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Abstract 
The quantitative structure-activity relationship (QSAR) approach has been used in 
numerous chemical compounds as in silico computational assessment for a long 
time. Further, owing to the high-performance modeling of QSAR, machine 
learning methods have been developed and upgraded. Particularly, the three-
dimensional structure of chemical compounds has been gaining increasing 
attention owing to the representation of a large amount of information. However, 
only many of feature extraction is impossible to build models with the high-ability 
of the prediction. Thus, suitable extraction and effective selection of features are 
essential for models with excellent performance. Recently, the deep learning 
method has been employed to construct prediction models with very high 
performance using big data, especially, in the field of classification. Therefore, in 
this study, we developed a molecular image-based novel QSAR approach, called 
DeepSnap-Deep learning approach for designing high-performance models. In 
addition, this DeepSnap-Deep learning approach outperformed the conventional 
machine learnings when they are compared. Herein, we discuss the advantage 
and disadvantages of the machine learnings as well as the availability of the 
DeepSnap-Deep learning approach.  

Introduction 
Quantitative structure-activity relationship (QSAR) is a well-established in silico 
approach that can predict pharmacological and toxicological effects of chemical 
compounds with similar structures. This can be achieved by demonstrating linear 
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or nonlinear relationships between structural features of chemicals and their 
biological activities measured experimentally using chemical descriptors, 
representing values of characteristics of chemicals with the same basic skeleton 
(Muratov et al., 2020; Achary, 2020; Toropov and Toropova, 2020). Moreover, 
these descriptors are categorized from zero dimension (0D) to four dimension 
(4D) based on the compound space considered in the calculation (González-Díaz 
et al., 2007; Yap, 2011; Kurgan and Disfani, 2011; Comelli et al., 2014, Yuan et 
al., 2018; Schneideret al., 2019; Ginex et al., 2019; Tangadpalliwar et al., 2019). 
First, a 0D-molecular descriptor is a configuration descriptor that represents the 
molecular weight of the compound and the numbers of rotatable bonds as well as 
double or triple bonds, and a count descriptor that indicates the number of atoms 
and rings, as well as the total heavy atoms (Kramer and Gedeck, 2011; Damião et 
al., 2014). Secondly, a 1D-molecular descriptor is physical property value, such as 
the numbers of specific functional groups, partial fragment structures, hydrogen 
bond donor, and acceptor atoms, fingerprint that can be represented by the 
presence or absence of the partial structure, and various LogPs including AlogP, 
ClogP, MlogP, SlogP, XlogP, and so on (Moriguchi et al., 1992; Xue et al., 2000; 
Abreu et al., 2011; dos Reis et al., 2014; McDonagh et al., 2015). Third, a 2D-
molecular descriptor is a topological or connectivity index which is a quantitative 
variable that characterizes topological features as an invariant for a molecular 
graph, for example, the topological polar surface area indicating the polar part of 
the surface of the molecules, Wiener index showing the sum of the shortest 
distances between the atoms in the molecules, and the Balaban J index exhibiting 
the average total bond distance in the molecules (Prasanna et al., 2005; 
Prasanna and Doerksen, 2009; Poša, 2011). Fourth, a 3D-molecular descriptor is 
a geometrical descriptors that shows 3D information of molecules, such as 
molecular size, molecular structure, symmetry, and atomic distribution, for 
example, highest occupied molecular orbital (HOMO)/lowest unoccupied 
molecular orbital (LUMO ) energy levels calculated from quantum chemical 
calculations, and a weighted holistic invariant molecular (WHIM) descriptor that is 
an eigenvalue calculated from a molecular matrix corresponding to a molecular 
graph in which 3D-coordinates are weighted based on the characteristics of each 
atom (Chen, 2008; Uesawa and Mohri, 2012; Marunnan et al., 2017; Elrhayam 
and Elharfi, 2019). Fifth, a 4D-molecular descriptor is calculated through the 
interaction with other compounds, for example, the interaction energy resulting 
from molecular dynamics simulation (Kumar and Kulkarni, 2017, Ataide Martins et 
al., 2018; Ma et al., 2019). Since the affinity of chemical substances to protein 
enzymes and receptors strongly depends on intermolecular interactions, such as 
hydrogen bonding, electrostatic interactions, and hydrophobic interactions, it has 
been observed that the complementary positional relationship between the base 
groups of the chemicals and their binding site of the enzyme or receptor required 
for the interactions of chemical compounds is important (Yang et al., 2017; Kimani 
et al., 2018; Pan et al., 2019; Garcia et al., 2020). Therefore, besides molecular 
descriptors that show physiochemical properties related to intermolecular 
interactions, QSAR analysis in a 3D space that utilizes descriptors representing 
the 3D structure of chemical substances has been recently attracting research 
attention (Chen et al., 2020; Hadni and Elhallaoui, 2020; Kumar et al., 2020; Liu 
et al., 2020; Zhang et al., 2020). Additionally, prediction models in classical QSAR 
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are constructed using descriptors as explanatory variables. The objective 
variables have various types and strengths, namely reactivity and affinity, of 
different chemical substances, including hormones and inhibitors that maintain 
homeostasis of biological functions, ligands act on energy metabolism, and 
agonist/antagonist for vitamins involved in signal transduction (Hsu et al., 2014; 
Santos et al., 2017; Nagamani et al., 2018; Sakkiah et al., 2018; Agrawal et al., 
2019; Kato 2020). Moreover, these chemical substances are involved in a 
process called key event (KE), which explains an unexpected in this pathway, that 
induces the expression of physiological activity by interacting with target 
molecules, such as receptors (Bal-Price and Meek, 2017; Scotti et al., 2017; 
Brüggemann et at 2018; Ehlert, 2018; Naqvi et al., 2018). Further, the type of 
physiological activity depends on the type of target molecule, and the strength of 
the physiological activity is determined by the strength of interaction with the 
target molecule (Devidas and Ranawat, 2019). In particular, QSAR analysis can 
be employed to identify or assess the potential of chemical compounds in toxicity 
that is initiated by a molecular initiating event through the KE, finally causing an 
adverse outcome, in which numerous exogenous substances interfere with 
hormonal systems to produce a range of developmental, reproductive, neurologic, 
immune, or metabolic diseases (Vinken, 2016; Ciallella and Zhu, 2019; Schneider 
et al., 2019). 

In classical QSAR derived from a set of small molecules with similar target-
specific biological activity, using various descriptors related to the characteristic of 
physiological activity, mathematical correlations and patterns have been analyzed 
to date by applying multivariate analysis, multiple linear regression, partial least 
squares (PLS) regression, and so on (Stanton, 2012; Varmuza et al., 2013; 
Martinez-Lopez et al., 2017; Baskin II, 2018; Cruz et al., 2018; Nnadi et al., 2018). 
In these analyses, increasing the number of descriptors that are explanatory 
variables increases the coefficient of determination, R2, and improves the 
prediction accuracy. However, when there is a strong linear dependence among 
the explanatory variables, the regression coefficient increases, and the estimation 
of the partial regression coefficient becomes unstable (Venkatraman et al., 2004; 
Basak et al., 2006). Thus, the influence of each explanatory variable on the 
objective variable may be unclear, and reliability may decrease (multicollinearity). 
In addition, an orthogonal transformation that aggregates and uses explanatory 
variables with strong correlation is required by applying feature selection, that is, 
selecting appropriate subsets of explanatory variables and using them in 
regression equations, such as principal component regression, PLS regression, 
and regression with penalties, to bring partial regression coefficient values closer 
to zero, such as ridge, lasso, and elastic net regressions (Hemmateenejad and 
Yazdani, 2009; Eklund et al., 2014; Tsiliki et al., 2015; Al-Sha'er et al., 2016). In 
these cases, owing to the occurrence of bias in the estimation of the regression 
coefficient value and the aggregation of variables, the original effect of the 
explanatory variable may become unclear, and the predictability of the prediction 
result may deteriorate (Fearn et al., 2008). Furthermore, as a solution to the 
variable selection problems that combine variables among those that accurately 
explain the target variable of interest from numerous candidate explanatory 
variables, a variable specification method that specifies the optimal explanatory 
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variable is utilized based on scientific theory or knowledge (George, 2000). 
However, it is rare to specify the optimum explanatory variable in advance. 
Further, in the case of the best subset selection or round-robin method, in which 
analysis is performed by utilizing all the combinations of the explanatory 
variables, there are 2k− 1 combinations of k explanatory variables, resulting in a 
huge calculation cost (Noon et al., 2011; Saavedra et al., 2020). Additionally, 
based on the usefulness of each univariate regression coefficient, there are some 
sequential selection methods, which include forward−backward stepwise 
selection method, forward stepwise selection method, backward stepwise 
selection method, and backward−forward stepwise selection method, that 
sequentially increase or decrease the explanatory variables individually (Goodarzi 
et al., 2012; Fatima et al., 2018; Fatima et al., 2019; Hrynkiewicz et al., 2019; 
Fatima and Agarwal, 2020; McCann et al., 2020). However, the effect of 
unselected explanatory variables is not corrected, so to make variable selections, 
it is necessary to include technical and academic knowledge to the variable 
selection criteria.  

Machine learning 
Moreover, to confound complex factors that contain numerous explanatory 
variables and construct nonlinear predictive models, it is often difficult to perform 
accurate modeling using conventional statistical methods. However, machine 
learning that can learn large amounts of data and automatically build models to 
perform classification and regression is suitable (Idakwo et al., 2018; Achary, 
2020; Lin, et al., 2020; Muratov et al., 2020; Xiao et al., 2020; Yang et al., 2020). 
In machine learning algorithms, regularization to reduce extra features is 
internally performed so that the regression coefficient is stable. Furthermore, it is 
possible to reduce the data reading as well as the preprocessing and calculation 
costs, and by ameliorating the algorithm speed and clarifying the feature amount 
that has the most information, it is expected that the interpretation of the 
prediction result and the explanation can be improved. To date, machine learning 
algorithms, such as random forest (RF), support vector machine (SVM), eXtreme 
Gradient Boosting (Xgboost), Light Gradient Boosting Machine (LightGBM), 
Category Boosting (CATBoost), and neural network (NN), have been used to 
perform QSAR analysis (Zhang et al., 2018; Maltarollo et al., 2019; Sidorov et al. 
2019; Matsuzaka et al., 2020; Matsuzaka and Uesawa, 2019a, 2020). The RF is 
an ensemble learning method based on bagging in which many decision trees 
that divide a group by conditional branching are connected and learning is 
performed in parallel for each model (Ghosh et al., 2020). In the case of 
classification in RF, the majority is output; the average value is finally output in the 
case of regression. Explaining the output results is relatively easy, and the effect 
of overfitting, which is a character of decision trees, can be reduced. Moreover, 
noise in the input data can easily cause over-learning, which leads to a reduction 
in generalization performance and an increase in calculation cost for complex 
datasets. Besides, an SVM performs two-class classification by constructing a 
classification boundary to increase the margin, which is the distance between the 
support vectors, which are the learning data located near the classification 
boundary, and the boundary (Cho et al., 2019). Thus, the classification accuracy 
does not depend on the dimension increase of the feature amount, so the 
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parameters can be easily optimized. In addition, since the calculation cost 
increases based on the learning data size, it is difficult to apply it to large-scale 
data, and it is also difficult to optimize the discriminant function owing to multiple 
classes. Further, Xgboost is a classifier configured plurality of classifiers gradient 
by collecting boosting, which ensemble learning combining by the plurality of 
weak classifiers, and RF (Zopluoglu, 2019). When constructing a new weak 
learner in the Xgboost, the weight is reduced for the data correctly classified by 
the constructed weak learners, whereas the weight is increased for the data not 
correctly classified, whereby update the construction of the weak learner serially 
in sequence. As described above, since the model is designed by aggregating the 
weightings based on the accuracy, highly accurate modeling can be expected. 
Additionally, many parameters need to be tuned to improve accuracy. In boosting, 
the learning cost increases because the learning is performed in series. 
LightGBM is also an ensemble learning method that applies gradient boosting 
based on a decision tree algorithm, but this method adopts the "Leaf-wise" 
method, which when training a decision tree, it grows based on the leaf of the 
decision tree (Zhang et al., 2019). This method has a shorter training time than 
the "Level-wise" method, in which the level of the decision tree grows; it is 
expected to improve the prediction accuracy since the structure of the decision 
tree generated by the "Leaf-wise" method is more complicated than that of the " 
Level-wise" method. Besides, overfitting is likely to occur, whereby 
hyperparameter adjustment to avoid this issue becomes complicated. 
Furthermore, in conventional search for branching points in a decision tree, it was 
necessary to read all the data points; in LightGBM, the features of the training 
data are divided into classes and made into histograms, reducing the 
computational cost even for large-scale data. Additionally, Catboost is also an 
ensemble learning method that uses a gradient boosting decision tree, but 
preprocessing is unnecessary because it can absorb categorical variables, 
namely qualitative variables, internally and process them (Romagnoni et al., 
2019). Thus, it is expected that overfitting, such as target leakage, can be 
reduced by randomly selecting a dataset, repeating the calculation of statistics 
from the dataset, and calculating a substitute value. Moreover, the calculation 
cost is high, and it is difficult to output the prediction accuracy higher than the 
learning data. Furthermore, a simple perceptron, which is a type of NN, comprises 
two layers: input and output layers. A unit called neuron of the input data that 
corresponds to the type of explanatory variables is multiplied by a weight 
indicating a coupling strength, which is input to the output layer (Laudani et al., 
2015; Roudi and Taylor, 2015). The sum of the values in each output layer and 
the bias for adding the variation to the data are added and output by a step 
function, which is an activation function. When the input value is less than zero, 
the output value is always zero, while when the input value is greater than or 
equal to zero, the output value is always 1, and finally the result is output. In 
learning the NN, the correct answer rate can be expected to be improved through 
parameter optimization by repeatedly adjusting the weight and bias. Moreover, 
this simple perceptron can be applied to a linearly separable problem in which two 
sets in an N-dimensional space can be separated by (N −1)-dimensional space, 
but there was a problem in which non-linearly separable problems could not be 
handled (Van Calster et al., 2006; Martinetz et al., 2009). In the multi-layer 
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perceptron that adds a layer, also called intermediate layer or hidden layer, 
between the input and output layers based on the concept that complicated 
function approximation is possible by combining numerous simple neurons, it was 
possible to transform the nonlinear separation into a possible form. This was 
achieved by applying the activation function that performed the nonlinear 
transformation after performing the linear transformation in the intermediate layer. 
Furthermore, although the inability to update the coupling coefficient from the 
input layer to the intermediate layer was the cause of the nonlinear separation, 
the error backpropagation method corrects the weights of the intermediate and 
output layers based on the error between the output value from the output layer 
and the correct answer; this method further corrects the weight between the input 
and intermediate layers based on this corrected value that modified the entire NN 
each time, thereby enabling highly accurate nonlinear separation (Adigun and 
Kosko, 2019; Li, 2020; Ko and Lee, 2020). In a multi-layered NN, the process of 
reducing the error, which is the difference between the predicted and actual 
values, becomes complicated. Therefore, by applying the error backpropagation 
method and the stochastic gradient descent method, this problem can be avoided 
(Elfwing et al., 2015; Stromatias et al., 2017). In the case of a sigmoid function or 
its like, since there is a region where the amount of change called gradient in 
error is close to zero, the weight is hardly modified. The optimal solution was not 
obtained because all the gradients downstream from that region approach zero, 
and there was a problem (gradient disappearance problem) in which learning did 
not progress (Zhang, 2017). Besides, since the gradient of each layer is 
propagated by the product, it significantly disappears or increases (gradient 
explosion problem) as the number of layers increases, and the gradient of the NN 
becomes unstable (instability gradient problem) (Zhao et al., 2012; Sun et al., 
2020). Consequently, training error is significantly reduced in the error regarding 
the training data, but generalization error cannot be reduced in the error regarding 
the test data, resulting in overfitting. In addition, there are problems in which the 
true optimal solution cannot be derived because the system converges to a local 
optimal solution, which is a partial optimal solution (local solution problem), and 
the calculation cost increases (Fu et al., 2018). Therefore, by utilizing a stacked 
autoencoder that reduces the number of neurons in the intermediate layer to be 
smaller than that in the input/output layer and performs repeated dimension 
compression or feature extraction by extracting very important information and 
deleting the rest, a deep neural network (DNN) composed of a multi-layered 
structured by preliminarily estimating an optimal value (preliminary learning) for 
the initial value of the weight of the neural network through learning using the 
same data as the output has enabled deep learning (Bengio et al., 2013). 

Deep learning 
In conventional machine learning, the feature values of interest in the dataset 
were manually determined (feature extraction) based on knowledge and 
technology, and the model was designed by fitting the space (feature space) 
represented by the feature value into the data distribution. In deep learning, using 
a convolutional neural network (CNN), it has become possible to automate a 
series of processes of highly versatile feature extraction and model construction 
(Zhao et al., 2019; Heo et al., 2020). In addition, conventional machine learning 
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has made it possible to process large-scale labeled training data, but when 
building a complex model, there was a problem in which the relationship between 
data size and generalization performance eventually becomes a plateau. 
Moreover, in deep learning, it was demonstrated that the relationship between the 
data size and the generalization performance is proportionally related, thereby 
enabling high accuracy modeling from big data (Gao et al., 2020; Lee and Chen, 
2020). In addition, the learning result of this deep learning depends on the weight 
of the node, but it is difficult to theoretically interpret the accuracy or regularity of 
this result (black box problem) (Ishida et al., 2019; Leming et al., 2020). Further, 
to obtain a highly accurate result, there are still many unclear issues concerning 
the construction and learning method of the CNN. It is also relatively difficult to 
obtain large-scale labeled learning data with little noise. Therefore, in the case of 
image data, modeling with high accuracy was reported by employing feature 
extraction performed using CNN for a variant of the dataset with an increased 
amount of data, which were created by rotation, stretching, and so.  

DeepSnap-Deep learning method 
The performance of the deep learning method may depend on the quantity and 
quality of the input datasets used in training and prediction. However, the deep 
learning approach has not established the preparation of suitable input data of 
three-dimensional (3D)-chemical structures. Therefore, as a new QSAR analysis 
method based on the present deep learning, DeepSnap-Deep learning method 
was developed by Uesawa at the Meiji Pharmaceutical University in 2018 
(Uesawa, 2018). In this DeepSnap-Deep learning approach, the 3D-optimized 
molecular structures, which can be rotated at any arbitrary angle on the x-, y-, and 
z-axes, were photographed as a ball-and-stick model with different colors to 
represent the corresponding atoms to automatically input as much structural 
information as possible into the DL models. (Figure 1). Using this snapshot image 
as input data for deep learning, feature extraction through DNN and model 
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Figure 1. Representative images obtained by rotating the 3D structure in 180° increments on 
DeepSnap. The numbers below the images are the substance identification numbers (SID) provided in the 
PubChem database and increments of the viewing direction on the x-, y-, and z-axes. In addition, red, yellow, 
blue, white, and gray colors in the molecular structures indicate oxygen, sulfur, nitrogen, hydrogen, and carbon 
atoms, respectively. 
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construction are automatically performed (Figure 2). For example, when the 3D 
molecular structure is rotated in 45° increments on the x-, y-, and z-axes and 
photographed, a total of 512 images are captured for each molecule and saved in 
the portable network graphics (PNG) format. This allows for combining digital 
information regarding the 2D plane location of the atoms with pixel-level data 
representing the three primary colors (RGB). Therefore, when compared with the 
deep learning through DNN based on a 2D-graph structure, extraction of a larger 
amount of information regarding chemical structure can be expected. Moreover, 
this method can be used to predict the potential activity of many different 
chemicals to various receptors without the extraction of descriptors. In the 
process of drawing the 3D-chemical structure of this DeepSnap-Deep learning 
method, it is possible to adjust parameters, such as the atoms, color of atoms, 
bond radius, and pixel size (Matsuzaka and Uesawa, 2019b). Besides, by 
decreasing the drawing angle, the number of generated images per molecule can 
be increased, but no proportional and discontinuous relationship is observed 
between this number of generated images and the performance of the model. 
Additionally, in the DeepSnap-Deep learning method, a proportional relationship is 
observed between the number of generated images and the calculation cost. This 
demonstrated that the optimization of the number of generated images may 
minimize the calculation cost. In addition, the effects of protonation, stable 
structure selection in the 3D-process of the compound, and the background color 
of the generated image on model performance were also illustrated (Matsuzaka 
and Uesawa, 2019a,b, 2020). Further, when compared with the conventional 
machine learning methods, such as RF, Xgboost, LightGBM, Catboost, and NN, 
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Figure 2. A schematic of the DeepSnap-Deep learning procedure. 3D chemical structures generated by 
molecular operating environment (MOE) software from a simplified molecular-input line-entry system (SMILES) 
format are captured as image pictures on arbitrary angles on the x-, y-, and z-axes, and saved as portable 
network graphics (PNG) files. These obtained images were split into the following three datasets for the input 
to deep learning: training, validation, and test.
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that use molecular descriptors extracted through calculation software, Mordred 
(Moriwaki et al. 2018), it was observed that this DeepSnap-Deep learning method 
outperformed (Matsuzaka and Uesawa, 2019a,b, 2020; Matsuzaka et al. 2020). In 
this DeepSnap-Deep learning method, the classification performance was 
evaluated using information retrieved from a confusion matrix by cut-off points 
calculated with Youden index. Based on the sensitivity, which is a true positive 
rate identified as positive for all the positive samples including true and false 
positives, and the specificity, which is a true negative rate identified as negative 
for all the negative samples including true and false negatives, a confusion matrix 
regarding the predicted and experimentally defined labels was used to make the 
Receiver Operating Characteristic (ROC) curve and calculate the Area Under 
Curve (AUC), balanced accuracy, F value , and Matthews correlation coefficient. 
Utilizing proper statistical values can construct the prediction models with high 
performance. Thus, this DeepSnap-Deep learning method has the following 
advantages. First, the feature(s) in the molecular images can be automatically 
extracted by CNNs and can visualize the feature(s) by predicting the 
convolutional areas with NN. Second, high prediction performance can be 
expected as more detailed information of the chemical structure can be captured 
from different viewing directions along the x-, y-, and z-axes. Third, the 
determination and visualization of the conformer that is docked in the ligand-
binding domain of protein may reveal the critical conformation of chemicals and 
protein domains related to the biological activity. 

In the future, we hope that improvement and understanding of the interpretation 
and explanation of the prediction results from the DeepSnap-Deep learning 
method will yield modeling with high performance and the elucidation of the 
molecular mechanism exerted by chemical substances at the cellular, organ, and 
organism levels.  
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