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Abstract: Objectives: This study implements a multi-dimensional methodology to sys-
tematically identify potential natural antibiotics derived from the medicinal plants uti-
lized in Ayurvedic practices. Methods: Two primary analytical techniques are employed 
to explore the antibiotic potential of the medicinal plants. The initial approach utilizes a 
supervised network analysis, which involves the application of distance measurement al-
gorithms to scrutinize the interconnectivity and relational patterns within the network 
derived from Ayurvedic formulae. Results: 39 candidate plants with potential natural an-
tibiotic properties were identified. The second approach leverages advanced machine 
learning techniques, particularly focusing on feature extraction and pattern recognition. 
This approach yielded a list of 32 plants exhibiting characteristics indicative of natural 
antibiotics. A key finding of this research is the identification of 17 plants that were con-
sistently recognized by both analytical methods. These plants are well-documented in ex-
isting literature for their antibacterial properties, either directly or through their bioactive 
compounds, which suggests a strong validation of the study’s methodology. By synergiz-
ing network analysis with machine learning, this study provides a rigorous and multi-
faceted examination of Ayurvedic medicinal plants, significantly contributing to the iden-
tification of natural antibiotic candidates. Conclusions: This research not only reinforces 
the potential of traditional medicine as a source for new therapeutics but also demon-
strates the effectiveness of combining classical and contemporary analytical techniques to 
explore complex biological datasets. 
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1. Introduction 
The therapeutic efficacy of existing antibiotics for common infectious diseases is pro-

gressively diminishing, largely due to the widespread and often inappropriate use of 
these drugs [1]. This indiscriminate antibiotic use is a fundamental factor contributing to 
the reduced effectiveness in combating pathogenic bacteria, leading to the emergence of 
multidrug-resistant (MDR) bacteria in clinical settings [2]. Despite concerted efforts by 
researchers and practitioners to develop novel antibiotics, the pace of new antibiotic dis-
covery is insufficient to keep up with the rapid proliferation of MDR bacteria [3,4]. The 
development process is particularly time-consuming and fraught with challenges, includ-
ing the necessity to conduct extensive large-scale animal testing. These tests are often 
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labor-intensive, costly, and may yield unsatisfactory results, frequently leading to the re-
discovery of antibiotics with similar modes of action rather than truly novel therapeutic 
agents [5]. This scenario underscores the urgent need for innovative and reliable method-
ologies to accelerate the discovery of new antibiotics and the design of novel drugs. 

Conventional methods in antibiotic discovery have traditionally focused on high-
throughput screening of synthetic compound libraries [6]. However, the vast chemical 
space they encompass presents significant challenges. The process of aimlessly traversing 
this expansive chemical landscape often lacks a targeted approach to the identification of 
compounds with therapeutic potential, leading to an increased consumption of resources 
in the validation phase [7,8]. Given these constraints, researchers have increasingly sought 
alternative sources that could provide more promising sample spaces for antibiotic dis-
covery. In recent years, medicinal plants have emerged as a compelling source in the field 
of new drug design. The diverse bioactive compounds found in medicinal plants offer a 
wealth of potential candidates with inherent medicinal value [9]. This has led to a growing 
interest within the pharmaceutical community, as these natural products present a more 
targeted and potentially fruitful avenue for the discovery of novel antibiotics [10]. 

Medicinal plants refer to preparations derived from various parts of plants, including 
leaves, flowers, roots, and other components, each with distinct medicinal applications 
[11]. The preparation of these herbal remedies involves diverse extraction methods tai-
lored to the specific chemical constituents present in the plant material [12]. Over the past 
few decades, herbal medicines have gained significant global popularity, largely due to 
their perceived superior efficacy and lower incidence of side effects compared to conven-
tional pharmaceuticals [13]. As a result, approximately 80% of the global population cur-
rently relies on herbal medicines for their healthcare needs [14]. This burgeoning market 
reflects the increasing recognition and adoption of herbal medicines as a viable alternative 
or complement to conventional drug therapies, driven by the growing consumer prefer-
ence for natural and holistic health solutions. 

Ayurveda, one of the world’s oldest holistic healing systems, originated in India over 
3000 years ago and remains deeply rooted in Indian culture and practices [15]. The Ayur-
vedic system of medicine relies heavily on the use of medicinal plants and natural sub-
stances, which are carefully selected and prepared according to time-honored practices 
[16]. These preparations are tailored to the individual’s unique constitution and health 
needs, with the aim of restoring and maintaining harmony within the body’s internal en-
vironment [17]. Ayurvedic medicine encompasses a wide range of therapeutic practices, 
including dietary regulation, herbal remedies, physical therapies, and spiritual exercises, 
all designed to promote long-term health and prevent illness [18]. There is a promising 
potential to bridge the gap between traditional wisdom and modern medical science, 
thereby enhancing the integration of Ayurvedic principles into drug design. 

The formulae of traditional medicine can be regarded as the empirical dataset about 
combination medication using medicinal plants [19]. Wijaya et al. identified 94 important 
NPs associated with 12 medicinal efficacy groups based on the mining of the traditional 
medicine formula, of which many have been confirmed by published literature [20]. This 
study empowers machine learning to predict natural plant antibiotics based on the Jamu 
formula (traditional medicine from Indonesia) using the Random Forest approach. An-
other study quantified the strength of a relationship between TCM (traditional medicine 
from China) formulae and curative efficacy groups using a graph-based method and in-
troduced a deep network-based feature selection method for finding the potential candi-
dates of new antibiotics design [21]. Hence, we proposed that constructing a relationship 
between Ayurvedic Formulae, medicinal plants, and antimicrobial efficacy can assist in 
clarifying the correspondence—that is, help determine the candidates of antimicrobial 
medicinal plants. 
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In this study, we employ a systematic and multi-faceted approach to identify poten-
tial plant-based natural antibiotics from Ayurvedic formulations. The methodology is 
structured into four major phases: data acquisition and preprocessing, supervised net-
work clustering, machine learning modeling, and validation. In the initial phase, compre-
hensive data on Ayurvedic medicinal plants, including their therapeutic applications, was 
gathered and organized into a tabular format. Each row of the dataset represented an 
Ayurvedic formula, with features corresponding to the plants included in the formula and 
a binary class label indicating its effectiveness against bacterial infections. The dataset was 
then subjected to preprocessing, which involved cleaning and optimizing the data 
through dimensionality reduction and synthetic data augmentation using SMOTE to bal-
ance the dataset. The next phase involved supervised network clustering, where the 
DPClusO algorithm was applied to cluster the Ayurvedic formulas based on their poten-
tial medicinal properties [22]. Minkowski distance was utilized to establish connections 
between formulas, and a voting mechanism was implemented to identify clusters strongly 
associated with antibiotic properties. In the machine learning phase, several algorithms 
were tested, with Random Forest achieving the highest accuracy. This model was further 
refined by extracting the most significant features, which were used to predict potential 
plant-based antibiotics. Finally, a rigorous validation process was conducted by reviewing 
existing scientific literature to confirm the antibacterial properties of the identified plants, 
ensuring the reliability of the findings. 

2. Results 
2.1. Data Preprocessing 

We compiled a dataset of Ayurvedic formulas, including detailed information about 
the medicinal plants used in each formula and their therapeutic applications [23]. The da-
taset is organized as tabular data, where each row corresponds to a specific Ayurvedic 
formula. The dataset’s features include the medicinal plants present in each formula and 
a binary class label. The class label indicates whether the formula is effective in treating 
bacterial infections, with a value of 1 representing effectiveness (antibiotic class) and 0 
indicating ineffectiveness. The dataset used in this study consists of 285 instances and 293 
features, with two distinct class labels representing the formulas’ effectiveness in curing 
bacterial infections. 

The dataset was preprocessed using the fundamental tasks, including checking for 
and removing missing or redundant data. Dimensionality reduction was achieved using 
Principal Component Analysis (PCA). We selected a number of principal components 
equivalent to approximately half the original feature set. The final dataset processed by 
the machine learning protocols consisted of 285 samples (formulae) and 146 principal 
components. Both the neural network and random forest models were trained and evalu-
ated using this reduced dataset. Columns with too many missing values, low variance, or 
features with little predictive power were filtered out during preprocessing. Besides, the 
dataset was augmented by generating new instances of Ayurvedic formulas using the 
Synthetic Minority Over-sampling Technique (SMOTE) [24]. 

2.2. Supervised Network 

After applying the DPClusO algorithm to cluster the Ayurvedic formulas based on 
their potential medicinal properties, a voting mechanism was implemented to confirm the 
association of clusters with antibiotic properties based on consensus across multiple formu-
las. Each plant was found to appear in two to six different formulas within the dataset, in-
dicating their widespread usage and potential significance in traditional medicine systems. 
These plants were selected for their consistent presence in antibiotic-dominant clusters. 



Pharmaceuticals 2025, 18, 192 4 of 16 
 

 

From the 11 clusters that are dominant for antibiotic properties, we extracted 39 
unique plants. The distribution of these plants across the formulae varies, with each plant 
appearing in two to six different formulas. The detailed results are presented in Table 1 
and Figure 1. 

 

Figure 1. Frequency distribution of Medicinal Herb Features in the Ayurvedic Formulae Dataset. 

Table 1. Frequency distribution of Medicinal Herb Features in Ayurvedic Formulae Dataset. 

No. Medicinal Plant Frequency 
1 Piper longum 102 
2 Zingiber officinale 93 
3 Emblica officinalis 74 
4 Piper nigrum 69 
5 Terminalia chebula 56 
6 Myristica fragrans 54 
7 Cyperus rotundus 53 
8 Tenninalia chebula 50 
9 Terminalia bellcrica 37 
10 Piper chaba 36 
11 Plumbago zeylanica 34 
12 Syzygium aromaticum 32 
13 Coriandrum sativum 32 
14 Cinnamomum zeylanicum 30 
15 Elettaria cardamomum 30 
16 Saussurea hypoleuca 30 
17 Aconitum ferox 29 
18 Aloe barbadensis 29 
19 Tinospora cordifolia 29 
20 Nigella sativa 29 
21 Carum curvi 28 
22 Cinnamomum tamala 28 
23 Glycyrrhiza glabra 27 
24 Pterocarpus santalinus 27 
25 Berberis aristata 26 
26 Embelia ribes 25 
27 Cedrus deodara 24 
28 Acorus calamus 24 
29 Tribulus terresrris 23 
30 Curcuma longa 23 
31 Aegle marmelos 22 
32 Trachyspermum ammi 22 
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33 Sida cordifolia 22 
34 Aconitum heterophyllum 21 
35 Operculina turpethum 21 
36 Mesua ferrea 20 
37 Rhus succedanea 19 
38 Curcuma zedoaria 19 
39 Hollerrhena antidysenterica 18 
40 Picrorhiza kurroa 18 

2.3. Machine Learning for Antimicrobial Phenotype Decision 

We conducted experiments using three distinct types of datasets: one obtained after 
filtering columns to retain only the most relevant features, a second generated using the 
SMOTE, and a third hybrid dataset created by combining the two aforementioned ap-
proaches. While we observed improvements in accuracy across some models in the seven 
models tested, the magnitude of these improvements was not statistically significant in 
most cases. As shown in Table 2, the performance indicated that the Random Forest algo-
rithm achieved the highest accuracy at 0.824, followed by Logistic Regression at 0.797, and 
Gradient Boosting at 0.775. 

Given these results, we identified the Random Forest model trained on the SMOTE-
filtered dataset as the most suitable approach for the next stage of our analysis. This model’s 
enhanced performance underscores its potential for effectively predicting plant-based nat-
ural antibiotics. A detailed summary of experimental results is provided in Table 3. 

Table 2. Accuracy of Machine Learning Methods. 

Machine Learning Models Filtering SMOTE Filtering + SMOTE  
Decision Tree Classifier 0.673 ± 0.025 0.648 ± 0.015 0.635 ± 0.010 
Naïve Bayes Classifier 0.626 ± 0.013 0.675 ± 0.028 0.648 ± 0.017 

Gradient Boosting Classifier 0.748 ± 0.014 0.748 ± 0.011 0.775 ± 0.026 
K-Neighbors Classifier 0.755 ± 0.009 0.709 ± 0.017 0.746 ± 0.012 

Logistic Regression 0.790 ± 0.016 0.755 ± 0.008 0.797 ± 0.015 
Multi-layer Perceptron 0.671 ± 0.020 0.752 ± 0.014 0.748 ± 0.025 

Random Forest 0.727 ± 0.022 0.774 ± 0.014 0.824 ± 0.018 

Table 3. Plants prediction from supervised network clustering. 

No. Medicinal Plant Ayurvedic Formulae 
1 Zingiber officinale 6 
2 Cyperus rotundus 5 
3 Piper longum 5 
4 Nigella sativa 4 
5 Rhus succedanea 4 
6 Tinospora cordifolia 4 
7 Terminalia chebula 4 
8 Bharangi—Clerodendrum 3 
9 Carum curvi 3 

10 Cedrus deodara 3 
11 Coriandrum sativum 3 
12 Emblica officinalis 3 
13 Myrica nagi/Myrica sapida 3 
14 Piper nigrum 3 
15 Saussurea hypoleuca 3 
16 Fagonia cretica 3 
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17 Picrorhiza kurroa 3 
18 Cinnamomum tamala 2 
19 Cinnamomum zeylanicum 2 
20 Croton polyandrum 2 
21 Elettaria cardamomum 2 
22 Glycyrrhiza glabra 2 
23 Myristica fragrans 2 
24 Piper chaba 2 
25 Plumbago zeylanica 2 
26 Syzygium aromaticum 2 
27 Trachyspermum ammi carum copticum 2 
28 Trianthema portulacastrum 2 
29 Tribulus terrestris 2 
30 Uraria lagopoides 2 
31 Aegle marmelos 2 
32 Solanum indicum 2 
33 Aconitum heterophyllum 2 
34 Cissampelos pareira 2 
35 Azadirachta indica 2 
36 Curcuma longa 2 
37 Trichosanthes dioica 2 
38 Inula racemosa 2 
39 Nigella sativa 2 

Upon achieving the optimal prediction model, we identified the key features of 
plants contributing to the model’s accuracy. To accomplish this, we leveraged the variable 
importance attribute of the best Random Forest model. This was implemented using the 
Random Forest Regressor and Permutation Importance techniques. Based on this ap-
proach, we generated a ranked list of potential plants with natural antibiotic properties, 
ordered according to their significance (weight) in the model. We performed sensitivity 
analyses using alternative thresholds (between 0.005 and 0.02) and found that the overall 
trends and key findings remain consistent. Applying the threshold of greater than 0.01, 
we identified 39 unique potential plant-based natural antibiotics. The medicinal plant and 
the importance are shown in Table 4. 

Table 4. Medicinal plant weights from machine learning model. 

No. Medicinal Plant Weight 
1 Cyperus rotundus 0.03109277 
2 Piper longum 0.0261781 
3 Aconitum ferox 0.02305289 
4 Sida cordifolia 0.01956573 
5 Piper nigrum 0.01927294 
6 Zingiber officinale 0.01859687 
7 Myristica fragrans 0.01832107 
8 Plumbago zeylanica 0.01659803 
9 Acacia leucophloea 0.01593949 
10 Terminalia chebula 0.01574221 
11 Trichosanthes dioica 0.01567844 
12 Cinnamomum zeylanicum 0.01544429 
13 Bambusa bambos 0.01483098 
14 Elettaria cardamomum 0.0143906 
15 Inula racemosa 0.0140497 
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16 Curcuma longa 0.01371762 
17 Piper chaba 0.0136643 
18 Punica granatum 0.01346506 
19 Carum curvi 0.01325254 
20 Femia foetida 0.01210255 
21 Tenninalia chebula 0.01149938 
22 Aconitum heterophyllum 0.0111556 
23 Emblica officinalis 0.01114156 
24 Adhatoda vasica 0.01106956 
25 Fagonia cretica 0.01092521 
26 Berberies aristata 0.01090131 
27 Berberis aristata 0.0107864 
28 Bharangi—Clerodendrum 0.01015191 
29 Syzygium aromaticum 0.01012223 
30 Operculina turpethum 0.01011386 
31 Terminalia bellcrica 0.01009841 
32 Hollerrhena antidysentrica 0.01003895 

2.4. Overlapping Results 

The overlap of results from supervised network analysis and machine learning ap-
proaches identifies 17 medicinal plants with antimicrobial properties. These plants are a 
focus of further investigation into their medicinal components. 

Piper longum: Piper longum, commonly known as “Pippali”, is a well-known medici-
nal plant in India, Singapore, Malaysia, and other South Asian countries. It has been tra-
ditionally used as a carminative, anti-diarrheal, and immunostimulant, as well as in man-
aging conditions such as asthma, insomnia, dementia, epilepsy, diabetes, rheumatoid ar-
thritis, and spleen disorders. Notably, Piper longum exhibits potent antibacterial activity 
[23]. Studies have demonstrated that certain isolates from Piper longum are effective 
against Gram-positive bacteria and show moderate activity against Gram-negative bacte-
ria, highlighting its potential as a natural antimicrobial agent. 

Piper nigrum: Piper nigrum (black pepper) exhibits potent antimicrobial properties 
due to its primary bioactive compound, piperine. Piperine has demonstrated significant 
antimicrobial efficacy against both Gram-positive and Gram-negative bacteria. The essen-
tial oils of Piper nigrum, particularly rich in compounds like β-caryophyllene and limo-
nene, also contribute to its broad-spectrum antimicrobial action [25,26]. These metabolites 
disrupt bacterial cell membranes and inhibit biofilm formation, enhancing its potential as 
a natural antibiotic. 

Zingiber officinale: Ginger’s antimicrobial properties are attributed to its bioactive 
components such as gingerol and shogaol. These metabolites target microbial cell mem-
branes, inhibiting the growth of pathogenic bacteria and fungi. Gingerol has been partic-
ularly effective against respiratory pathogens, highlighting its medicinal significance [27]. 

Myristica fragrans: Nutmeg contains eugenol, a potent antimicrobial compound. Eu-
genol disrupts bacterial membranes and inhibits toxin production, making it highly effec-
tive against foodborne pathogens and other bacterial infections [28]. 

Plumbago zeylanica: This plant’s antimicrobial potential is due to its active compound, 
plumbagin, which exhibits strong antibacterial and antifungal activities [29]. Plumbagin 
interferes with bacterial DNA replication and cell wall synthesis, contributing to its broad 
antimicrobial efficacy. 

Trichosanthes dioica: Trichosanthes dioica, known as the pointed gourd, is a plant with 
a long history of medicinal use in South Asia. It is known for its various therapeutic prop-
erties, including its antimicrobial potential. Research has shown that extracts from 
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Trichosanthes dioica possess antibacterial and antifungal activities, making it a valuable 
plant in the management of infections [30]. 

Cinnamomum zeylanicum: Cinnamomum zeylanicum, commonly known as Ceylon cin-
namon, is prized for its flavor and medicinal properties. Cinnamon extracts have been 
extensively studied for their antimicrobial activity, particularly against bacterial and fun-
gal pathogens [31]. The antimicrobial properties of Cinnamomum zeylanicum are attributed 
to its essential oils, which are effective in treating infections and preserving food. 

Elettaria cardamomum: Elettaria cardamomum, known as green cardamom, is widely 
used in both culinary and medicinal contexts. α-Pinene and 1,8-Cineole from Elettaria car-
damomum have been shown to possess antimicrobial properties, particularly against oral 
pathogens [32,33]. Cardamom is traditionally used to treat digestive issues and respira-
tory infections, and its antimicrobial activity supports its use in preventing and treating 
infections. 

Inula racemosa: Inula racemosa, also known as Pushkarmool, is a medicinal plant used 
in Ayurveda for its anti-inflammatory and antimicrobial properties. Alantolactone from 
Inula racemosa has demonstrated significant antibacterial activity, particularly against 
respiratory pathogens [34]. Its use in traditional medicine for treating respiratory ailments 
is supported by its antimicrobial potential. 

Curcuma longa: Curcuma longa, or turmeric, is a widely recognized medicinal plant 
known for its anti-inflammatory, antioxidant, and antimicrobial properties. Curcumin, 
the active compound in turmeric, has been shown to inhibit the growth of a variety of 
bacterial and fungal pathogens [35]. Turmeric is commonly used in traditional medicine 
for treating infections and promoting wound healing. 

Piper chaba: Piper chaba, also known as the Javanese long pepper, is used in traditional 
medicine for its antimicrobial properties. Studies show that Piper chaba exhibits antibacte-
rial properties, especially against Gram-positive bacteria, by disrupting microbial mem-
branes and inhibiting efflux pumps [36]. 

Carum carvi: Carum carvi, commonly known as caraway, is a spice with medicinal 
properties, including its antimicrobial activity. Caraway essential is rich in carvone and 
limonene, which exhibit strong antimicrobial effects [26,37]. These compounds inhibit bac-
terial and fungal growth, making caraway useful in treating infections and preserving food. 

Terminalia chebula: Terminalia chebula, known as Haritaki, is a key component of Ayur-
vedic medicine. Its tannins, particularly chebulinic acid, have been shown to inhibit bac-
terial and fungal pathogens by disrupting their cell walls and preventing their prolifera-
tion [38]. Terminalia chebula has been shown to inhibit the growth of several bacterial and 
fungal pathogens, making it an important plant in the treatment of infections. 

Aconitum heterophyllum: Aconitum heterophyllum, or Ativisha, is a medicinal plant used 
in Ayurveda for its anti-inflammatory and antimicrobial properties. It has been tradition-
ally used to treat fever, infections, and digestive disorders. Research shows that its alka-
loids, such as heterophylline, possess significant antibacterial activity, especially against 
bacterial pathogens responsible for digestive and respiratory infections [39]. 

Emblica officinalis: Emblica officinalis, commonly known as Amla or Indian gooseberry, 
is rich in tannins, flavonoids, and ascorbic acid (vitamin C). Amla extracts have shown ef-
fectiveness against a variety of bacterial and fungal pathogens, supporting their traditional 
use in promoting health and treating infections [40]. Another study reported that Amla-
Derived Bionanosilver (Ag NPs) demonstrates excellent antibacterial activity [41]. 

Fagonia cretica: Fagonia cretica, commonly known as Dhamasa, is a medicinal plant 
used in traditional medicine for its antimicrobial properties. Extracts from Fagonia cretica, 
such as flavonoids and tannins, have demonstrated significant antibacterial activity, mak-
ing them valuable in the treatment of infections [42]. 



Pharmaceuticals 2025, 18, 192 9 of 16 
 

 

Bharangi (Clerodendrum serratum): Bharangi, known as Clerodendrum serratum, is a 
medicinal plant used in Ayurveda for its therapeutic properties, including its antimicro-
bial effects. It contains terpenoids and flavonoids that exhibit antibacterial and antifungal 
properties, supporting its use in managing various infections [43]. 

As shown in Table 5, these plants collectively represent a diverse and potent arsenal 
of natural antimicrobial agents, with a broad spectrum of activity against various patho-
gens. Their continued study and application in both traditional and modern medicine 
hold great promise for the development of new and effective treatments for infectious 
diseases. 

Table 5. Academic recordings as evidence for the overlapping medicinal plants using supervised 
network analysis and machine learning approaches. 

No. Medicinal Plant Metabolite Antimicrobial Property Reference 
1 Piper longum isolates  Antibacterial [44] 

2 Piper nigrum 
β-Caryophyllene (C15H24),  

limonene (C10H16) 
Antibacterial, Antifungal [25,26] 

3 Zingiber officinale Gingerol (C17H26O4) Antibacterial [27] 
4 Myristica fragrans Eugenol (C10H12O2) Antibacterial, Antifungal [28] 
5 Plumbago zeylanica plumbagin (C11H8O3) Antibacterial [29] 
6 Trichosanthes dioica isolates Antibacterial [30] 
7 Cinnamomum zeylanicum isolates Antibacterial, Antifungal [31] 

8 Elettaria cardamomum 
α-Pinene (C10H16), 

1,8-Cineole (C10H18O) 
Antibacterial, Antifungal [32,33] 

9 Inula racemosa Alantolactone (C15H20O2) Antibacterial [34] 
10 Curcuma longa Curcumin (C21H20O6) Antibacterial, Antioxidant [35] 
11 Piper chaba isolates Antibacterial, Antiviral [36] 

12 Carum carvi 
carvone (C10H14O), 
limonene (C10H16) 

Antibacterial [26,37] 

13 Terminalia chebula isolates Antibacterial, Antiviral [38] 
14 Aconitum heterophyllum heterophylline (C22H26N2O4) Antibacterial [39] 
15 Emblica officinalis isolates, Ag NPs Antibacterial, Antioxidant [40,41] 
16 Fagonia cretica isolates Antibacterial [42] 
17 Bharangi isolates Antibacterial [43] 

3. Discussion 
The methodology employed in this study represents a top-down approach, starting 

with a comprehensive analysis of Ayurvedic formulas—comprising medicinal plants—
and progressively narrowing down to the identification of significant bioactive com-
pounds at the plant level. By leveraging cutting-edge machine learning techniques, we 
identified key metabolites with therapeutic potential, demonstrating the utility of in silico 
approaches in drug discovery. This approach aligns with prior research emphasizing the 
importance of computational methods in accelerating the identification of bioactive com-
pounds, especially in traditional medicine systems 

Our results reinforce the potential of computational methodologies in uncovering 
medicinal plants with antibiotic properties. The input dataset included a diverse range of 
diseases categorized into broader classes, where individual diseases within each class 
shared certain similarities while retaining unique attributes. Notably, the findings re-
vealed bioactive compounds that exhibited therapeutic efficacy across multiple diseases 
within a category, reflecting their broad-spectrum potential. This aligns with studies that 
suggest a high degree of overlap between traditional formulations and their targeted ther-
apeutic effects. 
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The success of this study lies in the precise identification of medicinal plant candi-
dates and their associated metabolites strongly linked to antibiotic potential. Efficient al-
gorithms enabled the analysis of plant-based formulas to pinpoint compounds likely con-
tributing to the therapeutic efficacy of these traditional remedies. For example, com-
pounds such as gingerol, curcumin, and eugenol identified in this study are well-docu-
mented in the literature for their antimicrobial properties, underscoring the validity of our 
approach. 

This work underscores the importance of adopting a systems-level perspective in an-
alyzing traditional medicine. By integrating Ayurvedic knowledge with computational 
tools, this study bridges the gap between traditional practices and modern drug discovery 
frameworks. However, the lack of experimental validation remains a limitation. Future 
work should incorporate empirical testing, such as antimicrobial assays, molecular dock-
ing studies, and genetic analyses, to confirm the bioactivity of the identified compounds. 

4. Materials and Methods 
The methods adopted in the present work are illustrated in the flowchart in Figure 2. 

The major steps were (1) Data acquisition and preprocessing, (2) Supervised network clus-
tering, (3) Machine Learning approach, and (4) Validation. 

 

Figure 2. The methodology is structured into four major phases: data acquisition and preprocessing, 
supervised network clustering, machine learning modeling, and validation. 

4.1. Data Acquisition and Preprocessing 

In the preliminary phase of this study, we gather comprehensive information on me-
dicinal plants utilized in the composition of Ayurvedic formulae. The initial dataset com-
prised a collection of Ayurvedic formulae, detailed information on the medicinal plants 
included in these formulas, and their therapeutic applications. Then, the dataset is 
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structured as tabular data, where each row represents an instance corresponding to a spe-
cific Ayurvedic formula. The features of the dataset consist of the medicinal plants in-
cluded in each formula, along with a class label. The class label is binary, with a value of 
one indicating that the formula is effective in treating bacterial infections (antibiotic class) 
and a value of zero indicating otherwise. The dataset utilized in this research has a dimen-
sionality of [285 × 293], encompassing 285 instances and 293 features, with the two distinct 
class labels representing the effectiveness of the formulas in curing bacterial diseases. 

The labeling task involves mapping each herbal formula to cases such as cough, ure-
thritis, typhoid, and similar conditions, categorizing these diseases as bacterial in origin. 
Herbal formulas effective against bacterial diseases are classified as class 1. However, 
many conditions, including aches, indigestion, and fever, are not caused by bacteria. This 
process is challenging due to the absence of a specific database that identifies whether a 
disease is bacterial. Nonetheless, foundational medical knowledge is applied to assign 
class labels accurately. 

In the phase of data preprocessing, we perform fundamental tasks essential to any 
data mining process, including checking for and removing missing or redundant data. To 
further optimize our model, we explored two distinct approaches. The first approach in-
volved reengineering the dataset through dimensionality reduction and the addition of 
synthetic data. Dimensionality reduction was achieved using Principal Component Anal-
ysis (PCA), which was applied to retain the most significant features and streamline the 
dataset, thereby reducing the model’s complexity. For this study, we retained components 
that explained at least 95% of the total variance, ensuring that the majority of the dataset’s 
information was preserved while removing redundant or noisy features. Columns with 
too many missing values, low variance, or features with little predictive power were fil-
tered out during preprocessing. 

The second approach focused on augmenting the dataset by generating new in-
stances of Ayurvedic formulas using the Synthetic Minority Over-sampling Technique 
(SMOTE). SMOTE is a technique used to handle class imbalance in datasets, where one 
class (often the positive class) has significantly fewer samples than the others. It works by 
generating synthetic data points for the minority class. SMOTE creates new instances by 
interpolating between existing minority class samples, helping the model avoid bias to-
ward the majority class and improving prediction accuracy for underrepresented cases. 
By creating synthetic examples of the minority classes, SMOTE helped to balance the da-
taset, thereby potentially improving the model’s performance by mitigating bias towards 
the majority classes. 

4.2. Supervised Network Clustering 

The DPClusO algorithm was used to cluster Ayurvedic pairs, helping to identify po-
tential medicinal plant–disease relationships, as shown in Figure 2. It is a simple graph 
clustering algorithm that creates overlapping clusters, ensuring that every node belongs 
to at least one cluster [45]. The input to DPClusO is an adjacency list of an undirected 
graph. During each iteration, edges are removed if both connected nodes are part of the 
newly formed cluster. The process continues until no edges are left in the graph. The al-
gorithm starts by selecting a seed node with the highest weight. If all remaining nodes 
have a weight of zero, the seed is chosen based on the highest number of connections 
(degree). A node already in a cluster usually cannot be selected again as a seed. For each 
neighboring node, the total weight of connections with cluster nodes is calculated, and 
the node with the highest weight is given priority. If there is a tie, the number of connec-
tions is used to decide. If there is still a tie, any one of the tied nodes can be chosen. Priority 
nodes are added to the cluster in each iteration until the cluster’s density or structure falls 
below set threshold values. 
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Numerous studies have extensively utilized this algorithm in network clustering and 
have demonstrated successful outcomes. To construct the network data, we employed the 
Minkowski distance as our metric for establishing edges between pairs of Ayurvedic for-
mulas. The goal was to connect formulas whose distance fell below a predefined thresh-
old, specifically a distance value of 1.5. Minkowski distance is a versatile metric for quan-
tifying the distance between two vectors with real-valued components. It generalizes the 
concepts of Euclidean and Manhattan distances by incorporating an additional parameter 
known as the order or p-value. This parameter allows for the calculation of various dis-
tance measurements, each emphasizing different aspects of the data depending on the 
chosen order. By adjusting the p-value, the Minkowski distance can highlight specific re-
lationships within the data, offering a more nuanced understanding of the proximity be-
tween different Ayurvedic formulas. The equation for Minkowski distance, as used in this 
study, is provided in Equation (1). 

dp(x,y) = (� |xi − yi|
p

n

i=1
)
1
p, (1) 

X and Y are Ayurvedic formulae, xi is the binary value of plant-i, and yi is the binary 
value of plant-i in the Y Ayurvedic formulae. P is order; if p = 1, the equation will be Man-
hattan distance; if p = 2, it will be Euclidian distance. 

We map the Ayurvedic formulae to the antibiotics class (class 1) to identify the clus-
ters predominantly associated with antibiotic activity. To accurately determine which 
clusters are most strongly linked to antibiotic properties, we implemented a voting sys-
tem. This system assigns each Ayurvedic formula within a cluster to either the antibiotic 
class or a non-antibiotic class, based on its therapeutic properties. The dominant cluster 
for antibiotics is then determined using a voting mechanism, where the cluster with the 
highest proportion of formulas belonging to the antibiotic class is identified as the domi-
nant one. The methodology for this voting system is mathematically represented by Equa-
tion (2). 

Cluster score = number of Ayurvedic Formulae belonging to the antibitics class
total number of Ayurvedic Formulae in the cluster   (2) 

The resulting clusters of Ayurvedic formulae exhibited high cohesiveness and were 
separated by a natural boundary, thus facilitating the identification of plant–disease rela-
tionships. We performed several parameters, including Function (Filter/Join), density, 
Cluster Property (CP), Overlapping Coff (OV), and correlation value, and generated mul-
tiple outcomes. Based on our analysis, we ultimately selected the network corresponding 
to a correlation threshold of 0.5 and used CP = 0.4, density = 0.5, and OV = 0.1 to generate 
the final clusters, and the total cluster we found is 29. 

The parameters of the DPClusO algorithm, such as the clustering threshold and den-
sity cutoff, were tuned empirically to achieve meaningful groupings of plants. We itera-
tively adjusted these parameters to balance cluster cohesiveness and biological interpret-
ability, ensuring that the resulting clusters were neither too granular nor overly broad. 
Preliminary results informed parameter ranges, and manual inspection ensured align-
ment with domain knowledge. 

Although clustering does not inherently follow a train–test split paradigm, we em-
ployed a cross-validation-inspired approach by iteratively sampling subsets of the data 
and re-clustering. This ensured that the identified clusters were stable and not artifacts of 
specific data configurations. 

4.3. Learning Models 

To identify the most effective machine learning model for our dataset, we conduct an 
initial evaluation of seven different methods by applying them to the original data. The 
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methods tested, along with their corresponding best accuracy scores, are as follows: De-
cision Tree Classifier is a tree-based model that splits data iteratively based on feature 
thresholds to create decision rules. Naïve Bayes Classifier is a probabilistic model based 
on Bayes’ theorem, which is particularly effective for categorical data. A Gradient Boost-
ing Classifier is an ensemble method that builds models sequentially to correct the errors 
of previous iterations. K Neighbors Classifier uses proximity-based classification, assign-
ing labels based on the majority class of the nearest neighbors. Logistic Regression models 
the probability of outcomes using a logistic function and is widely used for binary and 
multi-class classification. Multilayer Perceptron represents a type of artificial neural net-
work with hidden layers for learning non-linear patterns. The preliminary results indicate 
that the Random Forest algorithm achieved the highest accuracy, followed by Logistic 
Regression and Gradient Boosting. To enhance the performance of the random forest 
model, we performed hyperparameter tuning using a grid search with 5-fold cross-vali-
dation. The following parameters, number of trees, maximum depth, minimum samples 
per leaf, and minimum samples to split were optimized. The best results were achieved 
with 50 trees, a maximum depth of 15, 5 samples per leaf minimum, and 5 samples to split. 
The preliminary results revealed that the Random Forest model achieved the highest ac-
curacy at 0.824, which is promising but still not sufficiently accurate for our purposes. 
Recognizing the need for further improvement, we proceeded with a detailed prepro-
cessing of the dataset. Following preprocessing, we focus on extracting the most im-
portant features from the best-performed model. These key features are then used to re-
fine our predictions of medicinal plant-based natural antibiotic candidates. 

4.4. Validation 

This study implemented a rigorous validation process by systematically reviewing 
previously published scientific literature to verify the efficacy of the identified plants as 
potential natural antibiotics. The validation process involved a thorough examination of 
peer-reviewed journals and articles that specifically documented the antibacterial proper-
ties of these plants or their natural compounds. This meticulous review focused on evi-
dence demonstrating the ability of the identified plants to inhibit bacterial growth and 
exhibit significant antibacterial activity, thereby supporting their potential as natural an-
tibiotics. 

5. Conclusions 
In this paper, we employed a combination of supervised network clustering and ma-

chine learning techniques to identify potential plant-based natural antibiotics from Ayur-
vedic formulations. The integration of data preprocessing, dimensionality reduction, and 
synthetic data augmentation enhanced the model’s accuracy. The Random Forest model, 
identified as the most effective, highlighted key medicinal plants with significant antibac-
terial properties. Rigorous validation through existing scientific literature confirmed the 
potential of these plants as natural antibiotics, offering valuable insights for the develop-
ment of new therapeutic agents to combat antibiotic-resistant bacteria. 
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