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Abstract: Resveratrol, a bioactive phytoalexin, has been extensively studied as a pharma-
ceutical and nutraceutical candidate for the treatment of various diseases. Although its
therapeutic effects have been largely attributed to its anti-oxidant properties, its underlying
mechanisms and dose dependency are not well understood. Recent studies have shown
that cell-free chromatin particles (cfChPs), which are released daily from billions of dying
cells, can enter circulation and be internalized by healthy cells, wherein they trigger various
damaging effects, including double-strand DNA breaks. Notably, deactivating cfChPs
using a mixture of resveratrol and copper can neutralize their harmful effects. The addition
of copper imparts a novel therapeutic property to resveratrol viz. the generation of reac-
tive oxygen species (ROS), which are capable of deactivating cfChPs without damaging
the genomic DNA. This perspective article discusses how the deactivation of cfChPs via
the ROS generated by combining resveratrol with copper can have multiple therapeutic
effects. Exploiting the damaging effects of ROS to deactivate cfChPs and ameliorate disease
conditions may be a viable therapeutic approach.

Keywords: resveratrol; copper; cell-free chromatin particles; reactive oxygen species;
therapeutics; nutraceuticals

1. Introduction
Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a phytoalexin found in the fruits

and leaves of several edible plants, including grapes, raspberries, blueberries, apples,
and peanuts. It can also be ingested via food products such as red wine and Itadori
tea [1]. In the past few decades, resveratrol has garnered much attention owing to
its potential beneficial health effects on humans and its role in plant defense mecha-
nisms [2,3]. It has been extensively studied for its pharmacological and dietary supplement
applications [1–5]. Resveratrol has been claimed to have cardioprotective [3,6–8], neuro-
protective [9–12], anti-inflammatory [13,14], anti-tumor [15–22], antimicrobial [23–25], and
anti-aging [26,27] properties. Owing to its various potential health benefits, resveratrol has
also gained traction as a potential therapeutic compound for treating female infertility [28]
and diabetes and its related complications [29,30]. Despite the overwhelming number of
studies reporting the health benefits of resveratrol, its development as an effective thera-
peutic compound has been limited owing to several issues such as poor bioavailability, a
limited understanding of its metabolism and dose dependency, potential adverse effects,
and inconsistent results across pre-clinical and clinical studies [31–34].

Studies by Fukuhara et al. [35,36] demonstrated the ability of resveratrol to cleave
plasmid DNA in the presence of copper via the generation of reactive oxygen species (ROS).
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ROS are known to have damaging effects on proteins, lipids, and nucleic acids, including
DNA [37–39]. In a related context, a set of studies has shown that cell-free chromatin
particles (cfChPs) released from the billions of dying cells in the human body enter into
circulation and can be readily internalized by healthy cells. Such internalized cfChPs can
cause havoc within the host cells including genomic DNA and mitochondrial DNA and
the induction of inflammatory responses and apoptotic pathways [40–44]. These studies
also showed that the detrimental effects of cfChPs can be neutralized using nucleic acid
deactivating agents, such as a combination of resveratrol and copper via the generation of
ROS. Significantly, ROS could deactivate the cfChPs without causing damage to genomic
DNA [45]. Collectively, these studies suggest a promising approach of exploiting the ROS
generated by the combination of resveratrol and copper toward the deactivation of cfChPs
to ameliorate their damaging effects.

2. The Damaging Effects of cfChPs
Our research group was the first to show that circulating chromatin particles can enter

healthy recipient cells and integrate into and damage genomic DNA (Video S1) [40,46,47].
Notably, cfChPs isolated from the blood of patients with cancer were found to be more
active in triggering DNA damage responses and apoptosis when intravenously injected
into mice compared to those isolated from healthy volunteers [40]. Furthermore, cancer
cells that die during chemotherapy or radiotherapy release a large number of cfChPs,
which are then readily taken up by not only the surrounding cells but also distant healthy
cells that become accessible through circulation [41,48]. These cfChPs then induce DNA
damage and inflammation in the healthy cells [40,41,48]. DNA damage and inflammation
are the primary causes of toxicity from chemotherapy and radiotherapy and these toxicities
can be ameliorated by concurrent treatment with cfChP degrading agents [42,48]. Thus,
cfChPs may contribute to the harmful bystander effects observed after cancer treatment.
In a more recent study, therapeutic interventions on human breast cancer xenografts were
found to promote systemic dissemination of oncogenes carried via cfChPs released from
dying cancer cells with the potential to induce metastasis [49]. In another study, the
group found that the administration of R-Cu in an LPS-induced mouse model of sepsis
prevented the release of cfChPs in the circulation and extracellular spaces of the brain,
heart, and lung. R-Cu treatment prevented the release of inflammatory cytokines; DNA
damage and apoptosis; dysfunction of liver and kidney; coagulopathy, fibrinolysis and
thrombocytopenia; and lethality [44]. These findings implied that cfChPs released from
bacterial endotoxin-induced dying host cells promote sepsis, which can be countered
through the use of a cfChP deactivating agent viz. R-Cu. Considering that billions of
cells die daily, the large number of cfChPs released can be imagined to act as mutagens
and major contributors to degenerative conditions and aging [43,47]. Experiments have
shown that the prolonged administration of a cfChP-inactivating agent can retard the
biological hallmarks of aging in mice [50]. All of the above studies together indicate that the
deactivation of cfChPs is an attractive therapeutic strategy to counter multiple pathologies,
including cancer and aging.

3. Resveratrol–Copper (R-Cu) Combination as an Effective Therapeutic
Solution to Deactivate cfChPs

Resveratrol and copper have individually been extensively studied for their thera-
peutic potential against various cancers [19,20,51,52]. The number of studies on the health
benefits of resveratrol has been rapidly increasing since the late 1990s [53]. This interest
is largely due to the “French paradox” wherein studies found a low rate of heart diseases
among Southern French people who consume considerable amounts of red wine, despite
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having a high-fat diet; this was attributed to the presence of significant amounts of resvera-
trol in red wine (concentrations of 0.1–14.3 mg/L) [54]. Since then, several animal and pre-
clinical studies have investigated the potential benefits of resveratrol in treating a myriad
of health issues, including diabetes, cardiovascular diseases, cancer, and female infertility.
Despite decades of research, there are several challenges to implementing resveratrol as a
pharmaceutical agent. The numerous pre-clinical and clinical trials, animal studies, and
meta-analyses are replete with contradictory or difficult-to-interpret results, casting shad-
ows on its proposed health benefits [31,33,55–60]. A major limitation of previous studies
is the poor understanding of resveratrol’s dose dependency, metabolism, and the mech-
anism underlying its effects. In addition, resveratrol has a limited bioavailability [61,62].
Furthermore, although the majority of the studies have attributed resveratrol’s benefits
to its anti-oxidant effects, it also exhibits pro-oxidant effects that have been linked to its
therapeutic effects [2,63–74]. Some studies suggest that whether pro-oxidant or anti-oxidant
effects are exerted may depend on the concentration of resveratrol, its reactions with other
compounds in the body, or the age at which the treatment is administered [72,75–78].

Studies have shown that the mixing of resveratrol and copper leads to the re-
duction of Cu(II) to Cu(I), generating ROS via a Fenton-like reaction in the process
(Figure 1) [35,36,79,80]. ROS degrade nucleic acids in vitro and have traditionally been
considered capable of damaging genomic DNA. cfChPs released from dying cells were
found to induce mitochondrial damage and ROS production in living cells, suggesting
that cfChPs may be a major activator of ROS [81]. Interestingly, cfChP-induced DNA
damage was found to occur even in the presence of the ROS inhibitor Mito-Tempo [45],
which is consistent with other recent studies that indicate that ROS may not be a damaging
agent for genomic DNA [82]. Additionally, although copper-based therapeutics have been
associated with toxic effects, studies by Mittra’s group have shown that a high resveratrol-
to-copper ratio can achieve complete degradation of DNA; thus R-Cu combination therapy
requires low concentrations of copper [83,84]. A previous study has also shown that the pro-
longed administration of resveratrol and copper in aged mice induces the up-regulation of
anti-oxidant systems [50], which may offset any potential toxic effects arising from the gen-
eration of excess ROS. Collectively, these results suggest that the use of R-Cu to deactivate
circulating cfChPs via ROS is an attractive and potentially safe therapeutic approach.

Pharmaceuticals 2025, 18, x FOR PEER REVIEW  4  of  13 
 

 

 

Figure  1. Resveratrol  reacts with  copper  to generate oxygen  radicals via  a Fenton-like  reaction. 

These oxygen radicals could underlie the pro-oxidant effects of resveratrol. Image taken from Mittra 

2024 [80] under creative commons license. 

When R+Cu is taken orally, the ROS generated in the stomach is readily absorbed to 

have systemic effects in the form of deactivating cfChPs. The amounts of resveratrol and 

copper that are required to generate ROS are miniscule. In our human studies [83,85–87], 

we used 5.6 mg of resveratrol and 560 ng of copper and observed therapeutic results. On 

the other hand, the recommended doses are 500 mg twice a day and 2 mg once a day, for 

Resveratrol and copper, respectively. Therefore, our study focusses on a new chemistry 

wherein small amounts of Resveratrol and copper are combined to have novel therapeutic 

effects which are mediated via the generation of ROS. 

4. Therapeutic Effects of R-Cu in Pre-Clinical and Clinical Studies 

Various pre-clinical and clinical studies have indicated that R-Cu combination ther-

apy can counter the damaging effects of cfChPs and thereby be an effective approach to 

treat multiple pathologies, including cancer. 

4.1. Inhibitory Effect on Toxicity Related to Chemotherapy and Radiotherapy 

Chemotherapy and radiotherapy remain the main  therapeutic approaches utilized 

for  cancer  treatment. Both  approaches are  associated with  toxic  side-effects,  including 

DNA damage and  inflammation  in healthy cells surrounding  the  tumor cells, which  is 

known as the  ‘bystander effect’. Using  in vitro and animal experiments, Mittra’s group 

has shown that the numerous cfChPs released from chemotherapeutic agent-induced or 

radiation-induced dying  cancer  cells  can  rapidly  enter  into  the nuclei  of  surrounding 

healthy cells and integrate into their genome and induce DNA damage and inflammation, 

indicating that these cfChPs promote treatment-related toxicity [41,42,48]. In these stud-

ies, the observed harmful effects could be ameliorated with concurrent use of cfChP-inac-

tivating agents, including R-Cu [42,48]. The experimental details are summarized in Table 

1. 

Figure 1. Resveratrol reacts with copper to generate oxygen radicals via a Fenton-like reaction.
These oxygen radicals could underlie the pro-oxidant effects of resveratrol. Image taken from Mittra
2024 [80] under creative commons license.



Pharmaceuticals 2025, 18, 132 4 of 13

When R+Cu is taken orally, the ROS generated in the stomach is readily absorbed to
have systemic effects in the form of deactivating cfChPs. The amounts of resveratrol and
copper that are required to generate ROS are miniscule. In our human studies [83,85–87],
we used 5.6 mg of resveratrol and 560 ng of copper and observed therapeutic results. On
the other hand, the recommended doses are 500 mg twice a day and 2 mg once a day, for
Resveratrol and copper, respectively. Therefore, our study focusses on a new chemistry
wherein small amounts of Resveratrol and copper are combined to have novel therapeutic
effects which are mediated via the generation of ROS.

4. Therapeutic Effects of R-Cu in Pre-Clinical and Clinical Studies
Various pre-clinical and clinical studies have indicated that R-Cu combination therapy

can counter the damaging effects of cfChPs and thereby be an effective approach to treat
multiple pathologies, including cancer.

4.1. Inhibitory Effect on Toxicity Related to Chemotherapy and Radiotherapy

Chemotherapy and radiotherapy remain the main therapeutic approaches utilized for
cancer treatment. Both approaches are associated with toxic side-effects, including DNA
damage and inflammation in healthy cells surrounding the tumor cells, which is known as
the ‘bystander effect’. Using in vitro and animal experiments, Mittra’s group has shown
that the numerous cfChPs released from chemotherapeutic agent-induced or radiation-
induced dying cancer cells can rapidly enter into the nuclei of surrounding healthy cells and
integrate into their genome and induce DNA damage and inflammation, indicating that
these cfChPs promote treatment-related toxicity [41,42,48]. In these studies, the observed
harmful effects could be ameliorated with concurrent use of cfChP-inactivating agents,
including R-Cu [42,48]. The experimental details are summarized in Table 1.

Table 1. Summary of studies showing the efficacy of resveratrol and copper (R-Cu) combina-
tion therapy to overcome the damaging effects of cell-free chromatin particles (cfChPs) in various
pathological conditions.

Type of
Study

Condition
Examined Model/Patients Treatment/Intervention Results Reference

Pre-
clinical

Chemotherapy-
induced
toxicity

C57BL/6
female mice

Mice were treated with control
(saline i.p. b.d); single
sub-lethal dose of adriamycin
(10 mg/ kg, i.p.); or R-Cu (R
1 mg/kg and Cu 10−4 mg/kg
by oral gavage, b.d.) +
adriamycin (4 h after R-Cu).

R-Cu treatment inhibited chemotherapy
(adriamycin)-induced tissue DNA damage,
apoptosis, and inflammation in multiple organs
and peripheral blood mononuclear cells. It
prevented prolonged neutropenia following a
single adriamycin dose and reduced the death
rate post lethal dose of adriamycin.

[42]

Pre-
clinical

Radiation-
induced
toxicity

BALB/c mice

Mice were subjected to lower
hemi-body irradiation (HBI;
10 Gy) with or without R-Cu
(R = 1 mg/kg and
Cu = 10−4 mg/kg twice daily
by oral gavage; the first dose of
R-Cu was given 4 h prior
to HBI)

Radiation-induced activation of bystander effect
biomarkers (H2AX, active Caspase-3, NFκB, and
IL-6) in the brain cells was prevented by
co-treatment of R-Cu.

[48]

Pre-
clinical Sepsis C57BL/6

female mice

Mice were administered a single
i.p. injection of LPS at a dose of
10 mg/kg or 20 mg/kg with or
without concurrent treatment
with R-Cu (R = 1 mg/kg and
Cu = 10−4 mg/kg;
administered 4 h prior to LPS
challenge)

R-Cu treatment abrogated the following effects
of LPS (i) release of cfCh in extra-cellular spaces
of brain, lung, and heart and in circulation; (ii)
release of inflammatory cytokines; (iii) activation
of DNA damage, apoptosis and inflammation in
cells of thymus, spleen and in PBMCs; (iv) DNA
damage, apoptosis, and inflammation in cells of
lung, liver, heart, brain, kidney, and small
intestine; (v) liver and kidney dysfunction and
elevation of serum lactate; (vi) coagulopathy,
fibrinolysis, and thrombocytopenia;
(vii) lethality.

[44]
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Table 1. Cont.

Type of
Study

Condition
Examined Model/Patients Treatment/Intervention Results Reference

Clinical COVID-19

Patients with
severe
COVID-19
requiring
inhaled oxygen

Of 230 patients, 30 received R
and Cu in addition to standard
care at doses of 5.6 mg and
560 ng, respectively, orally, once
every 6 h, until discharge
or death.

Binary logistic regression analysis revealed a
trend towards a reduction (nearly two-fold) in
death in patients receiving R-Cu.

[87]

Clinical

Advanced
squamous
cell
carcinoma of
oral cavity

Patients with
advanced oral
cancer

Of 25 patients, 5 acted as
controls and the remaining 20
were given R-Cu in increasing
doses, with the lowest dose of
R-Cu being 5.6 mg and 560 ng,
respectively, and the highest
dose being 500 mg and 5 mg,
respectively. An initial biopsy
was taken from patients at first
presentation, and a second
biopsy was taken 2 weeks later.
R-Cu was administered orally
twice daily in the
intervening period.

R-Cu treatment reduced cfChPs in the tumor
microenvironment and down-regulated 21/23
biomarkers of cancer, with no adverse effects
observed. The lower two doses of R-Cu were
more effective than the higher doses.

[83]

Pre-
clinical

Aging and
neurodegen-
ration

C57BL/6 mice

Of 24 mice, 4 were sacrificed
when they were 3 months old
(young controls). Of the
remaining 16, at 10 months old,
8 were treated with R-Cu
(R = 1 mg/kg and
Cu = 10−4 mg/kg) twice daily
by oral gavage for 12 months
and 8 acted as controls. All 16
were sacrificed after 12 months
at 22 months-old.

R-Cu treatment reduced the hallmarks of aging,
including telomere attrition, amyloid deposition,
DNA damage, apoptosis, inflammation,
senescence, aneuploidy, and mitochondrial
dysfunction

[50]

Clinical

Bone marrow
transplant-
related
toxicity

Patients with
multiple
myeloma
receiving
hematopoietic
stem cell
transplant with
high dose
melphalan

Of 25 patients, 5 acted as
controls; the remaining 20
received R-Cu twice daily, at
dose level I (DL-I; R = 5.6 mg
and Cu = 560 ng; N = 15); and
DL-II (R = 50 mg and Cu = 5 µg;
N = 5).

R-Cu treatment reduced transplant-related
toxicities (incidence of grade 3/4 oral mucositis,
levels of inflammatory cytokines)

[85]

Clinical

Chemotherapy-
related
toxicity in
gastric
cancer

Patients with
advanced
gastric cancer
receiving
docetaxel-
based
multi-agent
chemotherapy

Patients were treated with one
of two chemotherapeutic
regimens: (1) TEX every 2
weeks [docetaxel (50 mg m−2 iv
on day 1), oxaliplatin
(85 mg m−2 iv on day 1) and
capecitabine (1000 mg m−2, P.O,
on days 1–14)] and (2) DOF
every 2 weeks [docetaxel (50
mg m−2 iv on day 1, oxaliplatin
(85 mg m−2 iv on day 1) and
5-fluoro-uracil (1200 mg m−2,
i.v., on days 1–2 via infusional
pump) + leucovorin
(200 mg m−2 i.v. day 1)].
Patients were administered
R-Cu thrice daily 1 h before
meals starting one day before
the start of chemotherapy. R-Cu
was administered for 6 months
or till first evidence of
disease progression.

R-Cu treatment reduced the incidence of
non-hematological toxicities (hand–foot
syndrome, diarrhea, and vomiting) without
adversely affecting progression-free and overall
survival rates. Note that R-Cu treatment did not
reduce the overall cumulative incidence of grade
≥ 3 toxicity or of ≥ 3 hematological toxicity.

[86]

Two clinical trials have investigated the effect of R-Cu in reducing toxicity from
chemotherapy—RESCU001 [85] and RESCUIII [86]. In RESCU001 [85], a prospective single-
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center pilot study, 25 patients with multiple myeloma who were receiving hematopoietic
stem cell transplant following high dose melphalan were given either vehicle alone (N = 5)
or R-Cu at dose level I (resveratrol = 5.6 mg and copper = 560 ng; N = 15) or dose level II
(resveratrol = 50 mg and copper = 5 µg; N = 5). Both doses were administered orally twice
daily starting 48 h prior to melphalan chemotherapy and continued until 21 days post-
transplantation. As expected, all patients in the control group developed grade 3/4 oral
mucositis at the end of the treatment, whereas only 40% of patients in the R-Cu treatment
groups developed mucositis. Notably, R-Cu treatment reduced the levels of inflammatory
cytokines TNF-α and IL-1β at dose level I but not at dose level II. In RESCUIII [86], a single-
arm phase II study, 30 patients with advanced gastric cancer who were receiving docetaxel-
based multi-agent chemotherapy were administered R-Cu three times daily on an empty
stomach starting one day before the start of chemotherapy and continuing for six months
or until disease progression. Although the R-Cu treatment did not significantly reduce
the cumulative incidence of overall and hematological toxicities, it markedly reduced the
incidence of more troublesome non-hematological toxicities, including diarrhea, hand–foot
syndrome, and vomiting. The methodological details are summarized in Table 1.

4.2. Preventive Effect on Sepsis and Viral Infections

cfChPs play a role in bacterial endotoxin-mediated sepsis [44]. Notably, R-Cu admin-
istration was reported to prevent the release of cfChPs into the extracellular spaces in an
LPS-induced mouse model of sepsis, along with a reduction in the release of inflammatory
cytokines, DNA damage, apoptosis, inflammation, and other hallmarks of sepsis [44]. In
another preliminary observational study, R-Cu treatment reduced mortality in patients
with severe COVID-19 by nearly 50% [87]. The experimental details of the above studies are
summarized in Table 1. Another study reported the antiviral effects of resveratrol against
SARS-CoV-2 [88]. Although this study only examined resveratrol, it is possible that the
applied resveratrol may have been mobilized and combined with endogenous copper to
exert pro-oxidant effects.

4.3. Inhibitory Effect on Aging and Degenerative Conditions

Oxidative stress is associated with aging and age-related disorders. However, this
mainstream and straight-forward notion has been challenged multiple times, and anti-
oxidant systems have failed to ameliorate oxidative stress-related disorders [89,90]. Further-
more, recent evidence suggests that cfChPs can continuously exert damaging effects over a
lifetime, contributing to aging and age-related degeneration [43,47]. Consistent with this,
Pal et al. [50] found that deactivating cfChPs using resveratrol and copper down-regulated
multiple biomarkers of aging in the brain cells of C57Bl/6 mice (experimental details
are presented in Table 1). These effects included a reduction in DNA damage, telomere
attrition, aneuploidy, amyloid deposition, inflammation, apoptosis, senescence, and mito-
chondrial dysfunction, suggesting that cfChPs could be drivers of aging and age-related
disorders and that R-Cu therapy could be an effective anti-aging and anti-degenerative
therapeutic approach.

4.4. Inhibitory Effect on Metastases and Cancer Progression

Studies have also indicated that cfChPs released from dying cancer cells could be po-
tentially oncogenic in nature and may possibly have the ability to induce metastasis [41,49].
In a recent pre-clinical study [49], NOD-SCID mice in which an MDA-MB-231 human
breast cancer xenograft was generated showed the presence of human DNA signals (repre-
senting cfChPs) in their brain cells as well as the presence of eight human oncoproteins,
namely c-Myc, c-Raf, p-EGFR, HRAS, p-AKT, FGFR 3, PDGFRA, and c-Abl., Localized
radiotherapy, chemotherapy, and surgery markedly exacerbated the dissemination of the
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human DNA (cfChPs) and oncoproteins to brain cells. The concurrent administration of
cfChP-deactivating agents, such as R-Cu, prevented this increased dissemination. Thus,
therapeutic intervention can potentially promote metastatic spread via the systemic dis-
semination of oncogenes which can be prevented by concurrent treatment with R-Cu.

In an exploratory study [83], 25 patients with advanced oral squamous cell carcinoma
were divided into five groups of five patients each: one control group and four R-Cu
treatment groups with increasing doses of resveratrol and copper administered for two
weeks. The lowest doses used were 5.6 mg and 560 ng of resveratrol and copper, and the
highest doses were 500 mg and 5 mg, respectively. This study showed increased levels
of cfChPs in the tumor microenvironment, which were drastically reduced at the end
of the R-Cu treatment. Furthermore, the R-Cu-mediated elimination of cfChPs from the
tumor microenvironment correlated with the down-regulation of ten cancer hallmarks and
five immune checkpoints, with lower doses of R-Cu showing a more marked effect than
higher doses and no adverse effects. Although the targeting of immune checkpoints has
been a significant and successful breakthrough in cancer therapy [91], the mechanism of
the up-regulation of immune checkpoints in cancer remains largely unknown. The above
studies suggest that cfChPs could be instigators of immune checkpoints in cancer and that
R-Cu could be an efficient means to target the activated immune checkpoints. Indeed, a
recent study has shown that cfChPs released from dying cancer cells activate five immune
check-points viz. NKG2A, PD-1, LAG-3, CTLA-4, and TIM-3 in human lymphocytes, an
effect which was found to be abrogated in the presence of R-Cu [92].

5. R-Cu Induced ROS Does Not Damage Genomic DNA
Recent evidence suggests that ROS generated by mitochondria may not be a direct

cause of genomic DNA damage [45]. NIH3T3 cells were treated with cfChPs which had been
pre-treated with the ROS scavenger Mito-TEMPO. The result showed that while cfChPs
treatment markedly increased DNA damage, this was not prevented by the presence of the
ROS scavenger Mito-TEMPO. This suggested that cfChP-induced DNA damage is mediated
via an ROS independent mechanism. This finding is corroborated by the results shown
in Figure 2. Mice were administered R-Cu twice daily by oral gavage for two weeks at a
dose of 1 mg/kg of R and 0.1 µg/kg of Cu. Thereafter, brain cells were harvested, stained
with MitoSOX Red to detect mitochondrial ROS production, and subjected to fluorescent
microscopy to estimate the mean fluorescence intensity (MFI) per cell. Brain sections were
also stained with antibody against γH2AX to detect double-strand DNA breaks. As shown
in Figure 2, R-Cu treatment resulted in a marked increase in ROS production in brain cells.
However, this did not lead to an increase in DNA damage marked by γH2AX signals. On
the contrary, a reduction in γH2AX signals was observed. The latter can be explained
by the possibility that R-Cu treatment had deactivated the extracellular cfChPs via ROS
production, thereby preventing them from causing damage to the genomic DNA of the
brain cells (Figure 2).

These findings suggest that ROS generated by R-Cu can deactivate extra-nuclear
DNA (i.e., cfChPs) without damaging the genomic DNA in vivo. This, along with the
encouraging observations that R-Cu combination therapy has elicited no adverse effects to
date [83,85–87], reinforces the idea that R-Cu therapy is potentially safe.
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Figure 2. Reactive oxygen species (ROS) generated by resveratrol–copper (R-Cu) treatment does
not damage genomic DNA of brain cells. Brain cells from mice administered R-Cu twice daily for
two weeks at a dose of 1 mg/kg of R and 0.1 µg/kg of Cu were harvested and (A) stained with
MitoSOX Red to detect mitochondrial ROS production or (B) antibody against γH2AX to detect
double-strand DNA breaks. Brain sections were analyzed using fluorescent microscopy to estimate
mean fluorescence intensity (MFI) per cell. For ROS estimation, the nuclei were gated to exclude
the interfering nuclear fluorescence from the MFI analysis. Asterisks indicate significant difference
compared to the control. *** p < 0.001 * p < 0.05. This experiment was performed twice.

6. Conclusions
Substantial evidence now indicates that cfChPs released from dying cells, whether

under normal or diseased conditions, have harmful effects on healthy cells in the body.
Therefore, the deactivation of cfChPs promises to improve health in multiple ways. An
effective way to achieve this would be to utilize the damaging effects of ROS to deactivate
extracellular cfChPs and minimize their harmful effects. As the ROS itself do not damage
genomic DNA, using compounds or combinations of compounds, such as resveratrol and
copper, which can generate sufficient ROS to deactivate cfChPs without triggering genomic
damage may be a viable and safe therapeutic approach. The studies discussed above
suggest that R-Cu could be an effective adjuvant anticancer treatment to minimize the toxic
effects of chemotherapy and radiotherapy and suppress the development of metastasis.
In fact, considering that trace metals such as copper have been reported to be present at
higher levels in cancer cells [93], the therapeutic benefits of resveratrol in cancer may be
driven by its combination with copper rather than by resveratrol alone.

In conclusion, we propose that R-Cu treatment could be a potent therapeutic approach
to counter multiple pathologies and retard aging and degenerative conditions.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ph18010132/s1, Video S1: Animated illustration showing
the uptake of cell-free chromatin particles (cfChPs) by healthy cells. Once they enter, the cfChPs
damage mitochondrial DNA as well as genomic DNA, triggering the activation of inflammatory
responses, DNA damage responses, and apoptosis.
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