-Transform Infrared Spectroscopy (FT-IR)
2.1.3. Gas Chromatography-Mass Spectrometry (GC-MS) Analysis
2.2. Phytochemical Composition of Press Cake
2.2.1. Chemical Composition
2.2.2. Extraction of Phenolic Compounds
2.2.3. Phenolic Content
2.3. Biological Effects
2.3.1. Antioxidant Activity
2.3.2. Thermal Protein Denaturation Inhibition Assay
2.3.3. Inhibition of Enzymatic Activity
Inhibition of Tyrosinase Activity
Inhibition of Urease Activity
Inhibition of Alpha Amylase Activity
Inhibition of Cholinesterase Activity
3. Discussion
4. Materiel and Methods
4.1. Oil Fatty Acids Characterization
4.1.1. Preparation of Fatty Acids Methyl Ester (FAMEs)
4.1.2. Fourier Transform Infrared Spectroscopy (FTIR)
4.1.3. Gas Chromatography Mass Spectrometry (GC-MS) Analysis
4.2. Phytochemical Composition of Press Cake
4.2.1. Chemical Composition
4.2.2. Extraction Procedure
4.2.3. Phytochemical Composition
Total Phenolic Content
Flavonoid Content
Flavonol Content
4.3. Biological Activities
4.3.1. Antioxidant Activity
2,2-Diphényl 1-Picrylhydrazyle (DPPH) Assay
2,2′ Azion-bis 3-Ethylbenzothizoline-6-sulfonic Acid (ABTS) Assay
Reducing Power Assay
Phenanthroline Assay
β-Carotene Assay
4.3.2. Thermal Protein Denaturation Inhibition Assay
4.3.3. Inhibition of Enzymes Activities
Inhibition of Tyrosinase Activity
Inhibition of Urease Activity
Inhibition of Alpha Amylase Activity
Inhibition of Cholinesterase Activity
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Park, E.-H.; Kahng, J.-H.; Lee, S.H.; Shin, K.-H. An anti-inflammatory principle from cactus. Fitoterapia 2001, 72, 288–290. [Google Scholar] [CrossRef] [PubMed]
- Trombetta, D.; Puglia, C.; Perri, D.; Licata, A.; Pergolizzi, S.; Lauriano, E.R.; De Pasquale, A.; Saija, A.; Bonina, F.P. Effect of polysaccharides from Opuntia ficus-indica (L.) cladodes on the healing of dermal wounds in the rat. Phytomedicine 2006, 13, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Hameed, E.-S.S.; Nagaty, M.A.; Salman, M.S.; Bazaid, S.A. Phytochemicals, nutritionals and antioxidant properties of two prickly pear cactus cultivars (Opuntia ficus indica Mill.) growing in Taif, KSA. Food Chem. 2014, 160, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, P.C.; Majure, L.C.; Cornejo-Romero, A.; Hernández-Hernández, T. Phylogenetic relationships and evolutionary trends in the cactus family. J. Hered. 2019, 110, 4–21. [Google Scholar] [CrossRef]
- Hegwood, D.A. Human health discoveries with Opuntia sp.(prickly pear). HortScience 1990, 25, 1515–1516. [Google Scholar] [CrossRef]
- Sawaya, W.N.; Khan, P. Chemical characterization of prickly pear seed oil, Opuntia ficus-indica. J. Food Sci. 1982, 47, 2060–2061. [Google Scholar] [CrossRef]
- Ramadan, M.F.; Mörsel, J.T. Oil cactus pear (Opuntia ficus-indica L.). Food Chem. 2003, 82, 339–345. [Google Scholar] [CrossRef]
- Ramírez-Moreno, E.; Cariño-Cortés, R.; del Cruz-Cansino, N.S.; Delgado-Olivares, L.; Ariza-Ortega, J.A.; Montañez-Izquierdo, V.Y.; Hernández-Herrero, M.M.; Filardo-Kerstupp, T. Antioxidant and antimicrobial properties of cactus pear (Opuntia) seed oils. J. Food Qual. 2017, 2017, 3075907. [Google Scholar] [CrossRef]
- Raihana, A.R.N.; Marikkar, J.M.N.; Amin, I.; Shuhaimi, M. A review on food values of selected tropical fruits’ seeds. Int. J. Food Prop. 2015, 18, 2380–2392. [Google Scholar] [CrossRef]
- Parikh, P.; McDaniel, M.C.; Ashen, M.D.; Miller, J.I.; Sorrentino, M.; Chan, V.; Blumenthal, R.S.; Sperling, L.S. Diets and cardiovascular disease: An evidence-based assessment. J. Am. Coll. Cardiol. 2005, 45, 1379–1387. [Google Scholar] [CrossRef]
- Schwartzberg, H.G. Expression of fluid from biological solids. Sep. Purif. Methods 1997, 26, 1–213. [Google Scholar] [CrossRef]
- Chougui, N.; Tamendjari, A.; Hamidj, W.; Hallal, S.; Barras, A.; Richard, T.; Larbat, R. Oil composition and characterisation of phenolic compounds of Opuntia ficus-indica seeds. Food Chem. 2013, 139, 796–803. [Google Scholar] [CrossRef] [PubMed]
- Matthäus, B.; Özcan, M.M. Habitat effects on yield, fatty acid composition and tocopherol contents of prickly pear (Opuntia ficus-indica L.) seed oils. Sci. Hortic. 2011, 131, 95–98. [Google Scholar] [CrossRef]
- Coşkuner, Y.N.; Tekin, A. Monitoring of seed composition of prickly pear (Opuntia ficus-indica L) fruits during maturation period. J. Sci. Food Agric. 2003, 83, 846–849. [Google Scholar] [CrossRef]
- El Mannoubi, I.; Barrek, S.; Skanji, T.; Casabianca, H.; Zarrouk, H. Characterization of Opuntia ficus indica seed oil from Tunisia. Chem. Nat. Compd. 2009, 45, 616–620. [Google Scholar] [CrossRef]
- Alqurashi, A.S.; Al Masoudi, L.M.; Hamdi, H.; Abu Zaid, A. Chemical Composition and Antioxidant, Antiviral, Antifungal, Antibacterial and Anticancer Potentials of Opuntia ficus-indica Seed Oil. Molecules 2022, 27, 5453. [Google Scholar] [CrossRef]
- Ennouri, M.; Fetoui, H.; Bourret, E.; Zeghal, N.; Attia, H. Evaluation of some biological parameters of Opuntia ficus indica. 1. Influence of a seed oil supplemented diet on rats. Bioresour. Technol. 2006, 97, 1382–1386. [Google Scholar] [CrossRef]
- Berraaouan, A.; Ziyyat, A.; Mekhfi, H.; Legssyer, A.; Sindic, M.; Aziz, M.; Bnouham, M. Evaluation of antidiabetic properties of cactus pear seed oil in rats. Pharm. Biol. 2014, 52, 1286–1290. [Google Scholar] [CrossRef]
- Bardaa, S.; Turki, M.; Ben Khedir, S.; Mzid, M.; Rebai, T.; Ayadi, F.; Sahnoun, Z. The effect of prickly pear, pumpkin, and linseed oils on biological mediators of acute inflammation and oxidative stress markers. Biomed. Res. Int. 2020, 2020, 5643465. [Google Scholar] [CrossRef]
- Khémiri, I.; Bitri, L. Effectiveness of Opuntia ficus indica L. inermis seed oil in the protection and the healing of experimentally induced gastric mucosa ulcer. Oxidative Med. Cell. Longev. 2019, 2019, 1568720. [Google Scholar] [CrossRef]
- Masmoudi, M.; Baccouche, A.; Borchani, M.; Besbes, S.; Blecker, C.; Attia, H. Physico-Chemical and Antioxidant Properties of Oils and by-Products Obtained by Cold Press-Extraction of Tunisian Opuntia Spp. Seeds. Appl. Food Res. 2021, 1, 100024. [Google Scholar] [CrossRef]
- Regalado-Rentería, E.; Aguirre-Rivera, J.R.; González-Chávez, M.M.; Sánchez-Sánchez, R.; Martínez-Gutiérrez, F.; Juárez-Flores, B.I. Assessment of Extraction Methods and Biological Value of Seed Oil from Eight Variants of Prickly Pear Fruit (Opuntia spp.). Waste Biomass Valorization 2020, 11, 1181–1189. [Google Scholar] [CrossRef]
- Boukeloua, A.; Belkhiri, A.; Djerrou, Z.; Bahri, L.; Boulebda, N.; Pacha, Y.H. Acute toxicity of Opuntia ficus indica and Pistacia lentiscus seed oils in mice. Afr. J. Tradit. Complement. Altern. Med. 2012, 9, 607–611. [Google Scholar] [CrossRef] [PubMed]
- AbdelFattah, M.S.; Badr, S.E.; Elsaid, A.S. Nutritive value and chemical composition of prickly pear seeds (Opuntia ficus indica L.) growing in Egypt. Int. J. Agric. Policy Res. 2020, 8, JAPR.20.001i. [Google Scholar] [CrossRef]
- Vlachos, N.; Skopelitis, Y.; Psaroudaki, M.; Konstantinidou, V.; Chatzilazarou, A.; Tegou, E. Applications of Fourier transform-infrared spectroscopy to edible oils. Anal. Chim. Acta 2006, 573, 459–465. [Google Scholar] [CrossRef]
- Vilela, J.; Coelho, L.; de Almeida, J.M.M.M. Investigation of adulteration of sunflower oil with thermally deteriorated oil using Fourier transform mid-infrared spectroscopy and chemometrics. Cogent Food Agric. 2015, 1, 1020254. [Google Scholar] [CrossRef]
- Ennouri, M.; Evelyne, B.; Laurence, M.; Hamadi, A. Fatty acid composition and rheological behaviour of prickly pear seed oils. Food Chem. 2005, 93, 431–437. [Google Scholar] [CrossRef]
- Ghazi, Z.; Ramdani, M.; Fauconnier, M.-L.; El Mahi, B.; Cheikh, R. Fatty acids sterols and vitamin E composition of seed oil of Opuntia ficus indica and Opuntia dillenii from Morocco. J. Mater. Environ. Sci. 2013, 5, 967–972. [Google Scholar]
- Al-Saad, A.; Jameel, A.; Alsaad, A.; Altemimi, A.B.; Naji Aziz, S.; Lakhssassi, N. Extraction and Identification of Cactus Opuntia Dillenii Seed Oil and its Added Value for Human Health Benefits. Pharmacogn. J. 2019, 11, 579–587. [Google Scholar] [CrossRef]
- Karabagias, V.K.; Karabagias, I.K.; Gatzias, I.; Badeka, A. V Prickly pear seed oil by shelf-grown cactus fruits: Waste or maste? Processes 2020, 8, 132. [Google Scholar] [CrossRef]
- Ali, B.; Abderrahim, Z.; Hassane, M.; Marianne, S.; Marie-Laure, F.; Abdelkhaleq, L.; Mohammed, A.; Mohamed, B. Chemical Composition of Cactus Pear Seed Oil: Phenolics identification and antioxidant activity. J. Pharmacopunct. 2022, 25, 121. [Google Scholar] [CrossRef]
- Hernández-Urbiola, M.I.; Pérez-Torrero, E.; Rodríguez-García, M.E. Chemical analysis of nutritional content of prickly pads (Opuntia ficus indica) at varied ages in an organic harvest. Int. J. Environ. Res. Public Health 2011, 8, 1287–1295. [Google Scholar] [CrossRef] [PubMed]
- Ouilly, J.T.; Bazongo, P.; Bougma, A.; Kaboré, N.; Lykke, A.M.; Ouédraogo, A.; Bassolé, I.H.N. Chemical composition, physicochemical characteristics, and nutritional value of Lannea kerstingii Seeds and Seed Oil. J. Anal. Methods Chem. 2017, 2017, 2840718. [Google Scholar] [CrossRef] [PubMed]
- Samah, S.; Ventura-Zapata, E.; Valadez-Moctezuma, E. Fractionation and electrophoretic patterns of seed protein of Opuntia genus: A preliminary survey as a tool for accession differentiation and taxonomy. Biochem. Syst. Ecol. 2015, 58, 187–194. [Google Scholar] [CrossRef]
- Ozcan, M.M.; Al Juhaimi, F.Y. Nutritive value and chemical composition of prickly pear seeds (Opuntia ficus indica L.) growing in Turkey. Int. J. Food Sci. Nutr. 2011, 62, 533–536. [Google Scholar] [CrossRef]
- Ponka, R.; Goudoum, A.; Tchungouelieu, A.C.; Fokou, E. Evaluation nutritionnelle de quelques ingrédients entrant dans la formulation alimentaire des poules pondeuses et porcs d’une ferme d’élevage au Nord-Ouest Cameroun. Int. J. Biol. Chem. Sci. 2016, 10, 2073–2080. [Google Scholar] [CrossRef]
- Sguera, S. Spirulina Platensis et Ses Constituants: Intérêts Nutritionnels et Activités Thérapeutiques. Ph.D. Thesis, UHP-Université Henri Poincaré, Nancy, France, 2008. [Google Scholar]
- Khokhar, S.; Chauhan, B.M. Antinutritional factors in moth bean (Vigna aconitifolia): Varietal differences and effects of methods of domestic processing and cooking. J. Food Sci. 1986, 51, 591–594. [Google Scholar] [CrossRef]
- Majzoobi, M.; Karambakhsh, G.; Golmakani, M.T.; Mesbahi, G.R.; Farahnaky, A. Chemical Composition and Functional Properties of Date Press Cake, an Agro-Industrial Waste. J. Agric. Sci. Technol. 2019, 21, 1807–1817. [Google Scholar]
- Lin, M.J.-Y.; Humbert, E.S.; Sosulski, F.W. Certain functional properties of sunflower meal products. J. Food Sci. 1974, 39, 368–370. [Google Scholar] [CrossRef]
- Brouillard, R.; Dangles, O. Flavonoids and Flower Colour. In The Flavonoids Advances in Research Since 1986; Routledge: Oxfordshire, UK, 2017; pp. 565–588. [Google Scholar]
- Chaalal, M.; Touati, N.; Louaileche, H. Extraction of phenolic compounds and in vitro antioxidant capacity of prickly pear seeds. Acta Bot. Gall. 2012, 159, 467–475. [Google Scholar] [CrossRef]
- Teh, S.S.; El-Din Bekhit, A.; Birch, J. Antioxidative polyphenols from defatted oilseed cakes: Effect of solvents. Antioxidants 2014, 3, 67–80. [Google Scholar] [CrossRef] [PubMed]
- Naveed, M.; Hejazi, V.; Abbas, M.; Kamboh, A.A.; Khan, G.J.; Shumzaid, M.; Ahmad, F.; Babazadeh, D.; FangFang, X.; Modarresi-Ghazani, F.; et al. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed. Pharmacother. 2018, 97, 67–74. [Google Scholar] [CrossRef]
- Amrane-Abider, M.; Nerín, C.; Canellas, E.; Zeroual, B.; Hadjal, S.; Louaileche, H. Prickly pear (Opuntia ficus-indica) seeds as a source of phenolic compounds: Microwave-assisted extraction optimization and effect on food lipid oxidations. Ann. Univ. Dunarea Jos Galati Fascicle VI Food Technol. 2018, 42, 23–35. [Google Scholar]
- Bouaouich, A.; Bouguerche, F.; Mahiaoui, H.; Peron, G.; Bendif, H. Phytochemical elucidation and antioxidant activity of seeds from three prickly pear (Opuntia ficus-indica L.) cultivars from Algeria. Appl. Sci. 2023, 13, 1444. [Google Scholar] [CrossRef]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Shah, S.R.; Ukaegbu, C.I.; Hamid, H.A.; Alara, O.R. Evaluation of antioxidant and antibacterial activities of the stems of Flammulina velutipes and Hypsizygus tessellatus (white and brown var.) extracted with different solvents. J. Food Meas. Charact. 2018, 12, 1947–1961. [Google Scholar] [CrossRef]
- Adwas, A.A.; Elsayed, A.; Azab, A.E.; Quwaydir, F.A. Oxidative stress and antioxidant mechanisms in human body. J. Appl. Biotechnol. Bioeng. 2019, 6, 43–47. [Google Scholar]
- Kim, D.-O.; Jeong, S.W.; Lee, C.Y. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 2003, 81, 321–326. [Google Scholar] [CrossRef]
- Ghasemzadeh, A.; Ghasemzadeh, N. Flavonoids and phenolic acids: Role and biochemical activity in plants and human. J. Med. Plants Res. 2011, 5, 6697–6703. [Google Scholar] [CrossRef]
- Bors, W.; Heller, W.; Michel, C.; Saran, M. Flavonoids as Antioxidants: Determination of Radical-Scavenging Efficiencies. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1990; Volume 186, pp. 343–355. ISBN 0076-6879. [Google Scholar]
- Pietta, P.G. Flavonoids as antioxidants. J. Nat. Prod. 2000, 63, 1035–1042. [Google Scholar] [CrossRef]
- Khattabi, L.; Chettoum, A.; Hemida, H.; Boussebaa, W.; Atanassova, M. Pirimicarb induction of behavioral disorders and of neurological and reproductive toxicities in male rats : Euphoric and preventive Effects of Ephedra alata Monjauzeana. Pharmaceuticals 2023, 16, 402. [Google Scholar] [CrossRef]
- Khattabi, L.; Khaldi, T.; Bahri, L.; Mokhtari, M.B.; Bouhenna, M.M.; Temime, A.; Boural, H.; Bouhedjar, K.; Hemida, H.; Atoki, A.V.; et al. Insights about the deleterious impact of a carbamate pesticide on some metabolic immune and antioxidant functions and a focus on the protective ability of a Saharan shrub and its anti-edematous property. Open Chem. 2024, 22, 20240022. [Google Scholar] [CrossRef]
- Opie, E.L. On the relation of necrosis and inflammation to denaturation of proteins. J. Exp. Med. 1962, 115, 597. [Google Scholar] [CrossRef] [PubMed]
- Sridevi, G.; Sembulingam, K.; Muhammed Ibrahim, M.I.; Srividya, S.; Prema Sembulingam, P.S. Evaluation of In Vitro Anti-inflammatory Activity of Pergularia daemia. World J. Pharm. Res. 2015, 4, 1100–1108. [Google Scholar]
- Chandra, R.; Zhang, M.; Peng, L. Application of Cooperative Convolution Optimization for 13 C Metabolic Flux Analysis: Simulation of Isotopic Labeling Patterns Based on Tandem Mass Spectrometry Measurements. In Proceedings of the Simulated Evolution and Learning: 9th International Conference, SEAL 2012, Hanoi, Vietnam, 16–19 December 2012; Proceedings 9. Springer: Berlin/Heidelberg, Germany, 2012; pp. 178–187. [Google Scholar]
- Van Hecken, A.; Schwartz, J.I.; Depré, M.; De Lepeleire, I.; Dallob, A.; Tanaka, W.; Wynants, K.; Buntinx, A.; Arnout, J.; Wong, P.H. Comparative inhibitory activity of rofecoxib, meloxicam, diclofenac, ibuprofen, and naproxen on COX-2 versus COX-1 in healthy volunteers. J. Clin. Pharmacol. 2000, 40, 1109–1120. [Google Scholar] [CrossRef]
- Schwartz, J.I.; Dallob, A.L.; Larson, P.J.; Laterza, O.F.; Miller, J.; Royalty, J.; Snyder, K.M.; Chappell, D.L.; Hilliard, D.A.; Flynn, M.E. Comparative inhibitory activity of etoricoxib, celecoxib, and diclofenac on COX-2 versus COX-1 in healthy subjects. J. Clin. Pharmacol. 2008, 48, 745–754. [Google Scholar] [CrossRef] [PubMed]
- Dharmadeva, S.; Galgamuwa, L.S.; Prasadinie, C.; Kumarasinghe, N. In vitro anti-inflammatory activity of Ficus racemosa L. bark using albumin denaturation method. AYU Int. Q. J. Res. Ayurveda 2018, 39, 239–242. [Google Scholar]
- Kandikattu, K.; Kumar, P.B.R.; Priya, R.V.; Kumar, K.S.; Rathore, R.S.B. Evaluation of anti-inflammatory activity of Canthium parviflorum by in-vitro method. Indian J. Res. Pharm. Biotechnol. 2013, 1, 729–731. [Google Scholar]
- Bailey-Shaw, Y.A.; Williams, L.A.D.; Green, C.E.; Rodney, S.; Smith, A.M. In-Vitro Evaluation of the Anti-Inflammatory Potential of Selected Jamaican Plant Extracts Using the Bovine Serum Albumin Protein Denaturation Assay. Int. J. Pharm. Sci. Rev. Res. 2017, 47, 145–153. [Google Scholar]
- Ferrero-Miliani, L.; Nielsen, O.H.; Andersen, P.S.; Girardin, S. Chronic Inflammation: Importance of NOD2 and NALP3 in Interleukin-1β Generation. Clin. Exp. Immunol. 2007, 147, 227–235. [Google Scholar] [CrossRef]
- El Hachimi, F.; Hajjaj, G.; Bendriss, A.; Cherrah, Y.; Alaoui, K. Anti-inflammatory activity of seed oils of Opuntia ficus-indica L. and Punica granatum L. from Morocco. World J. Pharm. Res. 2015, 4, 284–294. [Google Scholar]
- Koshak, A.E.; Abdallah, H.M.; Esmat, A.; Rateb, M.E. Anti-inflammatory activity and chemical characterisation of Opuntia ficus-indica seed oil cultivated in Saudi Arabia. Arab. J. Sci. Eng. 2020, 45, 4571–4578. [Google Scholar] [CrossRef]
- Chafik, M.; Reda, B.A. Phytochemical Screening, Antimicrobial Activity Study and Evaluation of in Vivo Anti-inflammatory Activity of Essential Oils of Opuntia ficus-Indica Seeds. Tob. Regul. Sci. 2023, 9, 2832–2847. [Google Scholar]
- Dobrucki, L.W.; Kalinowski, L.; Dobrucki, I.T.; Malinski, T. Statin-stimulated nitric oxide release from endothelium. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2001, 7, 622–627. [Google Scholar]
- Okuda, Y.; Kawashima, K.; Sawada, T.; Tsurumaru, K.; Asano, M.; Suzuki, S.; Soma, M.; Nakajima, T.; Yamashita, K. Eicosapentaenoic acid enhances nitric oxide production by cultured human endothelial cells. Biochem. Biophys. Res. Commun. 1997, 232, 487–491. [Google Scholar] [CrossRef]
- Ambriz-Pérez, D.L.; Leyva-López, N.; Gutierrez-Grijalva, E.P.; Heredia, J.B. Phenolic compounds: Natural alternative in inflammation treatment. A Review. Cogent Food Agric. 2016, 2, 1131412. [Google Scholar]
- Chang, T.-S. An updated review of tyrosinase inhibitors. Int. J. Mol. Sci. 2009, 10, 2440–2475. [Google Scholar] [CrossRef]
- El-Nashar, H.A.S.; El-Din, M.I.G.; Hritcu, L.; Eldahshan, O.A. Insights on the inhibitory power of flavonoids on tyrosinase activity: A survey from 2016 to 2021. Molecules 2021, 26, 7546. [Google Scholar] [CrossRef]
- Yang, H.; Xu, P.; Song, W.; Zhai, X. Anti-tyrosinase and antioxidant activity of proanthocyanidins from Cinnamomum camphora. Int. J. Food Prop. 2021, 24, 1265–1278. [Google Scholar] [CrossRef]
- Ando, H.; Watabe, H.; Valencia, J.C.; Yasumoto, K.I.; Furumura, M.; Funasaka, Y.; Oka, M.; Ichihashi, M.; Hearing, V.J. Fatty acids regulate pigmentation via proteasomal degradation of tyrosinase: A new aspect of ubiquitin-proteasome function. J. Biol. Chem. 2004, 279, 15427–15433. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Kang, K.S.; Yokozawa, T. The anti-melanogenic effect of pycnogenol by its anti-oxidative actions. Food Chem. Toxicol. 2008, 46, 2466–2471. [Google Scholar] [CrossRef]
- Baek, H.S.; Rho, H.S.; Yoo, J.W.; Ahn, S.M.; Lee, J.Y.; Jeonga-Lee, J.-L.; Kim, M.-K.; Kim, D.H.; Chang, I.S. The inhibitory effect of new hydroxamic acid derivatives on melanogenesis. Bull. Korean Chem. Soc. 2008, 29, 43–46. [Google Scholar]
- Taibi, M.; Elbouzidi, A.; Haddou, M.; Baraich, A.; Loukili, E.H.; Moubchir, T.; Allali, A.; Bellaouchi, R.; Asehraou, A.; Addi, M. Phytochemical characterization and multifaceted bioactivity assessment of essential oil from Ptychotis verticillata Duby: Anti-diabetic, anti-tyrosinase, and anti-inflammatory activity. Heliyon 2024, 10, e29459. [Google Scholar] [CrossRef] [PubMed]
- Guici El Kouacheur, K.; Cherif, H.S.; Saidi, F.; Bensouici, C.; Fauconnier, M.L. Prunus amygdalus var amara (bitter almond) seed oil: Fatty acid composition, physicochemical parameters, enzyme inhibitory activity, antioxidant and anti-inflammatory potential. J. Food Meas. Charact. 2023, 17, 371–384. [Google Scholar]
- Cheraif, K.; Bakchiche, B.; Gherib, A.; Bardaweel, S.K.; Çol Ayvaz, M.; Flamini, G.; Ascrizzi, R.; Ghareeb, M.A. Chemical composition, antioxidant, anti-tyrosinase, anti-cholinesterase and cytotoxic activities of essential oils of six Algerian plants. Molecules 2020, 25, 1710. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-T.; Chang, W.-L.; Hsu, J.-C.; Shih, Y.; Chou, S.-T. Chemical composition and tyrosinase inhibitory activity of Cinnamomum cassia essential oil. Bot. Stud. 2013, 54, 10. [Google Scholar] [CrossRef]
- Saeio, K.; Yotsawimonwat, S.; Anuchapreeda, S.; Okonogi, S. Development of microemulsion of a potent anti-tyrosinase essential oil of an edible plant. Drug Discov. Ther. 2011, 5, 246–252. [Google Scholar] [CrossRef]
- Khan, A.W.; Jan, S.; Parveen, S.; Khan, R.A.; Saeed, A.; Tanveer, A.J.; Shad, A.A. Phytochemical analysis and enzyme inhibition assay of Aerva javanica for ulcer. Chem. Cent. J. 2012, 6, 76. [Google Scholar] [CrossRef]
- Arfan, M.; Ali, M.; Ahmad, H.; Anis, I.; Khan, A.; Choudhary, M.I.; Shah, M.R. Urease inhibitors from Hypericum oblongifolium wall. J. Enzym. Inhib. Med. Chem. 2010, 25, 296–299. [Google Scholar] [CrossRef]
- Deveci, E.; Tel-Çayan, G.; Duru, M.E. Investigation of chemical composition, antioxidant, anticholinesterase and anti-urease activities of Euphorbia helioscopia. Int. J. Second. Metab. 2018, 5, 259–269. [Google Scholar] [CrossRef]
- Korona-Glowniak, I.; Glowniak-Lipa, A.; Ludwiczuk, A.; Baj, T.; Malm, A. The in vitro activity of essential oils against Helicobacter pylori growth and urease activity. Molecules 2020, 25, 586. [Google Scholar] [CrossRef] [PubMed]
- Yener, I. Determination of antioxidant, cytotoxic, anticholinesterase, antiurease, antityrosinase, and antielastase activities and aroma, essential oil, fatty acid, phenolic, and terpenoid-phytosterol contents of Salvia poculata. Ind. Crops Prod. 2020, 155, 112712. [Google Scholar] [CrossRef]
- Sun, C.Q.; O’Connor, C.J.; Roberton, A.M. Antibacterial actions of fatty acids and monoglycerides against Helicobacter pylori. FEMS Immunol. Med. Microbiol. 2003, 36, 9–17. [Google Scholar] [CrossRef]
- Firdous, S.; Ansari, N.H.; Fatima, I.; Malik, A.; Afza, N.; Iqbal, L.; Lateef, M. Ophiamides AB, new potent urease inhibitory sphingolipids from Heliotropium ophioglossum. Arch. Pharm. Res. 2012, 35, 1133–1137. [Google Scholar] [CrossRef]
- Bankeu, J.J.K.; Madjouka, S.; Feuya, G.R.T.; Fongang, Y.S.F.; Siddiqui, S.; Ali, I.; Mehreen, L.; Lenta, B.N.; Yousuf, S.; Noungoué, D.T. Pobeguinine: A monoterpene indole alkaloid and other bioactive constituents from the stem bark of Nauclea pobeguinii. Z. Naturforsch. C 2018, 73, 335–344. [Google Scholar] [CrossRef]
- Khan, S.S.; Khan, A.; Khan, A.; Wadood, A.; Farooq, U.; Ahmed, A.; Zahoor, A.; Ahmad, V.U.; Sener, B.; Erdemoglu, N. Urease inhibitory activity of ursane type sulfated saponins from the aerial parts of Zygophyllum fabago Linn. Phytomedicine 2014, 21, 379–382. [Google Scholar] [CrossRef]
- Zahid, H.; Rizwani, G.; Kamil, A.; Shareef, H.; Tasleem, S.; Khan, A. Anti-Urease Activity of Mimusops Elengi Linn (Sapotaceae). Eur. J. Med. Plants 2015, 6, 223–230. [Google Scholar] [CrossRef]
- Taşkın, T.; Taşkın, D. In Vitro Anti-Urease, Antioxidant Activities and Phytochemical Composition of Geranium Purpureum. J. Food Meas. Charact. 2017, 11, 2102–2109. [Google Scholar] [CrossRef]
- Ali Asgar, M.D. Anti-diabetic potential of phenolic compounds: A review. Int. J. Food Prop. 2013, 16, 91–103. [Google Scholar] [CrossRef]
- Koh, L.W.; Wong, L.L.; Loo, Y.Y.; Kasapis, S.; Huang, D. Evaluation of different teas against starch digestibility by mammalian glycosidases. J. Agric. Food Chem. 2010, 58, 148–154. [Google Scholar] [CrossRef]
- Lo PiparO, E.; Scheib, H.; Frei, N.; Williamson, G.; Grigorov, M.; Chou, C.J. Flavonoids for controlling starch digestion: Structural requirements for inhibiting human α-amylase. J. Med. Chem. 2008, 51, 3555–3561. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Dartois, A.; Kaur, L. Starch digestibility in food matrix: A review. Trends Food Sci. Technol. 2010, 21, 168–180. [Google Scholar] [CrossRef]
- Obiro, W.C.; Zhang, T.; Jiang, B. The nutraceutical role of the Phaseolus vulgaris α-amylase inhibitor. Br. J. Nutr. 2008, 100, 1–12. [Google Scholar] [CrossRef]
- Park, H.; Hwang, K.Y.; Kim, Y.H.; Oh, K.H.; Lee, J.Y.; Kim, K. Discovery and biological evaluation of novel α-glucosidase inhibitors with in vivo antidiabetic effect. Bioorg. Med. Chem. Lett. 2008, 18, 3711–3715. [Google Scholar] [CrossRef] [PubMed]
- Al-Naqeb, G. Effect of prickly pear cactus seeds oil on the blood glucose level of streptozotocin-induced diabetic rats and its molecular mechanisms. Int. J. Herb. Med. 2015, 3, 29–34. [Google Scholar]
- Mehmood, S.; Orhan, I.; Ahsan, Z.; Aslan, S.; Gulfraz, M. Fatty acid composition of seed oil of different Sorghum bicolor varieties. Food Chem. 2008, 109, 855–859. [Google Scholar] [CrossRef]
- Teng, H.; Chen, L. α-Glucosidase and α-amylase inhibitors from seed oil: A review of liposoluble substance to treat diabetes. Crit. Rev. Food Sci. Nutr. 2017, 57, 3438–3448. [Google Scholar] [CrossRef]
- Berge, R.K.; Madsen, L.; Vaagenes, H. Hypolipidemic 3-Thia Fatty Acids: Fatty Acid Oxidation and Ketogenesis in Rat Liver under Proliferation of Mitochondria and Peroxisomes. In Current Views of Fatty Acid Oxidation and Ketogenesis: From Organelles to Point Mutations; Springer: Boston, MA, USA, 1999; pp. 125–132. [Google Scholar]
- Julius, U. Influence of plasma free fatty acids on lipoprotein synthesis and diabetic dyslipidemia. Exp. Clin. Endocrinol. Diabetes 2003, 111, 246–250. [Google Scholar] [CrossRef] [PubMed]
- Jump, D.B.; Clarke, S.D. Regulation of gene expression by dietary fat. Annu. Rev. Nutr. 1999, 19, 63–90. [Google Scholar] [CrossRef]
- McDougall, G.J.; Shpiro, F.; Dobson, P.; Smith, P.; Blake, A.; Stewart, D. Different polyphenolic components of soft fruits inhibit α-amylase and α-glucosidase. J. Agric. Food Chem. 2005, 53, 2760–2766. [Google Scholar] [CrossRef]
- Orhan, I.; Kartal, M.; Tosun, F.; Şener, B. Screening of various phenolic acids and flavonoid derivatives for their anticholinesterase potential. Z. Naturforsch. C 2007, 62, 829–832. [Google Scholar] [CrossRef] [PubMed]
- Szwajgier, D. Anticholinesterase activity of phenolic acids and their derivatives. Z. Naturforsch. C 2013, 68, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Szwajgier, D. Anticholinesterase activities of selected polyphenols–a short report. Pol. J. Food Nutr. Sci. 2014, 64, 59–64. [Google Scholar] [CrossRef]
- Tel, G.; Öztürk, M.; Duru, M.E.; Doğan, B.; Harmandar, M. Fatty Acid Composition, Antioxidant, Anticholinesterase and Tyrosinase Inhibitory Activities of Four Serratula Species from Anatolia. Rec. Nat. Prod. 2013, 7, 86–95. [Google Scholar]
- Chouhan, H.S.; Sahu, A.N.; Singh, S.K. Fatty acid composition, antioxidant, anti-inflammatory and antibacterial activities of seed oil from Crotalaria juncea Linn. J. Med. Plants Res. 2011, 5, 984–991. [Google Scholar]
- Aumeeruddy, M.Z.; Aumeeruddy-Elalfi, Z.; Neetoo, H.; Zengin, G.; Fibrich, B.; Rademan, S.; Van Staden, A.B.; Szuman, K.; Lambrechts, I.A.; Lall, N. Biological, phytochemical, and physico-chemical properties of two commercial Nigella sativa seed oils: A comparative analysis. Istanb. J. Pharm. 2019, 48, 89–99. [Google Scholar] [CrossRef]
- Sicak, Y.; Eliuz, E.A.E. Chemical content and biological activity spectrum of Nigella sativa seed oil. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Doğa Derg. 2019, 22, 928–934. [Google Scholar] [CrossRef]
- Safitri, A.; Zuhroh, N. Microencapsulation Combination of Nigella sativa and Cosmos caudatus Kunth and In Vitro Protein Denaturation Inhibition Assay. JSMARTech J. Smart Bioprospect. Technol. 2022, 3, 29–34. [Google Scholar] [CrossRef]
- Deveci, E.; Tel-Çayan, G.; Usluer, Ö.; Duru, M.E. Chemical composition, antioxidant, anticholinesterase and anti-tyrosinase activities of essential oils of two Sideritis species from Turkey. Iran. J. Pharm. Res. IJPR 2019, 18, 903. [Google Scholar]
- Daoudi, N.E.; Bouhrim, M.; Ouassou, H.; Legssyer, A.; Mekhfi, H.; Ziyyat, A.; Aziz, M.; Bnouham, M. Inhibitory effect of roasted/unroasted Argania spinosa seeds oil on α-glucosidase, α-amylase and intestinal glucose absorption activities. South Afr. J. Bot. 2020, 135, 413–420. [Google Scholar] [CrossRef]
- Khammassi, M.; Amato, G.; Caputo, L.; Nazzaro, F.; Fratianni, F.; Kouki, H.; Amri, I.; Hamrouni, L.; De Feo, V. Fatty Acid Profiles and Biological Activities of the Vegetable Oils of Argania spinosa, Pinus halepensis and Pistacia atlantica Grown in Tunisia: A Preliminary Study. Molecules 2023, 29, 160. [Google Scholar] [CrossRef]
- Akinwunmi, K.; Oyedapo, O. In vitro anti-inflammatory evaluation of African nutmeg (Monodora myristica) seeds. Eur. J. Med. Plants 2015, 8, 167–174. [Google Scholar] [CrossRef]
- AACC. Approved Methods of the American Association of Cereal Chemists; American Association of Cereal Chemists: St. Paul, MN, USA, 2000; Volume 1, ISBN 1891127128. [Google Scholar]
- Vargas-Rodríguez, L.M.; Morales-Barrera, J.E.; Herrera-Haro, J.G.; Antonio-Bautista, J.; López-Pozos, R.; Hernández-Sánchez, D. Effect of citric acid, phytase and calcium levels on the calcium and phosphorus content in egg: Yolk-albumen and shell, yolk color and egg Quality in Diets of Laying Hens. Food Nutr. Sci. 2016, 7, 1364–1374. [Google Scholar] [CrossRef]
- Müller, L.; Gnoyke, S.; Popken, A.M.; Böhm, V. Antioxidant capacity and related parameters of different fruit formulations. LWT-Food Sci. Technol. 2010, 43, 992–999. [Google Scholar] [CrossRef]
- Ayoola, G.; Ipav, S.; Sofidiya, M.; Adepoju-Bello, A.; Coker, H.; Odugbemi, T. Phytochemical screening and free Radical Scavenging activities of the fruits and leaves of Allanblackia floribunda Oliv (Guttiferae). Int. J. Health Res. 2009, 1, 85–93. [Google Scholar] [CrossRef]
- Kumaran, A.; Karunakaran, R.J. In vitro antioxidant activities of methanol extracts of five Phyllanthus species from India. LWT-Food Sci. Technol. 2007, 40, 344–352. [Google Scholar] [CrossRef]
- BLOIS, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Oyaizu, M. Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. Diet. 1986, 44, 307–315. [Google Scholar] [CrossRef]
- Szydłowska-Czerniak, A.; Dianoczki, C.; Recseg, K.; Karlovits, G.; Szłyk, E. Determination of antioxidant capacities of vegetable oils by ferric-ion spectrophotometric methods. Talanta 2008, 76, 899–905. [Google Scholar] [CrossRef]
- Marco, G.J. A rapid method for evaluation of antioxidants. J. Am. Oil Chem. Soc. 1968, 45, 594–598. [Google Scholar] [CrossRef]
- Deveci, E.; Tel-çayan, G.; Duru, M.E. Phenolic profile, antioxidant, anticholinesterase, and anti-tyrosinase activities of the various extracts of ferula elaeochytris and sideritis stricta. Int. J. Food Prop. 2018, 21, 771–783. [Google Scholar] [CrossRef]
- Taha, M.; Ullah, H.; Al Muqarrabun, L.M.R.; Khan, M.N.; Rahim, F.; Ahmat, N.; Javid, M.T.; Ali, M.; Khan, K.M. Bisindolylmethane thiosemicarbazides as potential inhibitors of urease: Synthesis and molecular modeling studies. Bioorg. Med. Chem. 2018, 26, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Zengin, G.; Sarikurkcu, C.; Aktumsek, A.; Ceylan, R.; Ceylan, O. A comprehensive study on phytochemical characterization of Haplophyllum myrtifolium Boiss. endemic to Turkey and its inhibitory potential against key enzymes involved in Alzheimer, skin diseases and type II diabetes. Ind. Crops Prod. 2014, 53, 244–251. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef] [PubMed]
Peak | Retention Time (min) | Molecules | Area % |
---|---|---|---|
1 | 26.796 | 9-Hexadecenoic acid, methyl ester | 1.31 |
2 | 27.584 | Hexadecanoic acid, methyl ester | 13.08 |
3 | 32.791 | 9,12-Octadecadienoic acid, methyl ester | 74.26 |
4 | 33.591 | Octadecanoic acid, methyl ester | 6.75 |
5 | 38.312 | 11-Eicosenoic acid, methyl ester | 0.84 |
6 | 38.524 | 10-Octadecenoic acid, methyl ester | 046 |
7 | 39.113 | Heptadecanoic acid, methyl ester | 0.91 |
8 | 43.851 | 13-Docosenoic acid, methyl ester | 1.23 |
9 | 44.434 | Docosanoic acid, methyl ester | 0.54 |
10 | 49.515 | 15-Tetracosenoic acid, methyl ester | 0.25 |
11 | 49.852 | Tetracosanoic acid, methyl ester | 0.36 |
Parameters (%) | PPPC |
---|---|
Dry matter | 94.94 ± 0.05 |
Moisture | 5.45 ± 0.64 |
Ash | 1.54 ± 0.03 |
Protein | 5.65 ± 0.04 |
Fat | 2.36 ± 0.10 |
Carbohydrates | 85.13 ± 0.94 |
Energy value (Kcal/100 g) | 384.46 ± 1.24 |
Total Phenolic (µg GAE/mg) | Total Flavonoids (µg QE/mg) | Total Flavonols (µg QE/mg) |
---|---|---|
187.94 ± 0.48 | 63.43 ± 0.49 | 26.73 ± 0.29 |
DPPH | ABTS | β-Carotene | Phenanthroline | Reducing Power | |
---|---|---|---|---|---|
IC50 (µg/mL) | A0.5 (µg/mL) | ||||
PPSO | 62.09 ± 0.68 a | 41.53 ± 0.17 a | 88.10 ± 0.92 a | 7.51 ± 0.03 b | 52.13 ± 0.36 a |
PPPC extract | 31.25 ± 0.13 b | 21.74 ± 0.21 b | 47.77 ± 0.51 b | 23.51 ± 0.09 a | 25.17 ± 0.19 b |
BHT * | 18.05 ± 0.20 d | 2.01 ± 0.03 d | 38.00 ± 0.52 d | 5.88 ± 0.14 c | 23.82 ± 0.06 c |
BHA * | 11.23 ± 0.28 e | 1.73 ± 0.23 e | 33.62 ± 0.12 e | 2.60 ± 0.03 e | 15.33 ± 0.55 d |
Ascorbic acid * | 22.01 ± 0.48 c | 3.45 ± 0.10 c | 45.82 ± 0.67 c | 2.70 ± 0.17 d | 11.33 ± 0.06 e |
PPSO | PPPC | Ibuprofen | Diclofenac |
---|---|---|---|
61.18 ± 0.03 a | 40.19 ± 1.21 c | 43.12 ± 0.21 b | 13.28 ± 0.13 d |
Inhibition Activity | Tyrosinase | Urease | α-Amylase | ACHE | BCHE |
---|---|---|---|---|---|
PPSO | 40.19 ± 1.21 b | 10.95 ± 0.08 b | 385.99 ± 0.27 b | 167.50 ± 0.62 b | 22.97 ± 0.72 c |
PPPC extract | 138.29 ± 1.63 a | 132.62 ± 0.75 a | 368.86 ± 0.70 c | 191.82 ± 1.43 a | 37.23 ± 1.76 a |
* Kojic acid | 13.28 ± 0.13 c | NT | NT | NT | NT |
* Thiourea | NT | 8.42 ± 0.06 c | NT | NT | NT |
* Acarbose | NT | NT | 3431.01 ± 2.72 a | NT | NT |
* Galantamine | NT | NT | NT | 79.66 ± 0.55 c | 46.48 ± 0.72 b |
Antioxidant (DPPH) | Thermal Protein Denaturation Inhibition | Tyrosinase Inhibition | Urease Inhibition | α-Amylase Inhibition | ACHE Inhibition | BCHE Inhibition | |
---|---|---|---|---|---|---|---|
Our PPSO | 62.09 ± 0.68 | 61.18 ± 0.03 | 40.19 ± 1.21 | 10.95 ± 0.08 | 385.99 ± 0.27 | 167.50 ± 0.62 | 22.97 ± 0.72 |
Crotalaria juncea Linn [110] | 122.52 | - | - | - | - | - | - |
Nigella sativa [111,112,113] | 52.61 ± 0.22 | 113.37 | 544.6 ± 1.915 | 30.21 ± 037 | - | 7.32 ± 0.41 | 35.48 ± 0.83 |
Sideritis albiflora [114] | ND | - | ND | - | - | ND | 157.2 ± 0.9 |
Sideritis leptoclada [114] | ND | - | ND | - | - | ND | 199.0 ± 1.0 |
Argania spinosa [115,116] | - | 1.23 ± 0.75 | - | - | 780 ± 0.16 | - | - |
Monodora myristica [117] | - | 258 | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chafaa, N.; Mosbah, C.; Khattabi, L.; Malaoui, K.; Zahnit, W.; Smaali, M.E.A.; Houri, F.; Medfouni, Y.; Al-Anazi, K.M.; Ali, A. Algerian Prickly Pear Seed By-Products: Fatty Acids Composition, Antioxidant, Enzyme Inhibitory Activities towards Tyrosinase, Urease, α-Amylase, and Cholinesterase, along with the Ability to Protect from Thermal Protein Denaturation. Pharmaceuticals 2024, 17, 1145. https://doi.org/10.3390/ph17091145
Chafaa N, Mosbah C, Khattabi L, Malaoui K, Zahnit W, Smaali MEA, Houri F, Medfouni Y, Al-Anazi KM, Ali A. Algerian Prickly Pear Seed By-Products: Fatty Acids Composition, Antioxidant, Enzyme Inhibitory Activities towards Tyrosinase, Urease, α-Amylase, and Cholinesterase, along with the Ability to Protect from Thermal Protein Denaturation. Pharmaceuticals. 2024; 17(9):1145. https://doi.org/10.3390/ph17091145
Chicago/Turabian StyleChafaa, Nassiba, Camelia Mosbah, Latifa Khattabi, Karima Malaoui, Wafa Zahnit, Mohamed El Amine Smaali, Faiza Houri, Yazid Medfouni, Khalid Mashay Al-Anazi, and Ahmad Ali. 2024. "Algerian Prickly Pear Seed By-Products: Fatty Acids Composition, Antioxidant, Enzyme Inhibitory Activities towards Tyrosinase, Urease, α-Amylase, and Cholinesterase, along with the Ability to Protect from Thermal Protein Denaturation" Pharmaceuticals 17, no. 9: 1145. https://doi.org/10.3390/ph17091145
APA StyleChafaa, N., Mosbah, C., Khattabi, L., Malaoui, K., Zahnit, W., Smaali, M. E. A., Houri, F., Medfouni, Y., Al-Anazi, K. M., & Ali, A. (2024). Algerian Prickly Pear Seed By-Products: Fatty Acids Composition, Antioxidant, Enzyme Inhibitory Activities towards Tyrosinase, Urease, α-Amylase, and Cholinesterase, along with the Ability to Protect from Thermal Protein Denaturation. Pharmaceuticals, 17(9), 1145. https://doi.org/10.3390/ph17091145