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Abstract 

Streptococcus pneumoniae (Spn) and Streptococcus pyogenes (Spy) cause 

many invasive and noninvasive diseases responsible for high morbidity and 

mortality worldwide. Safe, efficacious and affordable vaccines could have a 

significant, positive impact on the global infectious disease burden. Since the 

implementation of pneumococcal vaccine in the 1980s, the incidence of Spn 

infection has decreased significantly. Still so, these currently used multivalent 

polysaccharides and conjugated pneumococcal vaccines have some limitations. 

For Spy, there are even no vaccines available yet. There is an urgent need of new 

vaccines against Spn and Spy. Encouragingly, with the hard work of many 

investigators worldwide, a number of new vaccines candidates are developed 

with promising results. Of them, many have already entered the clinical trial stage. 

This review will describe the current status of Spn and Spy vaccine development, 

with particular focus on protein-based strategy.    
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Introduction 

Human beings can be infected by many streptococcal species that are called 

pathogenic streptococci. Among them, Streptococcus pneumoniae (Spn) and 

Streptococcus pyogenes (also known as Group A streptococci, GAS) are major 

causes of many invasive and noninvasive diseases responsible for high morbidity 

and mortality worldwide. For these infectious diseases, safe and effective 

vaccines are the best way to prevent infections. In this review, first we would like 

to briefly summarize the weaknesses of current licensed serotype-specific Spn 

vaccines, then discuss recent progress in the development of pneumococcal and 

GAS vaccines, and share our opinions on vaccinal strategies to overcome Spn- 

and GAS-caused diseases in different situations. 

 

1. Spn Vaccine 

As a Gram-positive diplococcus and a part of commensal flora in the upper 

respiratory tract in human, Spn opportunistically results in various invasive and 

non-invasive diseases including meningitis, bacteremia, pneumonia, otitis media, 

sinusitis, etc(Centers for Disease Control and Prevention, 2015). Known to be the 

leading cause of bacterial pneumonia in children under the age of 5 (O'Brien et 

al., 2009; WHO, 2016), Spn is also a huge disease burden of the elderly mainly 

by causing community-acquired pneumonia (Drijkoningen and Rohde, 2014), 

posing a great threat on the health of humans (Bridy-Pappas et al., 2005) and 

raising a global economic concern (Boccalini et al., 2017; De Graeve and Beutels, 

2004; Huang et al., 2011; Porchia et al., 2017). A World Health Organization 

(WHO) report showed that pneumonia accounts for 16% of all deaths of children 

under 5 years old, killing 920,136 children in 2015(WHO, 2016). Moreover, drug-

resistance has been observed in Spn over decades worldwide (Cherazard et al., 
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2017). Recently, WHO released a list of bacteria for which new antibiotics are 

urgently needed, and Spn made its mark (WHO, 2017). Since vaccines (including 

pneumococcal conjugate vaccines, PCVs) have a good reputation for solving the 

antimicrobial resistance problem (Laxminarayan et al., 2013; Laxminarayan et al., 

2016; Lipsitch and Siber, 2016), the needs of Spn vaccines are strongly 

addressed. 

 

Given that the encapsulated, instead of non-capsulated, pneumococcus accounts 

for Spn-related diseases (Centers for Disease Control and Prevention, 2015), 

scientists focused on pneumococcal capsule polysaccharides (CPs), with which 

Spn is typed due to their immunological distinction, providing the basis of existing 

pneumococcal vaccines (Bogaert et al., 2004b; Smit et al., 1977)(Figure 1). 

 

 
Figure 1. Serotypes contained in existing Spn vaccines. Among the over 90 serotypes of Spn, 24 

were chosen to develop pneumococcal vaccines including one polysaccharide type (PPSV23) and 

three polysaccharide conjugate types (PCV7, PCV10 and PCV13) (WHO Publication, 2012). 
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Albeit with their great success in preventing serotype covered Spn diseases, 

serotype-based vaccines have several limitations, addressing the needs of 

improvement on their designing, research and development of alternative 

strategies such as protein-based vaccine.  

 

1.1 Limitations of existing Spn vaccines 

The limitations of current available pneumococcal vaccines were summarized in 

Figure 2, and each was briefly introduced as following. 

 
Figure 2. Limitations of current available pneumococcal vaccines. 

 

1.1.1 Poor immunogenicity in children younger than 2   

Licensed in 1983, PPSV23, containing 23 serotypes responsible for 85-90% 

invasive pneumococcal diseases (IPD) in the U.S, served well as being effective 

to protect against 56% diseases caused by serotype-covered Spn (Shapiro et al., 

1991). However, this vaccine failed to elicit an immunogenic response in children 

under the age of 2, as it requires a T-cell-independent immunity of B cells 

(Heilmann, 1990), which is lacking in those younger than 2. As a result, vaccines 

with capsular polysaccharide conjugated to a protein carrier, diphtheria toxin 

(CRM197), were developed. 
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1.1.2 Limited coverage of serotypes, less inclusive design in terms of 

epidemiological differences and less economically friendly 

This is an inherent disadvantage of a CPs-based vaccine, as its protection against 

pneumococcal infection is serotype-specific, which means that among the almost 

100 types CPs of Spn, those included in current vaccines covered less than 1/3 

out of all serotypes potentially leading to diseases (Figure 1). In addition, the 

distribution of prevalent strains varied epidemiologically in region, age and 

medical condition (Hausdorff et al., 2005) while it is technically irrational to wrap 

all CPs antigens in a single dose. Combined with the intrinsic need of increasing 

numbers of serotypes by PCVs, current vaccine manufacturing production made 

cost an issue of concern (Hanage, 2008; Josefsberg and Buckland, 2012; Ray, 

2002), especially for developing countries.   

 

1.1.3 Serotype replacement and poor performance on AOM-controlling 

Serotype replacement, a phenomenon that vaccine-excluded serotypes 

(including drug-resistant strains) become more dominant than the pre-vaccination 

period, emerged after the administration of PCVs (Kaur et al., 2016; Miller et al., 

2011), and is primarily attributed by reducing the carriage of strains which the 

serotypes were included in the vaccines. The interference on the asymptomatic 

carriage of respiratory tract commensal could also influence human health by 

breaking the equilibrium of the microbiota (Man et al., 2017). Moreover, the 

administration of CPs vaccines shows an undesirable effect on Spn-causing 

acute otitis media (AOM) (Jambo et al., 2010), which is partially thought to be the 

outcome of the replacement by other organisms such as Staphylococcus aureus 

(SA) (Fortanier et al., 2014). 
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1.2 Alternative strategies for the research and development of 

pneumococcal vaccine 

Designing an effective pneumococcal vaccine largely depends on a better 

understanding of structures of Spn and how each component works as a whole 

during the interplay within the host (Kadioglu et al., 2008). In particular, protein-

based pneumococcal vaccines have long been receiving attention (Daniels et al., 

2016; Pichichero et al., 2016; Principi and Esposito, 2018) and are thought to be 

the most promising tactics with making up for the shortfalls of existing vaccines. 

In addition, some adjuvants such as pFL (a dendritic cell-targeting DNA-based 

adjuvant) showed potency in mucosal immunity enhancement, providing a new 

strategy to boost vaccinal function (Kataoka et al., 2017). Moreover, whole cell 

vaccines (WCVs), live attenuated or inactivated, have also been used as an 

alternative strategy by virtue of manufacturing convenience (Minor, 2015) and 

presenting a great number of antigens at once (Moffitt and Malley, 2011). Finally, 

modifications or adaptions of current CPs conjugate vaccines have been made 

by using conserved pneumococcal proteins as carriers (Table 2) to achieve 

WHO/GAVI target product profile (Moffitt and Malley, 2011). 

 

1.2.1 Pneumococcal protein-based vaccine 

1.2.1.1 Promising pneumococcal proteins utilized in vaccinal research and 

development 

Due to their pathogenesis and antigenic characteristics, over 10 proteins (Table 

1) of pneumococcus have been employed in many alternative strategies on 

vaccinal research and development (Rigden et al., 2003).  
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Phosphorylcholine (ChoP), a sort of bacterial adhesin, constitutes lipoteichoic 

acids and cell wall teichoic acids of Spn (Cundell et al., 1995), and is strongly 

associated with colonization in the upper respiratory tract (Hammerschmidt, 2006). 

A group of proteins(Table 1), such as PspA, PspC, PcpA and LytA, being non-

covalently anchored to ChoP, can bind to receptors on the epithelial cells of the 

host (Bergmann and Hammerschmidt, 2006).  

 

PspA is expressed by all clinical pneumococcal isolates (Khan and Jan, 2017). 

By interfering the binding of C-reactive protein to phosphocholine, PspA inhibits 

complement-mediated opsonization (Mukerji et al., 2012), which in turn assists 

the immune evasion of Spn. Moreover, as a lactoferrin-binding protein, PspA can 

also protect Spn from killing by apolactoferrin (Shaper et al., 2004). PspC is 

another well-studied protein, also known as choline binding protein A (CbpA) as 

was found to be the major component of CBPs (Rosenow et al., 1997); or referred 

to as secretory pneumococcal surface protein A (SpsA) as binding to the 

ectodomain of polymeric immunoglobulin (Ig) receptor transporting secretory IgA 

on host respiratory epithelial cells, aiding to bacterial colonization and invasion 

(Dave et al., 2004; Zhang et al., 2000). PspC can also promote pneumococcal 

colonization by binding to C4b-binding protein, an inhibitor of the classical 

pathway (Dieudonne-Vatran et al., 2009). Moreover, PspC has been reported to 

inhibit C3b formation via binding to the heparin-binding FH domain of complement 

factor H (Cao et al., 2011; Dave et al., 2004), protecting Spn from complement-

mediated opsonization (Quin et al., 2005). Existing on nearly all pathogenic 

pneumococci, PcpA is considered one of the potential candidate antigens for 

pneumococcal vaccine. To date, the ligand of PcpA is uncertain, while a study 

showed that CodY, a global nutritional repressor in bacteria, can activate PcpA, 

(1) Choline-binding proteins (CBPs) Phosphorylcholine (ChoP), a sort of bacterial adhesin, constitutes lipoteichoic 

acids and cell wall teichoic acids of Spn (Cundell et al., 1995), and is strongly 

associated with colonization in the upper respiratory tract (Hammerschmidt, 2006). 

A group of proteins(Table 1), such as PspA, PspC, PcpA and LytA, being non-

covalently anchored to ChoP, can bind to receptors on the epithelial cells of the 

host (Bergmann and Hammerschmidt, 2006).  

 

PspA is expressed by all clinical pneumococcal isolates (Khan and Jan, 2017). 

By interfering the binding of C-reactive protein to phosphocholine, PspA inhibits 

complement-mediated opsonization (Mukerji et al., 2012), which in turn assists 

the immune evasion of Spn. Moreover, as a lactoferrin-binding protein, PspA can 

also protect Spn from killing by apolactoferrin (Shaper et al., 2004). PspC is 

another well-studied protein, also known as choline binding protein A (CbpA) as 

was found to be the major component of CBPs (Rosenow et al., 1997); or referred 

to as secretory pneumococcal surface protein A (SpsA) as binding to the 

ectodomain of polymeric immunoglobulin (Ig) receptor transporting secretory IgA 

on host respiratory epithelial cells, aiding to bacterial colonization and invasion 

(Dave et al., 2004; Zhang et al., 2000). PspC can also promote pneumococcal 

colonization by binding to C4b-binding protein, an inhibitor of the classical 

pathway (Dieudonne-Vatran et al., 2009). Moreover, PspC has been reported to 

inhibit C3b formation via binding to the heparin-binding FH domain of complement 

factor H (Cao et al., 2011; Dave et al., 2004), protecting Spn from complement-

mediated opsonization (Quin et al., 2005). Existing on nearly all pathogenic 

pneumococci, PcpA is considered one of the potential candidate antigens for 

pneumococcal vaccine. To date, the ligand of PcpA is uncertain, while a study 

showed that CodY, a global nutritional repressor in bacteria, can activate PcpA, 
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favoring bacterial adaptation to nutrients, and regulating the adherence to 

nasopharyngeal and lung epithelial cells (Hendriksen et al., 2008; Khan et al., 

2012). Additionally, the expression of this protein is found to be inversely 

correlated to the concentration of manganese (Manzoor et al., 2015). LytA, also 

referred to as autolysin, is an enzyme cleaving the pneumococcal cell wall, 

promoting the release of pneumolysin (Ply) and other bacterial components such 

as peptidoglycan and teichoic acids (Mellroth et al., 2012; van der Poll and Opal, 

2009). Recently, it has also been reported to inhibit C3 convertase formation 

(Andre et al., 2017). 

 

(2) ATP-binding cassette transporter 

The ATP-binding cassette (ABC) transport system provides energy for binding 

and transporting the solute (mainly metal) through the cell membrane by ATP 

hydrolysis (Jedrzejas, 2001), and includes a group of proteins such as PsaA, PiaA 

and PiuA(Table 1). 

 

PsaA was thought to be a kind of adhesin due to its sequence homology to other 

adhesins of Spn(Sampson et al., 1994), but was shown by other studies that it is 

a lipoprotein of an ABC transport system, with the property of divalent metal-ion-

binding(Lawrence et al., 1998; McAllister et al., 2004) and manganese-

transporting(Dintilhac et al., 1997), preventing from oxidative stress(Kadioglu et 

al., 2008; Tseng et al., 2002). PiaA (pneumococcal ion acquisition A) and PiuA 

(pneumococcal ion uptake A) are two lipoprotein components of Spn for ion-

acquisition and uptake, which is associated with bacterial growth and virulence 

(Brown et al., 2001a; van der Poll and Opal, 2009). Immunization with PiaA and 

PiuA protected mice from systemic infection of Spn (Brown et al., 2001b). SP2108 
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and SP0148 are solute-binding components of ABC transport systems, 

specifically binding to aromatic amino acids and maltose (Paton and Ogunniyi, 

2011), respectively, enhancing bacterial growth and colonization (Shelburne et al., 

2008). In recent years, they have been considered as potential vaccinal 

candidates due to their high conservation and mucosal immunity-triggering (Paton 

and Ogunniyi, 2011). 

 

(3) LPXTG motif-binding proteins 

The most universal mechanism for Gram-positive bacteria to anchor a set of 

surface proteins is that sortase transpeptidase recognizes an amino-acid 

sequence, LPXTG, harbored on the surface of these proteins (including NanA, 

RrgA, RrgB and PrtA), and cleaves the precursor between threonine and glycine 

of the LPXTG motif (Kadioglu et al., 2008; Navarre and Schneewind, 1994). Most 

LPXTG-containing proteins are anchored by StrA (Table 1), a pneumococcal 

virulence factor, which has been found to play an important role in aiding bacterial 

colonization and pathogenesis (Paterson and Mitchell, 2006). 

 

(4) Neuraminidase 

Known for its pre-invasive property (Brittan et al., 2012), neuraminidase (NA), an 

enzyme expressed on all pneumococci, shows potential to be an ideal vaccine 

target. There are at least 3 forms of NA: NanA, NanB and NanC(Table 1), out of 

which NanA is the most essential and well-studied.  

 

NanA is encoded by all strains of Spn, and contains the LPXTG motif, covalently 

binding to the peptidoglycan (Camara et al., 1994). By cleaving the terminal sialic 

acid of glycoproteins of the epithelial cells in the host respiratory tract, NanA and 
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NanB expose more decoy receptors for Spn to bind, enhancing the pneumococcal 

attachment and invasion (Kadioglu et al., 2008). Recently, NanA was found to 

help pneumococcus escape the complement pathway in host (Andre et al., 2017). 

Research on the role of NanC in the pneumococcal pathogenesis is still lacking, 

though the finding that NanC is more commonly seen in isolates from 

cerebrospinal fluid than those from carriage suggested its tissue-specificity 

characteristic (Pettigrew et al., 2006). 

 

(5) Pili proteins 

Pili are strongly associated with pneumococcal adherence. There are 7 pilus-

encoding genes (rrgA, rrgB, rrgC, srtB, srtC, srtD, rlrA) on the pathogenic island. 

Of them, rrgA, rrgB and rrgC respectively encode the subunits of pneumococcal 

pili 1, RrgA, RrgB and RrgC (Telford et al., 2006), which are anchored on the 

cell surface with the help of sortase (LeMieux et al., 2006).  

 

RrgA has been found to act as the dominant adhesive element other than RrgB 

(Nelson et al., 2007), also known as pilus backbone (Gentile et al., 2011). RrgB 

is the most abundant subunit of pili 1 (Gentile et al., 2011), and has been 

reported to elicit a host inflammatory response (Gianfaldoni et al., 2007). Both 

RrgA and RrgB have been studied for vaccinal purposes for over a decade 

(LeMieux et al., 2006), while the structure and functional information of RrgC 

was rarely known until recent years after RrgC had been structurally described 

(Gianfaldoni et al., 2007), in which RrgC was found to bind the preformed pilus 

to the peptidoglycan with the catalytic activity of SrtA. 
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(6) Polyhistidine triad family

Polyhistidine triad (Pht) family includes a group of pneumococcal surface-

expressed proteins, PhtA, PhtB, PhtD and PhtE, which are well-conserved and 

contain a histidine triad motif, playing an important role of the attachment of Spn 

to respiratory epithelial cells (Plumptre et al., 2013). Moreover, Pht proteins are 

considered to regulate metal homeostasis, especially the zinc storage, providing 

ion for pneumococcal invasion during early stages (Godfroid et al., 2011). Of the 

four proteins, PhtD and PhtE are mostly studied due to their prevalence on 

97~100% Spn strains (Khan and Pichichero, 2012; Rioux et al., 2011).  

 

(7) Cholesterol-dependent cytolysin family 

Cholesterol-dependent cytolysin (CDC) is a family consisting of a group of 

proteins, such as pneumolysin (Ply), that lead to cell death by forming pores on 

cell membrane (Tilley et al., 2005). Ply, a transmembrane pore-forming oligomer, 

is a crucial pneumococcal virulence factor and expressed by all clinical isolates 

of Spn (Vernatter and Pirofski, 2013). Pneumococcal Ply can damage the host 

respiratory cells by binding to cholesterol-containing membranes, forming ring-

shaped pores (van Pee et al., 2016), reinforcing the invasion of Spn. Within the 

hosts, Ply is able to trigger an inflammatory response through interaction with Toll-

like receptors (TLRs) and activating NLRP3 inflammasomes (Vernatter and 

Pirofski, 2013), contributing to pneumococcal pathogenesis, including host-to-

host transmission (Zafar et al., 2017). As the original form of Ply is highly toxic, it 

has been genetically modified to keep the property of immunogenicity instead of 

antigenicity (dPly). The immunization with dPly on mice successfully induced 

serotype-independent protection against pneumococcal diseases and 

colonization (Alexander et al., 1994). 

 

Polyhistidine triad (Pht) family includes a group of pneumococcal surface-

expressed proteins, PhtA, PhtB, PhtD and PhtE, which are well-conserved and 

contain a histidine triad motif, playing an important role of the attachment of Spn 

to respiratory epithelial cells (Plumptre et al., 2013). Moreover, Pht proteins are 

considered to regulate metal homeostasis, especially the zinc storage, providing 

ion for pneumococcal invasion during early stages (Godfroid et al., 2011). Of the 

four proteins, PhtD and PhtE are mostly studied due to their prevalence on 

97~100% Spn strains (Khan and Pichichero, 2012; Rioux et al., 2011).  

 

(7) Cholesterol-dependent cytolysin family 

Cholesterol-dependent cytolysin (CDC) is a family consisting of a group of 

proteins, such as pneumolysin (Ply), that lead to cell death by forming pores on 

cell membrane (Tilley et al., 2005). Ply, a transmembrane pore-forming oligomer, 

is a crucial pneumococcal virulence factor and expressed by all clinical isolates 

of Spn (Vernatter and Pirofski, 2013). Pneumococcal Ply can damage the host 

respiratory cells by binding to cholesterol-containing membranes, forming ring-

shaped pores (van Pee et al., 2016), reinforcing the invasion of Spn. Within the 

hosts, Ply is able to trigger an inflammatory response through interaction with Toll-

like receptors (TLRs) and activating NLRP3 inflammasomes (Vernatter and 

Pirofski, 2013), contributing to pneumococcal pathogenesis, including host-to-

host transmission (Zafar et al., 2017). As the original form of Ply is highly toxic, it 

has been genetically modified to keep the property of immunogenicity instead of 

antigenicity (dPly). The immunization with dPly on mice successfully induced 

serotype-independent protection against pneumococcal diseases and 

colonization (Alexander et al., 1994). 
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Table 1. Pathogenesis-related proteins of Spn-potential targets for protein-based vaccine 

Location Protein family Representative(s) 

Cell-surface 

Choline-binding 

PspA 

PspC 

PcpA 

LytA 

LytB/C 

ATP-binding cassette (ABC) transporter 

PsaA 

PiaA 

PiuA 

SP2108 

SP0148 

LPXTG motif-binding StrA 

Neuraminidases 

NanA 

NanB 

NanC 

Pili 

RrgA 

RrgB 

RrgC 

Polyhistidine triad family 

PhtA 

PhtB 

PhtD 

PhtE 

From cell matrix to  

outside cell 
Cholesterol-dependent cytolysin (CDC) family 

dPly (Genetically 

modified) 

 

1.2.1.2 The forefront of Spn protein-based vaccines 

Monovalent vaccine mainly focused on PspA. As one of the most abundant 

surface proteins expressing on all pneumococci, PspA becomes one of the 

forefront antigens of candidate vaccine since its immunization can elicit broadly 

protective serotype-independent serum antibodies in both humans and mice, 

regardless of its immunogenic variants (McCool et al., 2003; Nabors et al., 2000). 

Due to the low sequence homology between PspA and human cardiac myosin, 
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PspA is presumed to cause an autoimmune response (Ginsburg et al., 2012), 

whereas no evident proof has yet been found to confirm this possibility. Hence, 

PspA is still undergoing a series of research into animal experiments and clinical 

trials (Converso et al., 2017b; Entwisle et al., 2017; Goulart et al., 2017) with an 

avoidance of the involvement of the homology sequence to human cardiac 

myosin. A recombinant PspA has been tested in adults in a phase I clinical trial 

and has proved to be both safe and highly immunogenic (Briles et al., 2000). Thus, 

cross-reactivity with human should be tested and filtered for a rationale vaccine 

development.  

 

In order to increase antibody-accessibility, vaccines involving multiple 

components have been springing out for decades (Moffitt and Malley, 2011) (Table 

2) and have been well-reviewed elsewhere (Darrieux et al., 2015; Kim et al., 

2017b; Odutola et al., 2017; Pichichero, 2017; Pichichero et al., 2016; Singh and 

Dutta, 2017). Among them, dPly, PhtD, PspA and PsaA are highly employed. Here 

we introduce two protein-based vaccines lately passed the clinical trial this year. 

ImmunoBiology Ltd. completed the phase I clinical trial on adults with PnuBioVax, 

a multi-valent recombinant vaccine, containing PspA, RrgA, RrgB, PsaA and dPly 

(Entwisle et al., 2017) (Table 2). This randomized clinical trial proved the safety 

and immunogenicity of PnuBioVax in all dosage levels, and more well-tolerant 

than its first investigation in humans where severe injection site reactions 

occurred. Presently, PnuBioVax is awaiting further tests on the pediatric 

population of whom the natural immunity is immature. In the same year, GSK 

tested the efficacy of PhiD-CV/dPly/PhtD-30, based on its well-tolerance showed 

in the first part study, on infants for a phase II clinical trial (Odutola et al., 2017) 

(Table 2). In this randomized, controlled, observer-blind trial, the nasopharyngeal 

Vaccine Development Wang et al

caister.com/cimb 657 Curr. Issues Mol. Biol. (2019) Vol. 32



carriage of Spn was particularly investigated, and the results showed that 

antibodies against PhtD and dPly were elicited by PhiD-CV/dPly/PhtD-30 without 

interfering the prevalence of pneumococcal carriage in the nasopharynx.  

 

There are numerous recently developed protein-based vaccines undergoing a 

series of preclinical research. Of them, quite a few focused on mucosal immunity, 

which we particularly discussed later. Here we introduce research on adjuvant for 

pneumococcal vaccine development conducted by Cibelly Goulart et al. earlier 

this year, who used BCG as an adjuvant to deliver an infusion protein, rPspA-PdT, 

containing a fragment of PspA and a genetically detoxified Ply. In this prime-boost 

mice study, the administration of rBCG PspA-PdT followed by a boost of rPspA-

PdT provided favorable effects on anti-lethal pneumococcal disease, 

reinforcement of complement deposition to Spn and inhibition of cytolysis by Ply 

(Goulart et al., 2017). 

 

There are at least two facts that prompt scientists to look for a vaccine that 

boosting a strong mucosal immune response, i) Spn vaccines on the market are 

less effective against AOM which is the most common Spn-caused disease in 

children under the age of 5; ii) colonization on the mucosal surface is the primary 

step for Spn invasion. Since mucosal defense is critical in preventing AOM 

(Bergenfelz and Hakansson, 2017), recent years of experimental studies on 

pneumococcal vaccines illustrated a mucosal immunity-oriented trend, with the 

employment of adjuvant-assistance, pneumococcal surface proteins, whole cell 

mutants, etc. PspA, PhtD, PcpA, PlyD1 and PotD have been selected to develop 

vaccines focusing on mucosal immunity (Converso et al., 2017a; Kuipers et al., 

2017; Xu et al., 2017). PPrV, a trivalent protein vaccine containing PhtD, PcpA 
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and PlyD1, was shown to successfully elicit both serum and mucosal antibodies 

(IgG) that protect infant mice from pneumococcal bacteremia and AOM with the 

challenge of heterotypic strains (Xu et al., 2017). In another mice study, 

immunization with recombinant PotD can decrease the nasopharyngeal 

colonization by inducing immune response including production of IL-17 

(Converso et al., 2017a). Additionally, mucosal immunity can be employed by 

other strategies. Similar to other adjuvants such as BCG, as mentioned above, 

dendritic cell-targeting DNA-based nasal adjuvants have shown their potential in 

immune response enhancement, especially for mucosal immunity promotion 

(Kataoka et al., 2017). Furthermore, innate and adaptive IL-17 responses in mice 

can be achieved by using γ-irradiated RX1 LytA/PdT and attenuated SPY1 strain 

of Spn, respectively (Babb et al., 2016; Gao et al., 2016). 

 

1.2.2 WCVs 

There are at least two prominent advantages of using whole cells of the specific 

organism as vaccine: cost-effectiveness and broad-coverage of antigens (Minor, 

2015). WCVs are classified as the live attenuated and the inactivated. To date, 

two types of WCVs for Spn have been under clinical trial stage. An avirulent 

Salmonella Typhi strain was used as a vector to delivery PspA for enhancing 

immune responses in mice with high efficiency (Wang et al., 2010), promising 

results from this study drove further investigations of its potential use in humans. 

A few years later, 09-RASV-Sp-01, attenuated recombinant Salmonella Typhi 

vectors (RASV) expressing PspA, was used for a phase I dose-escalation trial to 

test its safety and immunogenicity (Frey et al., 2013) (Table 2). In this study, three 

RASV vaccines synthesizing PspA-RX1 antigen were employed to immunize 

adults, and the results proved that all three RASV pneumococcal vaccines were 
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safe and well-tolerated, but with limited immunogenicity which could be a result 

from pre-existing immunity. Another pneumococcal WCV is an inactivated non-

encapsulated whole cell vaccine, RX1 LytA/PdT, which was employed in a phase 

I clinical trial on adults, and showed safety, well-tolerance, and immunogenicity 

with high level of IgG antibodies against Ply and PspA (Alderson et al., 2014) 

(Table 2). 

 

Preclinical efforts have also been made these years. Eun-Hye Kim et al. 

successfully constructed Spn pep27 mutant (EHpep27), a live attenuated vaccine 

with deletion of pneumococcal virulent gene, pep27 (Kim et al., 2012). Mice were 

intranasally immunized with EHpep27 at various dose levels, in which no virulent 

effect was detected, IgG antibody was elicited without the help of adjuvant, and 

serotype-independent protection against lethal pneumococcal challenge was 

achieved. EHpep27 was then tested for its immunogenicity and protection against 

non-typeable strains (Kim et al., 2016). In this study, EHpep27 showed a wide 

range of protection and long-lasting immunity, making itself a very potent vaccine 

candidate. 

 

Table 2. Alternative strategies for research and development of pneumococcal vaccines under 

clinical trial 

Vaccines Institute Status References 

Type Name (Components) 

Protein 

PspA Sanofi-Pasteur phase I 

complete 

(Darrieux et al., 

2015; Pichichero et 

al., 2016) 

PspA and PsaA Sanofi-Pasteur/CDC phase I 

complete 

(Darrieux et al., 

2015; Pichichero et 

al., 2016)  
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PhpA and PhtB GSK phase II 

complete 

(Pichichero, 2017; 

Pichichero et al., 

2016) 

IC47 (PsaA, PcsB and StkP) Valneva Austria 

GmbH/PATH 

phase I 

complete 

(Darrieux et al., 

2015; Kim et al., 

2017a; Pichichero et 

al., 2016)  

PhtD/PcpA and PlyD1 International Centre for 

Diarrhoeal Disease 

Research, 

Bangladesh/Sanofi-

Pasteur 

phase I 

complete 

(Darrieux et al., 

2015; Kim et al., 

2017a; Pichichero, 

2017; Pichichero et 

al., 2016)  

dPly/PhtD w/PHiD-CV  GSK phase II 

complete 

(Darrieux et al., 

2015) 

PhiD-CV/dPly/PhtD-30 GSK phase II 

complete 

(Odutola et al., 2017; 

Pichichero, 2017) 

w/DTPa-HBV-IPV/Hib GSK phase II 

complete 

(Darrieux et al., 

2015; Pichichero et 

al., 2016)  

SP0148,1912,2108 Genocea phase IIa 

complete 

(Pichichero, 2017; 

Pichichero et al., 

2016) 

PnuBioVax (PspA, RrgB, RrgA, 

PsaA and dPly) 

ImmunoBiology Ltd. phase I 

complete 

(Entwisle et al., 

2017) 

CPs-

protein 

conjugate 

V114 (1, 3, 4, 5, 6A, 6B, 7F, 9V, 

14, 18C, 19A, 19F, 22F, 23F and 

33F and CRM197 protein) 

Merck Sharp & Dohme 

Corp 

phase II 

complete 

(Kim et al., 2017a) 

V114 w/Alum (1, 3, 4, 5, 6A, 6B, 

7F, 9V, 14, 18C, 19A, 19F, 22F, 

23F and 33F and CRM197 

protein) 

Merck Sharp & Dohme 

Corp 

phase II 

complete 

(Kim et al., 2017a)  

PhtD/dPly w/or w/o PCV10 GSK phase I 

complete 

(Darrieux et al., 

2015; Pichichero, 

2017; Pichichero et 

al., 2016)  

PhtD/dPly/w/PCV10 GSK phase II 

complete 

(Darrieux et al., 

2015; Pichichero, 

2017; Pichichero et 

Vaccine Development Wang et al

caister.com/cimb 661 Curr. Issues Mol. Biol. (2019) Vol. 32



al., 2016)  

PHiD-CV w/PPV 23 (1, 4, 5, 6B, 

7F, 9V, 14, 18C, 19F, and 23F and 

non-typeable H.influenzae protein 

D conjugate vaccine) 

GSK phase III 

complete 

(Pichichero et al., 

2016) 

PHiD-CV (1, 4, 5, 6B, 7F, 9V, 14, 

18C, 19F, and 23F and non-

typeable H.influenzae protein D 

conjugate vaccine) 

GSK phase III 

complete 

(Darrieux et al., 

2015) 

Whole-cell 

RX1 LytA/ PdT (killed non-

encapsulated whole cell vaccine) 

Boston Children's 

Hospital Instituto 

Butantan/PATH 

phase I 

complete 

(Darrieux et al., 

2015; Kim et al., 

2017a; Pichichero, 

2017; Pichichero et 

al., 2016)  

 

09-RASV-Sp-01 (Attenuated 

Salmonella typhi expressing 

PspA) 

Arizona State 

University/Biodesign 

Institite 

phase I 

complete 

(Darrieux et al., 

2015; Kim et al., 

2017a) 

 

2. GAS Vaccine Development 

Gram positive bacteria GAS, which is responsible for substantial worldwide 

morbidity and mortality, can cause a wide range of invasive and noninvasive 

diseases, including pharyngitis, impetigo, necrotizing fasciitis (NF), and immune 

mediated diseases such as acute rheumatic fever (ARF), rheumatic heart disease 

(RHD) and acute post-streptococcal glomerulonephritis (APSGN). GAS can also 

cause toxin-mediated diseases including scarlet fever and streptococcal toxic 

shock syndrome (STSS) (Sims Sanyahumbi et al., 2016). Although GAS 

infections can be treated by one of the cheapest and oldest antibiotics known—

penicillin, the global burden of GAS disease is substantial, and most infections, 

especially those in severe cases, are in low- and middle-income countries (LMIC). 

There is an urgent need for a safe, efficacious and affordable GAS vaccine to 

reduce the prevalence and the sequelae caused by this organism.  
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2.1 Feasibility for GAS vaccine development 

A clear understanding of the mechanisms of protective immunity to GAS infection 

and identification of immune correlates of protection are essential for the rational 

design of a GAS vaccine. Although accurate protection mechanisms are needed 

to figure out with extra efforts, a large amount of serologic data from natural 

history studies and pre-clinical studies suggests good feasibility for GAS vaccine 

development and encourages investigators throwing themselves into this field. 

The phenomenon that peak incidence of GAS infections occurs in childhood and 

declines in adulthood indicates that natural infection with GAS would lead to a 

protective immunity. This is because of accumulation of protective bactericidal 

antibodies in serum following multiple GAS infections during childhood. According 

to the research of Lancefield, immunity against GAS infections has been believed 

to be type specific (Dale et al., 2016; Lancefield, 1959). Recently, a body of 

evidences indicate that mucosal immunity plays important roles in the protection 

against GAS infection, especially in the pharyngitis cases (Chen et al., 2016; 

Ghaffar et al., 2016; Loh et al., 2017; Marasini et al., 2017; Marasini et al., 2016; 

Mortensen et al., 2017; Schulze et al., 2017). These findings suggest that 

systemic IgG and local IgA are involved in the protection against GAS infection 

and provide implications in vaccine strategies.   

 

2.2 The challenges of GAS vaccine development 

Many investigators have been working on GAS vaccine development for more 

than 90 years, nevertheless, no licensed vaccines are currently available to 

prevent GAS infection (Dale et al., 2016; Excler and Kim, 2016; Gandhi et al., 

2017; Schodel et al., 2017). Vaccine development is impeded  for several reasons.
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2.2.1 The epidemiology of GAS is extremely complex.  

As mentioned previously, the presence of type-specific antibodies were 

responsible for protection against the homologous serotype of GAS infection. This 

made serotyping to be the first method to categorized different GAS strains, also 

known as “M typing”. This time-consuming method has been progressively 

replaced by “emm typing” which is based on PCR and sequencing of the 

hypervariable region of the M gene (Beall et al., 1996). This emm typing method 

is widely used in molecular epidemiology investigation of GAS currently and 

through this method, 223 emm types have been identified to date. The emm type 

distribution represents considerable variation at both the country and global 

regional level. Unfavourably for vaccine development, limited data on emm type 

distribution in LIMC is available and the distribution patterns are completely 

different between LIMC and industrialized countries. In industrialized countries, 

the most common circulating types are emm 1, 4, 6 and 12, but in LIMC the 

diversity of emm types is much greater and no particular emm type is highly 

dominant (Sims Sanyahumbi et al., 2016). This complexity makes vaccine 

development very difficult because it is hard to cover all the GAS strains, at least, 

most of them.  

 

2.2.2 There are some autoimmune epitopes in GAS and this makes the 

vaccine safety a major concern.  

GAS infection can cause autoimmune diseases such as acute rheumatic fever 

(ARF) (Karthikeyan and Guilherme, 2018), this fact implies GAS vaccines must 

be designed very meticulously and it does make great obstacles for investigators. 
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Lots of studies indicate both cross-reactive antibodies and T cells have roles in 

ARF pathogenesis (Cunningham, 2000; Tandon et al., 2013). Fortunately, the 

autoimmune epitopes were found mainly existing in the M protein, precisely 

speaking, in the B-repeats region of M protein. This led to the strategy using the 

full length of M protein as antigen in the vaccine design being abandoned.  

 

2.2.3 The socio-economy factor can influence GAS vaccine development. 

Most GAS infections occur in developing countries and some specific populations 

in industrialized countries. (Chang, 2012; Gandhi et al., 2017; Zuhlke et al., 2017). 

From the perspective of investment-return, this is very hard to attract biological 

companies to invest GAS vaccine development.  

 

2.2.4 The correlation of protection for GAS vaccine needs to be researched 

in-depth.   

Establishing a standardized immunoassay that correlates with immune protection 

is essential in vaccine development. However, despite decades of research, 

currently used immunoassays to assess antibodies in GAS research are ELISA 

and functional bactericidal assays. ELISA gives a purely quantitative 

measurement of antibodies which include non-functional antibodies. The latter 

protocol can measure functional antibodies, but whole human blood must be used 

and this makes it labor-intensive and inter-assay variability. Recently, to 

overcome these limitations, Lorenz and colleagues developed a high-throughput 

opsonophagocytic assay for the determination of functional antibody activity 

against GAS using bioluminescence (Lorenz et al., 2017). This assay is believed 

to replace the two methods currently used and to make clinical trials easier.    
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2.3 Current status of GAS Vaccine Candidates 

GAS vaccine development started in the early 1920s with whole heat-killed GAS, 

cell wall or M proteins (Dale et al., 2016). Although protective effectivity was 

observed, these relatively crude preparations had severe problems including 

reactogenicity caused by contaminating antigens, and risk of leading to ARF 

because of the autoimmune epitopes. With the advance in purification technology 

and understanding of the GAS related autoimmune mechanism, great progress 

has been made in GAS vaccine development. Many vaccine candidates have 

been developed to preclinical and clinical stages. Generally, these vaccine 

candidates can be classified into M protein based vaccines and other antigen 

based vaccines and summarized in Table 3.  

 

2.3.1 M protein based vaccines  

As a major surface-associated virulence factor and protective antigen, the M 

protein has been extensively researched for many years. The M protein is a 

coiled-coil protein consisting of A-C 3 domains. A-repeat/N-terminal domain is 

highly variable and used for emm typing; B-repeat domain contains autoimmune 

but not protective epitopes; C-repeat domain is highly conserved. Up to now, most 

notably promising vaccine candidates are based on the M protein. Early studies 

indicated antibodies against M protein could opsonize the homologous type 

strains and promote C3-mediated phagocytosis (Lancefield, 1962). The 

protective epitopes were found mainly existing in the N-terminal hypervariable 

region of M protein. These findings resulted in a vaccine design strategy that use 

only the N-terminal M peptides from different emm type strains in multivalent 

vaccines to devoid of potential autoepitopes (Dale et al., 2011).  
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2.3.1.1 Multivalent M protein based vaccines 

Just like multivalent pneumococcal vaccines, theoretically, multivalent GAS 

vaccines could also be developed using the N-terminal M peptides linked in 

tandem based on the emm typing epidemiological data. The first multivalent GAS 

vaccine using this strategy was reported by Dale et al. in 1999 (Dale, 1999), in 

which protective M protein peptides from serotypes 1,3,5,6,19, and 24 of GAS 

were selected to form a hexavalent vaccine. This vaccine evoked high titers of 

antibodies against all six serotypes of GAS included in the vaccine. In the 

subsequent phase I trial, the hexavalent vaccine showed good tolerance and 

immunogenicity in humans, which represents a critical step in the development of 

a multivalent vaccine using hybrid fusion protein (Kotloff et al., 2004). Shortly 

afterwards, the multivalent vaccine was expanded to a 26-valent vaccine (Hu et 

al., 2002; McNeil et al., 2005) and later to a 30-valent vaccine (Dale et al., 2011; 

Dale et al., 2013). Both vaccines underwent phase I clinical trials in human adult 

volunteers and were shown to be safe and immunogenic. Compared to the 26-

valent vaccine, the 30-valent vaccine has an increased coverage of circulating 

emm types worldwide, mainly in North America and Europe (Dale et al., 2011; 

Dale et al., 2013). Imperfectly, these two vaccines provide good coverage of 

circulating strains of GAS in industrialized countries but poor coverage in LIMC. 

A recent epidemiological study in Western Australia shows the new 30-valent M-

protein GAS vaccine’s potential coverage is 70% (Speers et al., 2017). 

Interestingly, cross-reactive immune responses were observed and raised new 

opportunities to optimize multivalent vaccines with broader coverage. This cross-

protection can be partly explained by the emm-cluster typing system which 

classifies the 223 emm types into 48 functional emm clusters (McMillan et al., 

2013). Given the cross-protection mechanism, the combination of selected emm 

Vaccine Development Wang et al

caister.com/cimb 667 Curr. Issues Mol. Biol. (2019) Vol. 32



types included in multivalent GAS vaccines could be further optimized to remove 

some redundant types within the same emm cluster and add some new cluster 

representative types which are absent in current multivalent vaccine candidates.   

 

2.3.1.2 Conserved region of M-protein based vaccines 

To overcome the imperfect coverage of multivalent vaccines, vaccines were 

designed using the highly conserved C-repeat portion of the M protein and 

believed to protect against all GAS strains. Bessen and colleagues used the entire 

C-terminal region of M protein conjugated to the mucosal adjuvant cholera toxin 

B subunit to construct a recombinant vaccine (Bessen and Fischetti, 1988). The 

results demonstrated that immune response evoked by conserved portions of M 

protein reduced GAS infection at the nasopharyngeal mucosa in the mouse model 

and highlighted the role of conserved region peptide-specific local mucosal Ig in 

controlling GAS colonization of the throat.   

 

However, low levels of antibodies to selected peptides were observed to bind to 

cleaved or denatured myosin (Vashishtha and Fischetti, 1993), thus raising safety 

concerns on this strategy. This led to define minimal epitopes for GAS vaccine 

design to eliminate the hidden danger.  

 

According to the minimal epitope strategy, P145 was identified in the C-repeat 

region of the M-protein exhibiting immunogenicity and no cross-reactive to human 

tissue (Pruksakorn et al., 1992). Furthermore, J8 and J14 vaccines were derived 

from P145 containing shorter single minimal B cell epitopes. J8 was a 28-mer 

synthetic peptide which contained a central 12 amino acids B cell epitope (J8i) 

with the flanking sequences derived from the yeast DNA binding protein GCN4 to 
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fold J8i as a helix (Relf et al., 1996). To enhance the immunogenicity of this poor 

immunogenic one-epitope peptide, J8 was conjugated to the diphtheria toxoid (DT) 

to form J8-DT (Batzloff et al., 2003). This vaccine was highly immunogenic and 

the induced opsonic IgG had significant protection following intraperitoneal GAS 

challenge (Batzloff et al., 2003; Pandey et al., 2009; Pandey et al., 2013). Virus-

like particles (VLPs) was used to carry J8 peptide as a GAS vaccine J8-VLPs. 

Results of the sublingual immunization indicated effective immune responses in 

both systemic and mucosal compartments. The saliva isolated from mice 

immunized with J8-VLPs demonstrated opsonizing activity against GAS in vitro. 

This suggests the vaccine’s potential prevention of pharyngitis (Seth et al., 2016). 

Furthermore, J8-DT has completed a double-blinded Phase I pilot trial with no 

adverse events and a good antibody response (Dale et al., 2016). Furthermore, 

J8 was also conjugated to CRM197 to form the J8-CRM197 vaccine and shown 

immunogenic in mice and non-human primates (Caro-Aguilar et al., 2013). 

Subsequently, vaccine efficacy was further improved by incorporation of SpyCEP 

(Pandey et al., 2017). An alternative strategy using rational sequence modification 

to improve immunogenicity of p145 was recently reported (Nordstrom et al., 2017). 

After modification, the peptide can elicit higher titer antibodies with significantly 

higher affinity.   

 

Another promising conserved M-protein based vaccine candidate is StreptInCor, 

which composed of 55 amino acid residues of the C-terminal region of the M5 

protein containing both T and B cell protective epitopes (Guilherme et al., 2011; 

Guilherme et al., 2006; Guilherme et al., 2009). A molecular epidemiology study 

in Sao Paulo, Brazil and in silico analysis of vaccine coverage capacity indicated 

that StreptInCor could provide 71.0 % coverage in this area with high diversity of 
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GAS strains (Freschi de Barros et al., 2015). Studies demonstrated that 

StreptInCor is effective against several GAS strains and can prevent infection 

without causing autoimmune reactions (De Amicis et al., 2014; Freschi de Barros 

et al., 2015; Guerino et al., 2011; Guilherme et al., 2011; Guilherme et al., 2013; 

Guilherme et al., 2009; Postol et al., 2013). Moving forward on the basis of these 

immunogenicity and safety data, this vaccine has entered into phase I of clinical 

trials (Steer et al., 2016).   

 

Table 3. Current status of promising GAS M protein-based vaccines 

Vaccine candidates Current status Significant findings References 

6-valent M protein-based 

vaccine 

completed phase I 

clinical trials 

Safe, immunogenic, elicits 

antibodies to all homologous 

serotypes.   

(Dale, 1999; Hall et al., 

2004; Kotloff et al., 2004) 

26-valent M protein-

based vaccine 

phase II clinical trials  Safe, immunogenic, elicits 

antibodies to all homologous 

serotypes; good coverage in 

industrialized countries but 

poor in LIMC. 

(McNeil et al., 2005) 

30-valent M protein-

based vaccine 

phase I clinical trials Safe, immunogenic, elicits 

antibodies to all homologous 

and some heterologous 

serotypes; better coverage 

than the 26-valent vaccine. 

(Dale et al., 2011; Dale et 

al., 2013) 

    

J8/J14/P145 phase I clinical trials Safe, immunogenic, elicits 

antibodies to different 

serotypes; no cross-reactive 

antibodies; vaccines were 

optimized based on this 

candidate to improve 

immunogenicity significantly. 

(Pandey et al., 2017) 

(Nordstrom et al., 2017) 

StreptInCor phase I clinical trials Safe, immunogenic, elicits 

antibodies to different 

serotypes; no cross-reactive 

(Freschi de Barros et al., 

2015; Guerino et al., 

2011; Guilherme et al., 
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antibodies.     

 

2011; Guilherme et al., 

2013; Postol et al., 2013) 

 

2.2.2 Non-M protein based vaccines 

Since multivalent vaccines cannot provide full coverage against all GAS strains, 

and that there are lessons of serotype replacement from the multivalent 

pneumococcal vaccines implementation, highly conserved non-M protein GAS 

antigens received more and more attention. Several promising candidates were 

discovered with some encouraging results, such as GAS carbohydrate, C5a 

peptidase (Park and Cleary, 2005; Shet et al., 2003), Streptococcal pyrogenic 

exotoxin B (extracellular cysteine protease) (Kapur et al., 1994), streptococcal 

fibronectin-binding proteins, Combo vaccine (composed of Streptolysin O, 

SpyCEP and Spy0269) (Bensi et al., 2012), Pili (T antigen) (Koller et al., 2010), 

Streptococcal Heme Binding Protein (Shp) (Zhang et al., 2017), M-related protein 

(Mrp) (Courtney et al., 2017), but none of these candidates had entered clinical 

trials to date. The status of these vaccine candidates is summarized in Table 4.  

 

Table 4. Current status of promising GAS non-M protein based vaccines 

Vaccine candidates 

(antigen) 

Current 

status 

Significant findings References 

GAS carbohydrate Preclinical 

studies  

Conjugated to tetanus toxoid can protect mice from 

GAS challenge; no cross-reactivity was observed. 

(Sabharwal et al., 

2006) 

GAS C5a peptidase 

(SCPA) 

Preclinical 

studies 

Highly conserved in all GAS serotypes; a virulence 

factor; not associated with autoimmune reactivity. 

(Park and Cleary, 

2005; Shet et al., 

2003) 

Fibronectin-Binding 

Protein 

Preclinical 

studies 

11 Fn-binding proteins were found, including protein 

F1 (PrtF1)/SfbI, protein F2 (PrtF2)/PFBP, FbaA 

(formerly Fba), FbaB, SfbII/serum opacity factor 

(SOF), SfbX, Fbp54, M1 protein, GAPDH/Plr, Shr and 

Scl1. These proteins have different coverage and 

(Courtney et al., 

2003; Kawabata et 

al., 2001; Schulze 

et al., 2006) 
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some can elicit protective immune response. 

spy0469, spy1228 

and spy1801 

Preclinical 

studies 

The antigens were tested for both antibody 

recognition and T cell responses in human adults and 

children; provide protection in a mice model. 

(Mortensen et al., 

2016) 

M-related protein 

(Mrp) 

  
 

Preclinical 

studies 

The antisera opsonized GAS strains representing 

each Mrp family; also opsonized emm types not 

covered by the 30-valent M protein–based vaccine 

and can be combinated into the 30-valent vaccine 

improve the efficacy. 

(Courtney et al., 

2017) 

Pili (T antigen) Preclinical 

studies 

Recombinant pilus proteins was shown to protect 

mice from GAS challenge; GAS FCT region displays 

considerable genetic diversity, with nine different FCT 

variants identified to date. 

(Koller et al., 2010) 

 

  
 

Combo vaccine 

(composed of 

Streptolysin O, 

SpyCEP and 

Spy0269) 

Preclinical 

studies 

Identified using 3 high throughput technologies; 

broad protection against a panel of four different GAS 

strains;  SpyCEP was conjugated to J8 to improve 

the J8 efficacy. 

(Bensi et al., 2012; 

Pandey et al., 

2017; Zingaretti et 

al., 2010) 

Streptococcal Heme 

Binding Protein 

(Shp) 

Preclinical 

studies 

Immunization elicited a robust IgG response, 

enhanced GAS clearance and reduced systemic 

dissemination. 

(Zhang et al., 

2017) 

   

3. Issues worth of consideration during vaccinal design for Spn and GAS 

3.1 Epidemiology--- essential parameter for both protein- and serotype-

based strategy 

The study of pneumococcal epidemiology is of particular importance because the 

efficacy varies by region, age and medical state of vaccinees. Pneumococcal 

proteins that are highly conserved and more widely distributed in human would 

be more likely to prevent Spn-related on a larger scale (Cornick et al., 2017). In 

addition, a recombinant multi-valent vaccine is recommended, preferably with 

adjuvants if needed. Similarly, overall and accurate epidemiological data is 

needed to optimize GAS vaccine design for better coverage and safety.  
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3.2 Whether Spn should be thoroughly eliminated is of discrete concern 

Spn is a member of microbial commensals in human nasopharynx. Although 

colonization of Spn is the key step of bacterial invasion (Bogaert et al., 2004a), 

the balance of the microbiota in the respiratory tract plays an important role of 

immunity enhancement (Man et al., 2017). The serotype replacement is seen as 

the emergence of vaccine-excluded serotypes which becomes dominant 

following the use of PCVs. The "replacement phenomenon" was also thought to 

be observed as inverse correlate with other bacteria such as SA (Reiss-Mandel 

and Regev-Yochay, 2016), whilst whether the replacement by SA is a result of 

PCVs administration remains controversial (Bergenfelz and Hakansson, 2017; 

Fortanier et al., 2014; Reiss-Mandel and Regev-Yochay, 2016). Overall, it is 

paramount that the impact on pneumococcal carriage should be taken into 

consideration during the assessment on the efficacy of a vaccine, of which the 

original intention is to protect hosts from diseases rather than leading to possible 

side effects by unnecessary overtreatment. Although mucosal immunity is the 

best way to "shut out" Spn, vaccines that keep the colonized pneumococci below 

a pathogenic inoculum is suggested. Thus, a rationale endpoint setting is 

suggested during the efficacy assessment. Additionally, selectively targeting 

disease-causing factors of Spn could also be able to take the interests of the 

whole into account (McDaniel and Swiatlo, 2016), so as to achieve the goal of no 

interference to the asymptomatic pneumococcal carriage in human respiratory 

tract. As such, using genomic approach for identifying potential microbial targets 

can provide a comprehensive view to support rationale design of the future 

pneumococcal vaccines (Wizemann et al., 2001). 
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3.3 Using a systematic approach to optimize GAS vaccine design

Neither the multivalent vaccine nor the vaccine candidate based on a single 

conserved antigen can provide perfect coverage for all the serotypes, and 

serotype replacement might be developed under the selective pressure of 

vaccines. This prompts the optimization of vaccine design to increase the 

coverage and decrease the potential risk such as autoimmune responses. With 

an increasing number of antigens being discovered, a systematic approach can 

be employed to combine several highly conserved, immunogenic and non-

autoimmune inducible antigen fragments to develop combination GAS vaccines 

which could potentially overcome the limitations of the current vaccine candidates. 

 

Conclusions 

As summarized in this review, there are a number of GAS vaccine candidates 

which have been proven to be promising. But the fact that must be faced is that 

there is no GAS vaccine currently on the market because of several impediments. 

This means there is no roadmap for GAS vaccine development. Unlike GAS, 

feasible Spn vaccines using novel tactics are much more fruitful, especially 

protein-based strategies which are considered the most prospective for 

developing next generation pneumococcal vaccines. As research moves along, 

the impediments are becoming largely solvable and the first GAS vaccine will 

come into being eventually. 
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