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Abstract: Chemotherapy is the treatment of choice for gastric cancer, but the currently available
therapeutic drugs have limited efficacy. Studies have suggested that gastric cancer stem cells may
play a key role in drug resistance in chemotherapy. Therefore, new agents that selectively target
gastric cancer stem cells in gastric tumors are urgently required. Sirtuin-3 (SIRT3) is a deacetylase that
regulates mitochondrial metabolic homeostasis to maintain stemness in glioma stem cells. Targeting
the mitochondrial protein SIRT3 may provide a novel therapeutic option for gastric cancer treatment.
However, the mechanism by which stemness is regulated through SIRT3 inhibition in gastric cancer
remains unknown. We evaluated the stemness inhibition ability of the SIRT3 inhibitor 4′-bromo-
resveratrol (4-BR), an analog of resveratrol in human gastric cancer cells. Our results suggested that
4-BR inhibited gastric cancer cell stemness through the SIRT3-c-Jun N-terminal kinase pathway and
may aid in gastric cancer stem-cell–targeted therapy.
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1. Introduction

Gastric cancer is the most common cause of malignancy and cancer-related mortal-
ities worldwide [1]. Systemic chemotherapy with multiple drugs may be an effective
strategy for patients with recurrent gastric cancer. Numerous studies have reported that
chemotherapeutic resistance in gastric solid tumors results from genetic heterogeneity in
tumor cells. Studies have suggested that cancer stem cells (CSCs) contribute to chemother-
apy drug resistance [2]. CSCs are a subpopulation of tumor masses with the ability to
self-renew, maintain stemness, and cause cancer recurrence [3]. CSCs may be a novel target
for anticancer strategies and gastric cancer therapy in precision medicine [2].

CSCs in gastric cancer were first described in 2007 [4]. The most common way to iden-
tify gastric CSCs is through investigating the expression of cell surface markers, including
CD24 and LGR5. CD24 is a cell surface protein that is expressed in putative stem cells
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and is overexpressed in various malignant tumors. It was reported to stimulate metastasis
and trigger epithelial-to-mesenchymal transition through Notch1 signaling [5]. Leucine-
rich repeat-containing G-protein coupled Receptor 5 (LGR5) is overexpressed in stem cell
after Helicobacter pylori infection in the gastrointestinal tract [6], which is reported to be
able to initiate tumors [7,8], and has been defined as a gastric cancer stem cell marker re-
cently [9,10]. Nanog is a transcription factor widely expressed in human cancers [11–13]. It
drives self-renewal, metastasis, and chemoresistance [14,15]. The transcription factor Sox2
is involved in the maintenance of an undifferentiated cellular phenotype [16]. Its aberrant
expression in cancers often leads to increased chemotherapy resistance [17]. Oct-4 is also
a transcriptional factor to regulate pluripotency in the mammalian stem cell population.
It is upregulated in several cancers and promotes chemoresistance, metastasis, and recur-
rence [18–20]. Overexpression of these transcription factors, Nanog and Oct-4, promoted
the formation of tumor spheroids in vitro [21], and correlated to a poor prognosis of the
patient [22–24]. The other functional marker, aldehyde dehydrogenase 1 (ALDH1) is widely
used to characterize cancer stemness in many studies [25–27]. ALDH1 is a detoxifying
enzyme responsible for oxidation. Elevation of its activity may protect CSCs against cell
death caused by ROS [28]. Increased ALDH1 activity has been found in malignant cancer
cells, and served as an indicator for poor prognosis [29].

Sirtuin-3 (SIRT3) is a deacetylase in mitochondria. SIRT3 regulates the mitochon-
drial respiratory capacity and reduces production of reactive oxygen species, facilitating
adaptation to stress. In glioma stem cells, SIRT3 was reported to regulate glioma CSCs
with metabolic plasticity and maintain cancer stemness [30]. Its enzyme activity increases
chemoresistance. Inactivation of SIRT3 leads to metabolic alterations, loss of stemness,
and suppression of tumor formation by CSCs [31]. Ma et al. demonstrated that SIRT3
contributes to chemoresistance through mitochondrial metabolism reprograming and re-
active oxygen species downgeneration [32]. SIRT3 is associated with enhanced gastric
cancer risk and can thus be a potential prognostic marker [33]. However, the inhibition
of SIRT3 activity involved in gastric cancer stemness and chemoresistance has not been
thoroughly explored.

The resveratrol analog 4′-bromo-resveratrol (4-BR) has been reported to inhibit SIRT3
activity considerably [34] and suppress melanoma cell growth through mitochondrial
metabolic regulation [35]. We evaluated the effects of 4-BR on cancer stemness and chemore-
sistance inhibition in gastric cancer cells. We postulated that 4-BR would use the SIRT3-
mediated pathway to downregulate gastric cancer stemness and increase chemosensitivity.

2. Materials and Methods
2.1. Cell Culture and Reagents

Human gastric cancer cell lines MKN45 (DSMZ; ACC-409) and AGS (ATCC; CRL-1739)
were purchased from DSMZ (Braunschweig, Germany) and ATCC (Manassas, VA, USA),
respectively, and cultured using RPMI1640 (Gibco, Waltham, MA, USA) medium with
10% fetal bovine serum (Gibco, Waltham, MA, USA) under 5% CO2 at 37 ◦C. The 4-BR,
SP600125, and 5-fluorouracil (5-FU) (Sigma-Aldrich) were purchased from Sigma-Aldrich
(St. Louis, MO, USA).

2.2. Cell Viability Analysis

Human gastric cancer cells were seeded in 96-well dishes in quadruplicate at 6000
cells/well and cultured for 24 h before treatment. The cell viability of AGS or MKN45 was
evaluated with 5-FU (0.5 µM), 4-BR (25 µM), or a combination of 5-FU and 4-BR for 48 h.
Cell viability was analyzed using Cell Counting Kit-8 (Sigma–Aldrich, St. Louis, MO, USA),
and absorbance was measured at 450 nm by using a microplate reader.

2.3. Flow Cytometry Analysis

After treatment, the cells were washed with cold phosphate buffer saline and stained
with surface marker CD24 (BD Biosciences, San Jose, CA, USA) before being analyzed
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through flow cytometry. For the ALDH1 activity evaluation, the cells were stained using
the AldeRed ALDH Detection Assay kit (Sigma–Aldrich, St. Louis, MO, USA) and analyzed
through flow cytometry.

2.4. Western Blotting Analysis

The protein expressions of MKN45 were evaluated through Western blotting after 4-BR
(vehicle or 12.5 µM or 25 µM) or JNK inhibitor SP600125 (20 µM) treatment for 48 h. After
4-BR or SP600125 treatment, the human gastric cancer cells were washed with phosphate
buffer saline. The total protein samples were extracted, and protein concentrations were
measured using Bio-Rad Bradford Protein Assays (Bio-Rad, Hercules, CA, USA). Total
protein was separated using sodium dodecyl sulfate–polyacrylamide gel electrophoresis
and transferred onto polyvinylidene fluoride membranes. The membranes were incubated
with blocking buffer (Bio-Rad, Hercules, CA, USA) for 30 min at room temperature and with
primary antibodies: SOX2 (1:1000; #23064; Cell Signaling, Beverly, MA, USA), OCT4(1:1000;
#2750; Cell Signaling, Beverly, MA, USA), β-actin (1:5000; #4967; Cell Signaling, Beverly,
MA, USA), Notch1 (1:1000; #3608; Cell signaling, Beverly, MA, USA), Sirt3(1:1000; #5490;
Cell Signaling, Beverly, MA, USA), JNK (1:1000; #9252; Cell Signaling, Beverly, MA, USA),
and p-JNK (1:1000; #9251; Cell Signaling, Beverly, MA, USA) at 4 ◦C overnight. After
washing with phosphate-buffered saline with Tween, the membranes were developed
using an enhanced chemiluminescence detection system under MultiGel-21 system (TOP
BIO Co., New Taipei City, Taiwan) after incubation with secondary antibodies.

2.5. Soft Agar Colony Formation Analysis

For the colony formation assay, MKN45 cells (2.5 × 104 cells) were seeded in 6-well
dishes and coated in 0.3% agar. After 2 weeks, the colonies were stained with 0.005% crystal
violet, and the area was measured using ImageJ.

2.6. Sphere Formation Analysis

For the sphere formation analysis, MKN45 cells (1 × 104 cells) were seeded in a
NanoCulture Plate (SCIVAX, Kanagawa, Japan) and incubated with 4-BR for 7 days; the
spheres were evaluated using ImageJ.

2.7. Statistical Analysis

All data were analyzed using GraphPad Prism (version 8). All graphs in the fig-
ures present mean ± standard deviations. For statistical analysis, Student’s t test was
performed to compare data between the two groups. Statistical significance was set at
p < 0.05. Statistical results were labeled in each figure as follows: * p < 0.05, ** p < 0.01, and
*** p < 0.001.

3. Results
3.1. 4-BR Reduced Gastric Cancer Viability and Cancer Stemness Capacity

To evaluate the cytotoxicity of 4-BR to human gastric cancer cells, the viability of
MKN45 and AGS was evaluated through a Cell Counting Kit 8 assay after the treatment of
various doses of 4-BR. The results indicated that 4-BR inhibited gastric cancer growth in
a dose-dependent manner (Figure 1B–D). The stemness properties of the human gastric
cancer cells were then evaluated using a sphere formation and colony formation assay after
the low-cytotoxicity 4-BR (25 µM) treatment. The results indicated that 4-BR inhibited the
stemness properties of the MKN45 cells (Figure 1E,F).
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Figure 1. 4-BR reduced cell viability and stemness capacity in human gastric cancer cells. (A)
Structural formula of 4-BR. (B) MKN45 and AGS were treated with various doses of 4-BR (0, 12.5, 25,
50, and 100 µM) for 24, (C) 48, or (D) 72 h. (E) The 4-BR treatment limited the sphere formation ability
in MKN45 (with light microscopy at ×40). (F) The 4-BR treatment suppressed the colony formation
ability in MKN45 (with light microscopy at ×10). Data are presented as the means ± standard error;
n ≥ 3 independent experiments. Student’s t test: ** p < 0.01, *** p < 0.001.

3.2. 4-BR Downregulated Stemness-Related Protein Expressions in Human Gastric Cancer Cells

To evaluate stemness-related protein expression, CD24, LGR5, and ALDH1 activity
was measured through flow cytometry (Figure 2), and HO-1, SOX2, Nanog, and Notch1
were evaluated using Western blotting (Figure 3A,B) after a 4-BR (25 µM) treatment for 48 h
in MKN45. Activated c-Jun N-terminal kinase (JNK) has been reported to regulate Notch1
expression and the self-renewal of stem cells [36,37]. The results indicated that the 4-BR
treatment reduced the expression of markers related to gastric cancer stemness, including
Notch, resulting in JNK dephosphorylation and reduced downstream signaling.
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Figure 2. Gastric cancer stemness-related markers were inhibited by 4-BR. (A) CD24 expression was
analyzed through flow cytometry after 4-BR (12.5 or 25 µM) treatment for 48 h in MKN45 and AGS cells.
(B) Quantification of CD24 expression. (C) LGR5 expression was analyzed through flow cytometry after
4-BR (12.5 or 25 µM) treatment for 48 h in MKN45 and AGS cells. (D) Quantification of LGR5 expression.
(E) ALDH1+ cells were analyzed through flow cytometry after 4-BR (12.5 or 25 µM) treatment in MKN45
and AGS cells. (F) Quantification of ALDH1+ cells. Data are presented as means± standard error; n≥ 3
independent experiments. Student’s t test: * p < 0.05, ** p < 0.01, *** p < 0.001.
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Figure 3. 4-BR inhibited cancer stemness-related transcriptional factors in human gastric cancer
cells. (A) HO-1, cancer stemness-related transcriptional factor proteins, (B) Notch1, (C) and JNK
phosphorylation in MKN45 cells were analyzed through Western blotting after 4-BR treatment in
MKN45 cells for 48 h. (D) Quantification of protein expressions. Data are presented as means ±
standard error; n ≥ 3 independent experiments. Student’s t test: * p < 0.05, ** p < 0.01, *** p < 0.001.

3.3. 4-BR Contributed to JNK-Mediated Gastric Cancer Stemness Inhibition and Increased
Chemosensitivity to 5-FU

To determine whether 4-BR contributed to JNK-mediated gastric cancer stemness
inhibition, we used the JNK inhibitor SP600125 to evaluate the stemness-related transcrip-
tional factor expression of the human gastric cancer cells. The data revealed (Figure 4)
that inhibition of JNK activity reduced SOX2, Oct4, and Notch1 expression. To determine
whether 4-BR increased chemosensitivity after the inhibition of cancer stemness properties,
combined treatment with 4-BR and the clinical chemotherapy drug 5-FU was administered
to MKN45 and AGS cells. The results indicated that 4-BR reduced human gastric cancer cell
chemoresistance, suggesting that 4-BR increases chemosensitivity by inhibiting stemness
and the SIRT3-JNK pathway.
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Figure 4. 4-BR contributes to the inhibition of JNK-mediated cancer stemness and increases chemosen-
sitivity to 5-FU. (A) JNK inhibitor SP600125 (SP; 20 µM) inhibited stemness transcriptional factors and
Notch1 in MKN45. (B) Quantification of stemness transcriptional factors and Notch1 after JNK inhibitor
treatment for 48 h. (C) The cell viability of AGS or MKN45 was evaluated through a Cell Counting Kit
assay with 5-FU (0.5 µM), 4-BR (25 µM), or a combination of 5-FU and 4-BR. (D) Role of 4-BR in gastric
cancer stemness inhibition. Data are presented as means± standard error; n≥ 3 independent experiments.
Student’s t test: * p < 0.05, ** p < 0.01, *** p < 0.001, ## p < 0.01, ### p < 0.001.

4. Discussion

CSCs are the distinct subpopulation of cells which have the ability to self-renew and
are not destroyed by conventional treatments. The failure of anticancer treatment has been
attributed to tumor recurrence due to CSCs [38]. Targeting CSCs may prevent or delay
tumor development, metastasis chemoresistance, and recurrence. Therefore, it is important
to target CSC specific markers for CSCs elimination.

Knockdown of SIRT3 decreases the expression of antioxidant enzymes [39]. Suppres-
sion of HO-1 through the knockdown of antioxidant transcription factor nuclear factor
increases the sensitivity of 5-FU-resistant pancreatic cancer cells [40]. SIRT3 promotes cellu-
lar proliferation and may be involved in 5-FU-induced autophagy, epithelial-mesenchymal
transition, and chemoresistance in gastric cancer cells [41]. Our results revealed that in-
activation of SIRT3 by 4-BR reduced the expression of the antioxidant enzyme HO-1 and
stemness-related proteins and increased chemosensitivity to 5-FU. Aberrant SIRT activity
affects metastatic and oncogenic progression. Studies have proposed SIRT3 as a prognos-
tic predictor for breast cancer and ovarian cancer [42–44]. SIRT3 may provide a novel
therapeutic option for gastric cancer. Synthetic SIRT inhibitors are crucial, and 4-BR is a
promising candidate for clinical therapeutic use.

Notch1 signaling is a major cell communication system during organ development
and plays a crucial role in oncogenesis and stem regulation of cells [45,46]. It also frequently
upregulates in aggressive tumors [47]. The Notch1 pathway controls cancer stem cell
proliferation and fate [48–50]. Notch1 inhibition may possess potential benefits in clinical
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cancer therapy [51]. JNKs are members of the mitogen-activated protein kinase family.
Activated JNKs catalyze the phosphorylation of numerous substrates, resulting in the
alteration of gene expression programs [36]. Suppression of JNK signaling results in the
downregulation of Notch1, which is crucial to regulating self-renewal and determining the
fate of mammary stem cells [36,37]. Our data demonstrated that 4-BR and the JNK inhibitor
inhibited Notch1 expression, suggesting that 4-BR may contribute to JNK-mediated gastric
cancer stemness regulation.

In this study, we performed a functional and molecular characterization of human
gastric CSCs, and demonstrated the cancer stemness inhibition by 4-BR by using different
functional approaches and stem-cell-related markers characterization, including stem
cell surface markers, CD24 and LGR5; and stemness-related transcription factors, SOX2,
NANOG, Oct-4, and detoxifying enzyme, ALDH1. Our results provided evidence that 4-BR
not only inhibited gastric CSC stemness markers through SIRT3-JNK-mediated pathway
but also enhanced chemosensitivity to 5-FU.

There is an increasing awareness of the importance of natural products for human
health. Dietary phytochemicals are the candidates for anticancer research, and represent an
important strategy to target CSCs. Natural products are a source of bioactive compounds.
The 4-BR analog, resveratrol, which is primarily found in red grape, was also reported
to enhance the chemotherapeutic response and reverse the cancer stemness in several
cancer types [52,53]. Unlike 4-BR modulating SIRT3, resveratrol stimulates SIRT1 activity
and expression to inhibit cancer stemness [54]. The different cancer stemness inhibition
mechanisms of these natural compounds may be introduced into potential strategies in
personal precision medicine in cancer therapy.

5. Conclusions

We demonstrated the ability of 4-BR to reduce cancer stemness and chemoresistance
in gastric cancer cells. 4-BR may utilize the SIRT3-JNK-mediated pathway to downregulate
gastric cancer stemness and increase chemosensitivity. 4-BR is a promising candidate for
use in clinical chemotherapy.
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