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Abstract

Comparative genomics has revealed that variations in 
bacterial and archaeal genome DNA sequences cannot 
be explained by only neutral mutations. Virus resistance 
and plasmid distribution systems have resulted in changes 
in bacterial and archaeal genome sequences during 
evolution. The restriction-modification system, a virus 
resistance system, leads to avoidance of palindromic DNA 
sequences in genomes. Clustered, regularly interspaced, 
short palindromic repeats (CRISPRs) found in genomes 
represent yet another virus resistance system. Comparative 
genomics has shown that bacteria and archaea have 
failed to gain any DNA with GC content higher than the 
GC content of their chromosomes. Thus, horizontally 
transferred DNA regions have lower GC content than the 
host chromosomal DNA does. Some nucleoid-associated 
proteins bind DNA regions with low GC content and inhibit 
the expression of genes contained in those regions. This 

form of gene repression is another type of virus resistance 
system. On the other hand, bacteria and archaea have used 
plasmids to gain additional genes. Virus resistance systems 
influence plasmid distribution. Interestingly, the restriction-
modification system and nucleoid-associated protein genes 
have been distributed via plasmids. Thus, GC content and 
genomic signatures do not reflect bacterial and archaeal 
evolutionary relationships.

Distribution of genome base compositions and 

mutational biases

Among all published genome sequences, Candidatus 
Zinderia insecticola has a genome with the lowest guanine-
cytosine (GC) content (13.5%) (McCutcheon and Moran, 
2010), and Anaeromyxobacter dehalogenans 2CP-C has 
a genome with the highest GC content (74.9%) (Thomas 
et al., 2008). The distribution of GC content of bacterial 
genomes is rather distinct from a normal (Gaussian) 
distribution (Figure 1). On the other hand, within each 
bacterium, the distribution of the GC content of the genes 
is similar to a normal distribution (Figure 2), suggesting that 
each bacterium has maintained its genomic GC content. 
Bacteria have been thought to possess directionality, driven 
by neutral forces, toward higher or lower levels of GC 

Figure 1. Distribution of GC content of bacterial genomes.
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content in their DNA (Sueoka, 1961; Freese, 1962; Sueoka, 
1962; Sueoka, 1988).
 However, recent studies have shown that the variation 
of the GC content among bacteria is driven by selection, 
in which mutations from GC to adenosine-thymine (AT) are 
more common than mutations from AT to GC (Hershberg 
and Petrov, 2010; Hildebrand et al., 2010; Rocha and Feil, 
2010). Lind and Andersson (2008) compared the genomes 
of 2 Salmonella typhimurium mutants and showed a bias 
toward mutations from GC to AT. Rocha and Danchin 
(2002) suggested that GC content variation may be related 
to the higher energy cost and limited availability of G and 
C over A and T. However, many bacterial species such 
as Actinobacteria have a high GC content genome. How 
have these bacteria maintained a high GC content? DNA 
polymerase components involved in DNA replication have 
been reported to directly influence the GC contents of 
genomes (Zhao et al., 2007; Wu et al., 2012).

GC content and genomic signature

Oligonucleotide frequencies (genomic signatures) within 
a genome can be observed and compared with other 
genomes (Campbell et al., 1999; Deschavanne et al., 1999). 
Undoubtedly, genomes with similar genomic signatures have 
similar GC contents. Interestingly, genomes with similar GC 
contents also have similar genomic signatures (Albrecht-
Buehler, 2007a; Albrecht-Buehler, 2007b; Zhang and Wang, 
2011), with the exception of Deinococcus radiodurans and 
Thermus thermophilus (Nishida et al., 2012a). Phylogenetic 
relationships based on genomic signature comparison of 89 
bacteria (Nishida et al., 2012a) were found to be completely 
different from those based on gene content or orthologous 
protein sequence comparison (Nishida et al., 2011). This 
indicates that organisms with genomic signature similarity 
do not represent closely related organisms in evolutionary 
terms (Albrecht-Buehler, 2007a; Bohlin, 2011).
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Figure 2. Distribution of GC content of genes of three bacteria species, Mycoplasma mycoides (genome with low GC content), 
Escherichia coli (genome with middle GC content), and Streptomyces griseus (genome with high GC content).
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 In addition, frequencies of palindromic DNA sequence 
patterns are significantly lower than those of non-palindromic 
sequence patterns in bacterial and archaeal genomes 
(Gelfand and Koonin, 1997). Palindrome avoidance has 
been reported to be intimately correlated with infective 
behavior of the bacteriophage (Rocha et al., 2001). The low 
frequency of palindromic sequence patterns has been found 
in not only single genome sequence but also metagenomic 
sequence data (Dick et al., 2009). Generally, restriction 
enzymes recognize palindromic DNA sequences and digest 
these regions. However, when palindromic DNA sequences 
are methylated by a DNA methylase, restriction enzymes 
can no longer digest them (Wilson and Murray, 1991; 
Bickle and Krüger, 1993). Bacteria protect their palindromic 
DNAs modified by modification enzymes, but digest 
bacteriophage palindromic DNAs that are not modified. 
Thus, the restriction-modification system functions as a virus 
resistance system (Kobayashi, 2001; Labrie et al., 2010). 
Palindrome avoidance influences genomic signatures.
 Surprisingly, bacteria and archaea possess clustered, 
regularly interspaced, short palindromic repeats (CRISPRs) 
and the CRISPR-associated (cas) genes as a virus 
resistance system, which acts as a defense system against 
viral infections through the use of CRISPR RNA transcripts 
(Barrangou et al., 2007; Brouns et al., 2008; Marraffini 
and Sontheimer, 2008; Sorek et al., 2008; Karginov and 
Hannon, 2010; Labrie et al., 2010). Thus, bacteria and 

archaea employ palindromic DNA sequence avoidance as 
well as palindromic DNA sequences in CRISPR regions, as 
a defense system against viral infections.
 Restriction-modification systems may also influence 
GC content and genomic signatures. DNA methylase 
distributions among bacteria and archaea were shown in 
Figure 3. Escherichia coli has DNA adenine methylase gene 
(dam; NCBI gene ID, 947893) and DNA cytosine methylase 
gene (dcm; NCBI gene ID, 946479) (Marinus, 1987). Based 
on the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
orthology database (Kanehisa et al., 2012), the distributions 
of dam and dcm differ (Figure 3). The differences in 
their distributions suggest that genomic GC content is 
related to DNA methylase distribution. For example, most 
Actinobacteria (genomes with high GC content) lack dam, 
and most Spirochaetes (genomes with low GC content) 
lack dcm. However, certain cases cannot be explained by 
genome GC content. Most Tenericutes (genomes with low 
GC content) have both dam and dcm. In addition, although 
the GC contents of Crenarchaeota are not high (35–60% 
among 40 archaea used in this study), all Crenarchaeota 
possess dcm and lack dam. On the other hand, restriction 
enzymes have no structural similarity with DNA methylases 
or other restriction enzymes (Bickle and Krüger, 1993). It 
was reported that the restriction-modification system is a 
mobile element (Kusano et al., 1995; Naito et al., 1995; 
Kobayashi, 2001).
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Figure 3. Distribution of homologs of DNA adenine methylase gene (dam) and DNA cytosine methylase gene (dcm) of 
Escherichia coli. The numbers in parentheses indicate the numbers of organisms analyzed in this study. Taxonomic 
classification is according to the KEGG (Kanehisa et al., 2012).
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 Genomic GC content influences codon and amino acid 
usages (Muto and Osawa, 1987; Lobry, 1997; Singer and 
Hickey, 2000; Knight et al., 2001; Chen et al., 2004; Wan 
et al., 2004; Lightfield et al., 2011; Schmidt et al., 2012). 
In addition, the GC contents of horizontally transferred 
DNA regions have been ameliorated to adjust to host 
chromosome GC content (Lawrence and Ochman, 1997). 
It strongly suggests that each bacterium or archaeon has a 
system for maintaining organism-specific GC content and 
genomic signature.

Differences in GC contents between host genome DNA 

and horizontally transferred DNA regions

Genome size and GC content are weakly correlated in 
bacteria and archaea (Bentley and Parkhill, 2004; Musto et 
al., 2006; Mitchell, 2007; Suzuki et al., 2008; Guo et al., 2009; 
Nishida, 2012). The genomes of obligate host-associated 
bacteria are short and low GC content (Moran, 2002; 
Klasson and Andersson, 2004; McCutcheon and Moran, 
2012), with exception of Candidatus Hodgkinia cicadicola 
(McCutcheon et al., 2009; Van Leuven and McCutcheon, 
2012). In addition, horizontally transferred DNA, plasmid 
DNA, and virus DNA have lower GC content than host 
chromosome DNAs do (Rocha and Danchin, 2002). Most 
of the differences in GC content between plasmids and 
their host chromosomes are of less than 10% (Nishida, 
2012), suggesting that host organisms cannot maintain and 
regulate plasmids with very different GC content from their 
own. If bacteria and archaea maintain lower GC content 
for horizontally transferred regions, this maintenance will 
compete with their amelioration of GC content to match the 
GC content of the host genome (Lawrence and Ochman, 
1997).
 Interestingly, bacteria and archaea have not acquired 
DNAs with a GC content higher than the GC content of their 
own genome. Bacterial and archaeal genomes with high 
AT content are protected from attacks by most viruses. On 
the other hand, it is difficult for those organisms to use any 
plasmids. The genome sizes of obligate host-associated 
bacteria are decreasing (for example, Oshima and Nishida, 
2008). However, the genome size reduction is not limited 
in obligate host-associated bacteria (Nilsson et al., 2005). 
There is a general bias among bacteria toward genomic 
deletions rather than insertions (Mira et al., 2001). Plasmids 
play an important role in additional gene gain uptake into 
chromosomes (Davison, 1999; Harrison and Brockhurst, 
2012). It is possible that obligate host-associated bacteria 
do not need additional gene uptake. It may therefore be 
hypothesized that these bacteria maintain a genome with 
low GC content as a virus resistance system.

GC content and nucleoid-associated proteins

Nucleoid-associated proteins are related not only to 
nucleoid structures but also to gene regulation (Dillon and 
Dorman, 2010). The heat-stable (or histone-like) nucleoid-
structural (H-NS) protein in Salmonella enterica binds DNA 
regions with low GC content rather than the remaining 
chromosomal DNA and inhibits expression of the genes 
contained in those regions, to which horizontally transferred 
DNA fragments locate (Lucchini et al., 2006; Navarre et al., 
2006). Similar functions for nucleoid-associated proteins 
have been found in other bacteria (Castang et al., 2008; 
Gordon et al., 2010; Smits and Grossman, 2010; Yun et al., 

2010). These gene-silencing systems depend on the fact 
that horizontally transferred DNAs have lower GC content 
than host chromosome DNAs do (Rocha and Danchin, 
2002).
 This gene-repression system involving nucleoid-
associated proteins is widespread amongst bacteria and 
archaea, suggesting that the nucleoid-associated proteins 
may bind to DNA regions with different GC content between 
different bacterial or archaeal species. For example, in 
the Symbiobacterium thermophilus genome with high GC 
content (69%), transposase genes, markers of transposable 
genetic elements, are more frequently found in regions 
with lower GC content (less than 65% GC content) than 
in the remaining chromosomal DNA (Nishida and Yun, 
2011). Interestingly, nucleoid-associated protein genes are 
distributed not only throughout bacterial chromosomes but 
also within plasmids, suggesting that plasmids have carried 
these genes (Yun et al., 2010; Takeda et al., 2011).
 Although nucleoid-associated proteins have different 
structures, they share the same function (Gordon et al., 
2011). Interestingly, core histones, which are structurally 
different from bacterial nucleoid-associated proteins, 
prefer AT-rich DNA to GC-rich DNA. This DNA sequence 
preference plays an important role in nucleosome formation 
(Segal et al., 2006; Segal and Widom, 2009; Valouev et al., 
2011; Nishida et al., 2012b). The interactions between DNA 
sequence preferences and nucleoid-associated proteins 
may have played an important role in global regulations 
of genes among Bacteria, Archaea, and Eukarya during 
evolution.
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