In Vitro Interaction of Binuclear Copper Complexes with Liver Drug-Metabolizing Cytochromes P450
Abstract
:1. Introduction
2. Results
2.1. Complex Preparation
2.2. Mass Spectrometry of the Tested Complexes
2.3. Spectral Study of the Interactions of the Tested Complexes with HLM CYP Enzymes
2.4. Inhibition Study of the Tested Complexes with HLM CYP Enzymes
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Spectral Study of the Interaction of the Complexes with HLM CYPs
4.3. Enzyme Assays
4.4. Enzyme Inhibition Studies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stryer, L. Biochemistry, 4th ed.; W. H. Freeman and Company: New York, NY, USA, 1995. [Google Scholar]
- Solomon, E.I.; Heppner, D.E.; Johnston, E.M.; Ginsbach, J.W.; Cirera, J.; Qayyum, M.; Kieber-Emmons, M.T.; Kjaergaard, C.H.; Hadt, R.G.; Tian, L. Copper active sites in biology. Chem. Rev. 2014, 7, 3659–3853. [Google Scholar] [CrossRef]
- Locatelli, M.; Farina, C. Role of copper in central nervous system physiology and pathology. Neural Regen. Res. 2025, 4, 1058–1068. [Google Scholar] [CrossRef] [PubMed]
- Molinaro, C.; Martoriati, A.; Pelinski, L.; Cailliau, K. Copper Complexes as Anticancer Agents Targeting Topoisomerases I and II. Cancers 2020, 12, 2863. [Google Scholar] [CrossRef]
- Alcock, N.W.; Tracy, V.M.; Waddington, T.C. Acetates and Acetato-Complexes. Part 2. Spectroscopic Studies. J. Chem. Soc. Dalton Trans. 1976, 21, 2243–2246. [Google Scholar] [CrossRef]
- Tombers, M.; Meyer, J.; Meyer, J.; Lawicki, A.; Zamudio-Bayer, V.; Hirsch, K.; Lau, J.T.; von Issendorff, B.; Terasaki, A.; Schlathölter, T.A.; et al. Mn12-Acetate Complexes Studied as Single Molecules. Chem.-Eur. J. 2022, 28, e202102592. [Google Scholar] [CrossRef] [PubMed]
- Mrozinski, J. New trends of molecular magnetism. Coord. Chem. Rev. 2005, 249, 2534–2548. [Google Scholar] [CrossRef]
- Eddaoudi, M.; Moler, D.B.; Li, H.L.; Chen, B.L.; Reineke, T.M.; O’Keeffe, M.; Yaghi, O.M. Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Acc. Chem. Res. 2001, 34, 319–330. [Google Scholar] [CrossRef]
- Ackermann, L. Carboxylate-Assisted Ruthenium-Catalyzed Alkyne Annulations by C-H/Het-H Bond Functionalizations. Acc. Chem. Res. 2014, 47, 281–295. [Google Scholar] [CrossRef]
- Soltani, S.; Akhbari, K.; Phuruangrat, A. Incorporation of silver nanoparticles on Cu-BTC metal-organic framework under the influence of reaction conditions and investigation of their antibacterial activity. Appl. Organomet. Chem. 2022, 36, e6634. [Google Scholar] [CrossRef]
- Soltani, S.; Akhbari, K. Cu-BTC metal-organic framework as a biocompatible nanoporous carrier for chlorhexidine antibacterial agent. J. Biol. Inorg. Chem. 2022, 27, 81–88. [Google Scholar] [CrossRef]
- Yenikaya, C.; Poyraz, M.; Sari, M.; Demirci, F.; Ilkimen, H.; Büyükgüngör, O. Synthesis, characterization and biological evaluation of a novel Cu(II) complex with the mixed ligands 2,6-pyridinedicarboxylic acid and 2-aminopyridine. Polyhedron 2009, 28, 3526–3532. [Google Scholar] [CrossRef]
- Yesilel, O.Z.; Mutlu, A.; Darcan, C.; Büyükgüngör, O. Syntheses, structural characterization and antimicrobial activities of novel cobalt-pyrazine-2,3-dicarboxylate complexes with N-donor ligands. J. Mol. Struct. 2010, 964, 39–46. [Google Scholar] [CrossRef]
- Thornton, L.; Dixit, V.; Assad, L.O.N.; Ribeiro, T.P.; Queiroz, D.D.; Kellett, A.; Casey, A.; Colleran, J.; Pereira, M.D.; Rochford, G.; et al. Water-soluble and photo-stable silver(I) dicarboxylate complexes containing 1,10-phenanthroline ligands: Antimicrobial and anticancer chemotherapeutic potential, DNA interactions and antioxidant activity. J. Inorg. Biochem. 2016, 159, 120–132. [Google Scholar] [CrossRef] [PubMed]
- Alisir, S.H.; Demir, S.; Sariboga, B.; Buyukgungor, O. A disparate 3-D silver(I) coordination polymer of pyridine-3,5-dicarboxylate and pyrimidine with strong intermetallic interactions: X-ray crystallography, photoluminescence and antimicrobial activity. J. Coord. Chem. 2015, 68, 155–168. [Google Scholar] [CrossRef]
- Jaros, S.W.; da Silva, M.; Florek, M.; Smolenski, P.; Pombeiro, A.J.L.; Kirillov, A.M. Silver(I) 1,3,5-Triaza-7-phosphaadamantane Coordination Polymers Driven by Substituted Glutarate and Malonate Building Blocks: Self-Assembly Synthesis, Structural Features, and Antimicrobial Properties. Inorg. Chem. 2016, 55, 5886–5894. [Google Scholar] [CrossRef]
- Loubalová, I.; Kopel, P. Coordination Compounds of Cu, Zn, and Ni with Dicarboxylic Acids and N Donor Ligands, and Their Biological Activity: A Review. Molecules 2023, 28, 1445. [Google Scholar] [CrossRef]
- Abbaszadeh, A.; Safari, N.; Amani, V.; Notash, B.; Raei, F.; Eftekhar, F. Mononuclear and Dinuclear Copper(II) Complexes Containing N, O and S Donor Ligands: Synthesis, Characterization, Crystal Structure Determination and Antimicrobial Activity of [Cu(phen)(tda].2H2O) and [(phen)2Cu(µ-tda)Cu(phen)] (ClO4)2.1.5H2O. Iran J. Chem. Chem. Eng.-Int. Engl. Ed. 2014, 33, 1–13. [Google Scholar]
- Paul, A.; Figuerola, A.; Bertolasi, V.; Manna, S.C. DNA/protein binding and magnetic properties of a 1D Cu(II) complex containing fumarate and tridentate Schiff base ligands. Polyhedron 2016, 119, 460–470. [Google Scholar] [CrossRef]
- Loubalová, I.; Zahradníková, E.; Masaryk, L.; Nemec, I.; Hochvaldová, L.; Panácek, A.; Kvítek, L.; Vecerová, R.; Swiatkowski, M.; Kopel, P. Antibacterial study on nickel and copper dicarboxylate complexes. Inorg. Chim. Acta 2023, 545, 121273. [Google Scholar] [CrossRef]
- Anzenbacher, P.; Anzenbacherová, E. Cytochromes P450 and metabolism of xenobiotics. Cell. Mol. Life Sci. 2001, 58, 737–747. [Google Scholar] [CrossRef]
- Srejber, M.; Navrátilová, V.; Paloncyová, M.; Bazgier, V.; Berka, K.; Anzenbacher, P.; Otyepka, M. Membrane-attached mammalian cytochromes P450: An overview of the membrane’s effects on structure, drug binding, and interactions with redox partners. J. Inorg. Biochem. 2018, 183, 117–136. [Google Scholar] [CrossRef] [PubMed]
- Mautner, F.A.; Vicente, R.; Louka, F.R.Y.; Massoud, S.S. Dinuclear fumarato- and terephthalato-bridged copper(II) complexes: Structural characterization and magnetic properties. Inorg. Chim. Acta 2008, 361, 1339–1348. [Google Scholar] [CrossRef]
- Pavlishchuk, V.V.; Kolotilov, S.V.; Addison, A.W.; Prushan, M.J.; Butcher, R.J.; Thompson, L.K. Mono- and trinuclear nickel(II) complexes with sulfur-containing oxime ligands: Uncommon templated coupling of oxime with nitrile. Inorg. Chem. 1999, 38, 1759–1766. [Google Scholar] [CrossRef]
- Kopel, P.; Mrozinski, J.; Dolezal, K.; Langer, V.; Boca, R.; Bienko, A.; Pochaba, A. Ferromagnetic Properties of a Trinuclear Nickel(II) Complex with a Trithiocyanurate Bridge. Eur. J. Inorg. Chem. 2009, 5475–5482. [Google Scholar] [CrossRef]
- Jefcoate, C.R. Measurement of substrate and inhibitor binding to microsomal cytochrome P-450 by optical-difference spectroscopy. Methods Enzymol. 1978, 52, 258–279. [Google Scholar] [CrossRef] [PubMed]
- Oesch, F.; Fabian, E.; Oesch-Bartlomowicz, B.; Werner, C.; Landsiedel, R. Drug-metabolizing enzymes in the skin of man, rat, and pig. Drug Metab. Rev. 2007, 39, 659–698. [Google Scholar] [CrossRef]
- Špičáková, A.; Bazgier, V.; Skálová, L.; Otyepka, M.; Anzenbacher, P. β-caryophyllene Oxide and Trans-nerolidol Affect Enzyme Activity of CYP3A4-In Vitro and In Silico Studies. Physiol. Res. 2019, 68, S51–S58. [Google Scholar] [CrossRef]
- Spicakova, A.; Anzenbacher, P.; Liskova, B.; Kuca, K.; Fusek, J.; Anzenbacherova, E. Evaluation of possible inhibition of human liver drug metabolizing cytochromes P450 by two new acetylcholinesterase oxime-type reactivators. Food Chem. Toxicol. 2016, 88, 100–104. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Myslivecková, Z.; Szotáková, B.; Spicáková, A.; Lnenicková, K.; Ambroz, M.; Kubícek, V.; Krasulová, K.; Anzenbacher, P.; Skálová, L. The inhibitory effects of β-caryophyllene, β-caryophyllene oxide and α-humulene on the activities of the main drug-metabolizing enzymes in rat and human liver in vitro. Chem.-Biol. Interact. 2017, 278, 123–128. [Google Scholar] [CrossRef]
- Guengerich, F.P. Inhibition of Cytochrome P450 Enzymes by Drugs-Molecular Basis and Practical Applications. Biomol. Ther. 2022, 30, 1–18. [Google Scholar] [CrossRef]
- In Vitro Drug Interaction Studies—Cytochrome P450 Enzyme- and Transporter-Mediated Drug Interactions Guidance for Industry. FDA, Ed. 2020. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/in-vitro-drug-interaction-studies-cytochrome-p450-enzyme-and-transporter-mediated-drug-interactions (accessed on 20 November 2023).
- Chang, T.K.; Waxman, D.J. Enzymatic analysis of cDNA-expressed human CYP1A1, CYP1A2, and CYP1B1 with 7-ethoxyresorufin as substrate. Methods Mol. Biol. 1998, 107, 103–109. [Google Scholar] [PubMed]
- Soucek, P. Novel sensitive high-performance liquid chromatographic method for assay of coumarin 7-hydroxylation. J. Chromatogr. B 1999, 734, 23–29. [Google Scholar] [CrossRef]
- Donato, M.T.; Jiménez, N.; Castell, J.V.; Gómez-Lechón, M.J. Fluorescence-based assays for screening nine cytochrome P450 (P450) activities in intact cells expressing individual human P450 enzymes. Drug Metab. Dispos. 2004, 32, 699–706. [Google Scholar] [CrossRef]
- Crespi, C.L.; Chang, T.K.; Waxman, D.J. High-performance liquid chromatographic analysis of CYP2C8-catalyzed paclitaxel 6 alpha-hydroxylation. Methods Mol. Biol. 1998, 107, 123–127. [Google Scholar]
- Crespi, C.L.; Chang, T.K.; Waxman, D.J. Determination of CYP2C9-catalyzed diclofenac 4′-hydroxylation by high-performance liquid chromatography. Methods Mol. Biol. 1998, 107, 129–133. [Google Scholar]
- Mercolini, L.; Mandrioli, R.; Iannello, C.; Matrisciano, F.; Nicoletti, F.; Raggi, M.A. Simultaneous analysis of diazepam and its metabolites in rat plasma and brain tissue by HPLC-UV and SPE. Talanta 2009, 80, 279–285. [Google Scholar] [CrossRef]
- Crespi, C.L.; Chang, T.K.; Waxman, D.J. CYP2D6-dependent bufuralol 1′-hydroxylation assayed by reversed-phase ion-pair high-performance liquid chromatography with fluorescence detection. Methods Mol. Biol. 1998, 107, 141–145. [Google Scholar]
- Lucas, D.; Menez, J.F.; Berthou, F. Chlorzoxazone: An in vitro and in vivo substrate probe for liver CYP2E1. Methods Enzymol. 1996, 272, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Guengerich, F.P.; Martin, M.V.; Beaune, P.H.; Kremers, P.; Wolff, T.; Waxman, D.J. Characterization of rat and human liver microsomal cytochrome P-450 forms involved in nifedipine oxidation, a prototype for genetic polymorphism in oxidative drug metabolism. J. Biol. Chem. 1986, 261, 5051–5060. [Google Scholar] [CrossRef]
- Ortiz de Montellano, P.R. Cytochrome P450-activated prodrugs. Future Med. Chem. 2013, 5, 213–228. [Google Scholar] [CrossRef]
- Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 2013, 138, 103–141. [Google Scholar] [CrossRef] [PubMed]
- Devi, S.; Sangeeta; Kumari, B. Emugel for topical drug delivery: A novel approach. GSC Biol. Pharm. Sci. 2020, 11, 104–114. [Google Scholar] [CrossRef]
- Schenkman, J.B.; Jansson, I. Spectral analyses of cytochromes P450. Methods Mol. Biol. 1998, 107, 25–33. [Google Scholar] [PubMed]
CYP1A2 | CYP2A6 | CYP2B6 | CYP2C8 | CYP2C9 | CYP2C19 | CYP2D6 | CYP2E1 | CYP3A4 | |
---|---|---|---|---|---|---|---|---|---|
IC50 [µmol·L−1] | |||||||||
Complex No. 5 | 24.97 ± 0.22 | 24.85 ± 0.25 | 24.81 ± 0.33 | 3.66 ± 0.19 | 12.59 ± 0.06 | 2.53 ± 0.59 | 12.37 ± 0.21 | 12.52 ± 0.18 | 3.72 ± 0.23 |
Complex No. 6 | 25.17 ± 0.29 | 25.13 ± 0.13 | 13.29 ± 0.54 | 3.40 ± 0.10 | 12.26 ± 0.11 | 6.43 ± 0.63 | 6.33 ± 0.22 | 6.59 ± 0.18 | 3.62 ± 0.27 |
CYP | Substrate Concentration (µmol·L−1) | Substrate | Reaction Catalyzed by CYP | Content CYP (nmol) | Reaction Volume (µL) | Quench Reagent | Method of Detection | References |
---|---|---|---|---|---|---|---|---|
1A2 | 1.3 | 7-ethoxyresorufin | O-deethylation | 35 | 100 | 200 µL methanol | fluorescence | [33] |
ex. 535 nm; em. 585 nm | ||||||||
2A6 | 15 | coumarin | 7-hydroxylation | 35 | 100 | 200 µL methanol | fluorescence | [34] |
ex. 325 nm; em. 450 nm | ||||||||
2B6 | 15 | EFC | O-deethylation | 35 | 100 | 200 µL methanol | fluorescence | [35] |
ex. 410 nm; em. 510 nm | ||||||||
2C8 | 50 | paclitaxel | 6α-hydroxylation | 70 | 200 | 50 µL ice cold | UV, 230 nm | [36] |
acetonitrile | ||||||||
2C9 | 16 | diclofenac | 4′-hydroxylation | 35 | 200 | 50 µL 96% ACN/ | UV, 280 nm | [37] |
4% CH3COOH | ||||||||
2C19 | 150 | diazepam | N-desmethylation | 70 | 200 | 100 µL acetonitrile | UV, 236 nm | [38] |
2D6 | 15 | bufuralol | 1′-hydroxylation | 67 | 200 | 20 µL 70% HClO4 | fluorescence | [39] |
ex. 252 nm; em. 302 nm | ||||||||
2E1 | 30 | chlorzoxazone | 6-hydroxylation | 160 | 1000 | 50 µL 42.5% H3PO4 | UV, 287 nm | [40] |
3A4 | 100 | testosterone | 6β-hydroxylation | 100 | 500 | 100 µL 1M Na2CO3/ | UV, 245 nm | [41] |
2M NaCl |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Špičáková, A.; Horáčková, Z.; Kopel, P.; Anzenbacher, P. In Vitro Interaction of Binuclear Copper Complexes with Liver Drug-Metabolizing Cytochromes P450. Pharmaceuticals 2024, 17, 1194. https://doi.org/10.3390/ph17091194
Špičáková A, Horáčková Z, Kopel P, Anzenbacher P. In Vitro Interaction of Binuclear Copper Complexes with Liver Drug-Metabolizing Cytochromes P450. Pharmaceuticals. 2024; 17(9):1194. https://doi.org/10.3390/ph17091194
Chicago/Turabian StyleŠpičáková, Alena, Zuzana Horáčková, Pavel Kopel, and Pavel Anzenbacher. 2024. "In Vitro Interaction of Binuclear Copper Complexes with Liver Drug-Metabolizing Cytochromes P450" Pharmaceuticals 17, no. 9: 1194. https://doi.org/10.3390/ph17091194
APA StyleŠpičáková, A., Horáčková, Z., Kopel, P., & Anzenbacher, P. (2024). In Vitro Interaction of Binuclear Copper Complexes with Liver Drug-Metabolizing Cytochromes P450. Pharmaceuticals, 17(9), 1194. https://doi.org/10.3390/ph17091194