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Abstract: Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by senile plaques
formed by amyloid-beta (Aβ) extracellularly and neurofibrillary tangles (NFTs) formed by hyper-
phosphorylated tau protein intracellularly. Apart from these two features, insulin deficiency and
insulin resistance have also been observed in AD brains. Thus, AD has also been referred to as
type 3 diabetes by some of the scientists in this field. Insulin plays a pivotal role in learning and
memory and is involved in regulating tau phosphorylation though the PI3KAkt-GSK3b signaling
pathway. Interestingly, recent studies revealed that in AD brains the microglia transformed into a
disease-associated microglia (DAM) status in a TREM2-dependent manner to restrain the toxicity
of Aβ and propagation of tau. This also correlated with PI3K-Akt signaling through the adaptor
of TREM2. Whether insulin has any effect on microglia activation in AD pathology is unclear so
far. However, many studies demonstrated that diabetes increased the risk of AD. In this review,
we summarize the main strategies for curing AD, including lowering the level of Aβ, suppressing the
phosphorylation of tau, the ablation and/or repopulation of microglia, and especially the supply of insulin.
We also propose that attention should be given to the influences of insulin on microglia in AD.
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1. Introduction

Alzheimer’s disease (AD) is known as the most common form of dementia that
occurs with aging. The histopathological characteristics of AD are defined by extracellular
deposits of amyloid-beta (Aβ) and intracellular neurofibrillary tangles (NFTs) formed by
hyperphosphorylated tau protein. Apparently, the initiation of AD is closely associated
with the extent of Aβ production, as evidenced by familial AD cases. Those who carry the
mutated amyloid precursor protein (APP) and/or presenilin-1/2 (PS1/2, the components of
γ-secretase) tend to acquire an accumulation of Aβ plaques in the brain and probably suffer
AD earlier. However, the degree of dementia is more strongly correlated with NFT burden than
Aβ senile plaques [1], raising the notion that AD may be a secondary tau pathology.

In 2018, a research framework was suggested by the National Institute on Aging
and Alzheimer’s disease Association (NIA-AA) to unify the pathological definition and
staging of AD based on biological construct [2]. Those biomarkers are grouped into
Aβ (A), pathologic tau (T), and neurodegeneration (N). Given that 30–40% of cognitively
unimpaired elderly persons have abnormal amyloid biomarkers at autopsy, this proportion
of amyloid-positive individuals will perfectly match the number of diagnosed AD patients
15–20 years later. This framework advised that Aβ alone with a normal pathologic tau
biomarker (A+T−) can be assigned the label “Alzheimer’s pathologic change”, which refers
to the earlier phases of the “Alzheimer’s continuum”. However, it may not be sufficient to
cause tauopathy and neurodegeneration that finally lead to cognitive disorder. In addition,
when the biomarker of both Aβ and tauopathy are present (A+T+), the term “Alzheimer’s
disease” can be used to delegate the later phases of the “Alzheimer’s continuum”.

Curr. Issues Mol. Biol. 2022, 44, 6172–6188. https://doi.org/10.3390/cimb44120421 https://www.mdpi.com/journal/cimb

https://doi.org/10.3390/cimb44120421
https://doi.org/10.3390/cimb44120421
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cimb
https://www.mdpi.com
https://orcid.org/0000-0002-6431-3650
https://orcid.org/0000-0002-2584-0634
https://doi.org/10.3390/cimb44120421
https://www.mdpi.com/journal/cimb
https://www.mdpi.com/article/10.3390/cimb44120421?type=check_update&version=1


Curr. Issues Mol. Biol. 2022, 44 6173

However, the overloading of Aβ is speculated to be a causal factor for AD onset in
the “Aβ cascade” hypothesis [3]. The subsequent tauopathy and neurodegeneration is
considered to be more correlated with dementia and other clinical features of AD. Therefore,
in considering the “Alzheimer’s continuum”, different therapeutic strategies have been
adopted in AD treatment. For example, preventing the overproduction of Aβ and/or
accelerating the clearance of Aβ, avoiding the hyperphosphorylation of tau, restraining
the spread of tau, and arresting the activation microglia. Here, we review the relationship
between Aβ accumulation, the insulin signaling pathway, tau hyperphosphorylation, and
microglia activation (Figure 1), and we summarize different strategies for AD treatment,
particularly the intermediary role of insulin signaling in AD pathology.
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Figure 1. The probable linkage between Aβ, insulin signaling, tau pathology, and microglia
activation in AD. The constant production of Aβ needs to be eliminated by microglia through endocytosis
and/or by the drainage of micro-vessels, as evidenced by the association of Aβ plaques with microglia
and micro-vessels in AD brain. However, the overloading of Aβ leads to the impairment of insulin sensing
in the brain–blood barrier and parenchyma, which triggers the phosphorylation of tau and subsequently
perturbs mitochondria and insulin secretion. The tau pathology could be propagated via the synapse and
exosome in a microglia-dependent manner, eventually leading to neural atrophy.

2. Restricting the Overload of Aβ

APP is a type I transmembrane protein, which is involved in regulating synaptic
functions [4] and iron export [5]. APP has three common alternative splicing variants
in the brain, and the size of each is 695, 751, and 770 amino acids, respectively. APP695
lacks the Kunitz-type protease inhibitor sequence in its ectodomain and is one of the most
abundant proteins that is expressed by neurons. APP751 and APP770 are mainly expressed
in glial cells. The cleavage of APP by α-secretase is a non-amyloidogenic pathway which
produces a soluble APPα fragment and an 83-amino-acid C-terminal fragment (CTF-83).
The CTF83 is further decomposed by γ-secretase, releasing a small P3 fragment into the
extracellular space and the APP intracellular domain (AICD) into the cytoplasm. In contrast,
the cleavage of APP by β-secretase is an amyloidogenic process, which releases a soluble
APPβ ectodomain and a 99-amino-acid C-terminal fragment (CTF99). The cleavage of
CTF99 by γ-secretase generates an Aβ and AICD fragment as well [6].
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Mutations in the APP, ADAM10 (a disintegrin and metalloproteinase domain 10), and
PS1/2 genes are closely related to the onset of AD. The APP gene is located on chromosome 21;
not only do the mutations within and immediately flanking the Aβ region of APP cause an
aggressive form of FAD, but an individual with trisomy 21 (Down’s syndrome) harboring
three copies of APP also exhibits abundant diffuse Aβ plaques in their brain and invariably
develops neuropathologically typical AD. In addition, mutations that attenuate secretase ac-
tivity of ADAM10, the main α-secretase accounting for APP proteolysis, are associated with
elevated Aβ levels [7,8]. Moreover, PS1 and PS2 are critical components of the γ-secretase
complex. Missense mutations in PS1/PS2 are found to result in an increasing production of
Aβ-42/43 peptides, which are an aggregation-prone species and lead to profound Aβ deposi-
tion [9]. The toxicity of soluble Aβ oligomer has been observed in various cellular processes.
For example, Aβ oligomers could directly interact with membranes to form pores for ions and
disrupt the proper permeability of the membranes [10], leading to the depolarization of neurons
and microglia [11]. The soluble oligomers could also inhibit LTP through excessive activating
of NR2B containing the NMDA receptor [12] (Figure 2) and perturb the synaptic plasticity
through mitochondria [13,14]. In addition, Aβ oligomers could induce inflammation through
receptor-mediated mechanisms [15] and impair the integrity of the blood–brain barrier [16].

Many efforts have been made to reduce the production of Aβ for the purpose of curing
AD. For example, synthetic retinoid acitretin, which enhances the expression of ADAM10,
the most effective α-secretase for APP, showed beneficial effects in AD patients [17]. In addi-
tion, an ADAM10 endocytosis inhibitor has been developed recently, which can upregulate
the postsynaptic localization and activity of ADAM10 to increase the non-amyloidogenic
process of APP [18]. On the other hand, the inhibitor of the β-site amyloid precursor protein
cleaving enzyme-1 (BACE1), namely, β-secretase, has also been tested in the clinic. For example,
verubecestat and lanabecestat could reduce the level of Aβ in cerebrospinal fluid by 63% to 81%.
However, this had no beneficial effect on cognition, other than adverse side effects including
sleep disturbance, weight loss, and decreased appetite [19,20]. Moreover, small molecule in-
hibitors of γ-secretase, such as semagacestat and avagacestat, have been found to successfully
reduce Aβ production in AD transgenic mice and patients. Nevertheless, due to the nonselective
inhibitory effects on both APP and Notch, they failed in clinical trials [21].

In the brain, ADAM10 is mainly localized in the synapse. Knockout of ADAM10 results in
embryonic death in E9. BACE1 is usually found in the plasma membrane in the endosome and
Golgi apparatus, functioning at an optimal pH of 4.5. Knockout of BACE1 leads to diabetes and
hypomyelination. In contrast to ADAM10 and BACE1, γ-secretase is a transmembrane protein
complex containing presenilin, nicastrin, anterior pharynx defective 1 (Aph-1), and presenilin
enhancer-2 (Pen-2). The catalytic site of γ-secretase is located in the PS subunit, which has
two homologs in mammalian cells, PS1 and PS2. Knockout of PS1 results in Notch signaling
deficiency and is lethal for mice. PS2 knockout mice are normal. Moreover, both nicastrin and
Aph-1 knockout mice have shown embryonic lethality. ADAM10, BACE1, and γ-secretase
have many other substrates apart from APP, including the components of the Notch signaling
pathway and other transmembrane proteins such as Neuroligin 1 and Neuregulin. BACE1
also plays an important role in insulin signaling conduction by the cleavage of the insulin
receptor, reducing its expression on the cell surface [22,23]. Therefore, it is not surprising that
the inhibition of BACE1 and γ-secretase result in undesirable outcomes.

Another way of lowering the accumulation of Aβ is to accelerate its clearance in
the brain, either through the phagocytosis of microglia or the drainage of micro-vessels.
It has been clearly demonstrated that the dysfunction of Aβ clearance is associated with
the late onset of AD. For example, the rate of transport across the blood–brain barrier
and perivascular drainage to the systemic circulation was slowed down for the Aβ Dutch
variant compared with Aβ WT. Additionally, the APOE4 variant—the strongest genetic risk
factor for AD except for mutations in APP and PS1/2—could affect the endocytosis process
and increase Aβ accumulation at the blood–brain barrier (BBB) [24]. In addition, the cell
surface triggering receptor expressed on myeloid cells 2 (TREM2), which is expressed
in microglial, is found to be upregulated by Aβ and facilitates the phagocytosis of Aβ.
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The R47H mutation in TREM2, which is also one of the strongest genetic risk factors
for AD, perturbed the activation of microglia and led to Aβ deposition [25]. Moreover,
phospholipase D3 (PLD3), bridging integrator 1 (BIN1), phosphatidylinositol-binding
clathrin assembly protein (PICALM) [26], and sortilin-related receptor (SORL1)—the next
strongest genetic risk factors of AD after APOE4 and TREM2—were also involved in
regulating the endocytosis process [27,28]. This indicates that the clearance of Aβ is an
important way of curing AD. To improve the acceleration of Aβ, the monoclonal antibody
of Aβ oligomers, such as aducanumab, has been clinically used [29]. It significantly reduced
the level of Aβ plaque accumulation. However, the side effects, such as encephaledema,
were also observed in a large portion of the subjects [30], implying that the elimination of
Aβ through antibody-mediated endocytosis is feasible in AD, but researchers should be
cautious of overactivating microglia and impairing endothelial cells in BBB.
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Figure 2. The deductive role of insulin signaling in AD pathology. Aβ induced calcium influx and
the activation of calpain, which further triggered the activation of CDK5 through the cleavage of
p35 [31]. CDK5 induced phosphorylation of tau, triggered the detachment of tau from microtubules,
and in turn perturbed the function of mitochondria. On the other hand, the microglia switch
homeostasis to DAM status in an APOE- and TREM2-dependent manner to protect neurons from
the damaging effect of Aβ overproduction [32,33]. TREM2 functions via its adaptor DAP12 (DNAX
activation protein of 12 kDa) and PI3K-Akt pathway, which is also regulated by insulin signaling.
Thus, insulin can inhibit tau phosphorylation by suppressing GSK3β in neurons and help microglia
to maintain the proper DAM status via PI3K-Akt pathway.
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3. Rescuing Insulin Signaling

In 2005, Eric et al., proposed to use “Type 3 diabetes” to reflect the abnormal changes in
the levels of insulin, insulin-like growth factor (IGF) I/II, insulin receptor (IR), and insulin
receptor substrate (IRS) in the brains of AD patients [34]. IR and IGF receptors were found
to be highly expressed in neuron and glial cells throughout the brain [35,36]. However,
more recently, single-cell transcriptomic analyses have indicated that the mRNA transcript
of IR is found in higher concentrations in endothelial cells in the brain [37]. The insulin-
induced activation of IR at the BBB was blunted in transgenic AD model mice [38,39].
Meanwhile, insulin deficiency was observed in mild cognitive impairment patients and
early-stage AD patients [40]. Importantly, it has also been demonstrated that Aβ has a
similar tertiary structure to insulin, leading to Aβ being a competitive inhibitor for insulin.
Aβ oligomers have been shown to inactivate IRS-1 and reduce its level [41], which in turn
abolishes the inhibitory activation of insulin on glycogen synthase kinase -3 (GSK-3β) and
further results in tau hyperphosphorylation [42].

Insulin comes from either synthesis de novo in the brain [43] or passing through
the blood–brain barrier (BBB) from the plasma to the brain via the capillary endothelial
cells by a selective, saturable, receptor-dependent mechanism [44,45]. By binding to the
IR and IGF receptors, insulin facilitates the phosphorylation of IRS and subsequently
activates phosphatidylinositol-3-kinase (PI3K) and AKT (protein kinase B, PKB). Thus,
the glucose transporter 4 (GLUT4) in cytosol is recruited onto the plasma membrane to
promote glucose uptake [46]. Insulin-induced transportation of GLUT4 plays an important
role in hippocampal-dependent memory [47]. The activation of AKT further regulates the
activity of the mammalian target of rapamycin (mTOR), GSK-3β, and cAMP-responsive
element-binding protein (CREB). The mTOR pathway regulates various cellular functions,
including glucose metabolism, mitochondrial oxidative respiration, and autophagy. Of note,
GSK-3β is involved in the phosphorylation of tau as well as energy metabolism. On the
other hand, IRS can also activate growth factor receptor-bound protein 2 (Grb2) which in
turn stimulates SOS1 and Ras, Raf, and mitogen-activated protein kinases (MAPK) [48].
Interestingly, APOE is also involved in modulating PI3K/Akt signaling [49,50]. The APOE4
variant can reduce the levels of insulin receptor substrate-1 and PI3K, decrease Akt phos-
phorylation [51], and impair neuronal insulin signaling by trapping the insulin receptor in
the endosomes [52]. Moreover, the activation of TREM2 also modulated PI3K/Akt signal-
ing [53,54]. The mutation of TREM2, which is correlated with the onset of AD, impaired its
activity on PI3K-AKT-GSK3β through SYK [55]. The activation of microglia mediated by
TREM2 also regulated the phosphorylation of tau through GSK3β [56] (Figure 2).

AD patients showed lower CSF insulin levels, higher plasma insulin levels, and
reduced CSF/plasma insulin ratios compared to healthy controls [57]. It has been reported
that the insulin-degrading enzyme (IDE) level was reduced in the hippocampus of AD
patients; however, it was increased in the micro-vessels in AD with CAA [58]. IDE is able
to degrade both insulin and Aβ [59] as well as many other molecules with amyloidogenic
potential, such as glucagon, amylin, calcitonin, and atrial natriuretic peptide [58]. It has
also been observed that in mice lacking IDE the accumulation of endogenous brain soluble
Aβ was increased. In contrast, transgenic overexpression of IDE in neurons reduced the
brain soluble Aβ level and delayed amyloid plaque formation in APP transgenic mice.
In addition, the level of IDE in theAPOE4 carrier was reduced by approximately 50% [60],
indicating that the shortage of insulin in AD brain may enhance Aβ accumulation through
downregulating the IDE level. On the other hand, in the insulin knockout mice model, the
phosphorylation of tau was enhanced, thereby leading to the formation of NFTs [61]. Using
streptozotocin (STZ) to deplete insulin could also induce the tau pathology [62]. Insulin
receptor substrate 2 (IRS2) knockout could promote the phosphorylation of tau as well [63].
Collectively, this evidence consistently demonstrates that insulin signaling dysfunction and
abnormal insulin levels have a profound influence on AD pathology.

A previous study indicated that intranasal insulin administration was able to improve
memory in humans [64]. The verbal memory in AD and MCI subjects without the APOE4
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allele was improved 15 min after intranasal insulin 40 IU administration, and the plasma
insulin or glucose levels were not perturbed [65]. Another trial administrated a placebo or
20 IU or 40 IU of insulin detemir with a nasal drug delivery device to treat adults diagnosed
with MCI or mild to moderate AD. A 21-day treatment with 20 IU of insulin increased the
plasma concentration of the Aβ-40 without affecting the level of Aβ-42, resulting in an
increased Aβ 40/42 ratio [66]. The results also showed that 40 IU significantly improved
the verbal working memory and visuospatial working memory. However, these effects
were modulated by the APOE status. Insulin treatment reduced the insulin resistance in
APOE4 carriers but not in APOE4-negative ones [67]. Craft et al., also reported that regular
insulin treatment reduced the tau-p181/Aβ42 ratio in plasma and preserved the brain
volume [68]. The intranasal administration allowed insulin arriving in the CNS to bypass
the periphery and prevents the risks associated with hypoglycemia [69]. However, more
recently, in a randomized clinical trial of 289 adults with mild cognitive impairment or
AD, the intranasal insulin treatment showed no cognitive or functional benefits for the
patients [70], but the limitation in this study was that the device used for intranasal insulin
supply had not been tested before. Thus, further studies are still required to ascertain the
underling mechanism of how insulin supply may work for curing AD.

Insulin sensitizers that were used in treating type 2 diabetes also showed positive
effects for curing AD. The peroxisome proliferator-activated receptor (PPAR-γ) agonists
such as pioglitazone [71] and rosiglitazone [72] improved memory and stabilized plasma
Aβ42 concentrations. The administration of 10–30 mg/day of pioglitazone for 6 months to
AD patients accompanied with type 2 diabetes mellitus decreased fasting plasma insulin
levels. The administration of rosiglitazone 4 mg/day for a 6-month course improved the
delayed recall and selective attention of AD subjects. The plasma Aβ levels were not
increased with the progression of AD and declined compared with the control group which
received a placebo [72,73]. Another study accomplished by Risner et al., demonstrated
that 8 mg/day of rosiglitazone treatment for 24 weeks significantly improved the non-
APOE4-positive AD patients [74]. However, a phase 3 trial showed no effects on cognition,
regardless of APOE type [75]. The effects of antidiabetic drugs are also under evaluation in
AD therapy. In transgenic AD mice, metformin increased the IDE level [76] and prevented
amyloid plaque deposition and memory impairment [77]. A study on primary neurons from
wild-type mice showed that metformin induced the PP2A-dependent dephosphorylation of
tau [78]. Clinically, the use of metformin showed protective effects on brain volumes in non-
demented elderly individuals with diabetes [79]. For mild cognitive impairment or mild
dementia due to AD, metformin also improved executive functioning [80]. The vanadium
compounds that were used in treating diabetes also showed a protective effect in AD
transgenic mice models through regulating PPARγ [81–83]. However, it is unknown
whether these antidiabetic agents are efficient in the late stage of AD.

4. Preventing Tau Pathology

Although Aβ overload is believed to be the most important risk factor for AD de-
velopment, it is worth noting that there are a great many people bearing Aβ plaques in
their brains who do not exhibit dementia symptoms unless the tau pathology or cere-
bral amyloid angiopathy (CAA) occurs. On the other hand, it was demonstrated that
the presence of Aβ plaques facilitated local tau seeding in dystrophic neurites that led
to the spreading and formation of phosphorylated forms of tau in neuritic plaques and
NFTs in mice [84]. In addition, the reduction in tau has been found to protect neurons
from the loss of mitochondrial membrane potential [85], excitotoxicity [86], and axonal
transport inhibition [87] induced by Aβ [88], indicating that tau is a critical target for AD
treatment. Tau is a microtubule-associated protein involved in microtubule stabilization
and intracellular cargo transport. Tau is encoded by the MAPT gene, which is located
on chromosome 17. In the human brain, exons 2 and 3 of MAPT account for the two
N-terminal repeats (N), while exon 10 encodes the second microtubule-binding repeat (R)
of four in total. Therefore, the alternative splicing of MAPT yields six distinct isoforms
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of tau, which are 0N3R, 0N4R, 1N3R, 1N4R, 2N3R, and 2N4R. Knockout of tau led to
glucose intolerance [89] and impaired the hippocampal response to insulin by modulating
the phosphatase and tension homologue on chromosome 10 (PTEN) [90]. Tau deletion
also contributed to the accumulation of iron in the brain, resulting in conditions such as
Parkinson’s disease [91]. However, it has also been found that in a type 1 diabetes model
induced by STZ, tau knockout attenuated the cognitive impairment triggered by insulin
deficiency [92], whereas human tau transgenic mice showed robust deficits in learning
and memory processes under the same conditions [93]. These observations suggest that
tau itself is closely related to cell signaling implementation rather than only taking part in
stabilizing microtubules.

Notably, tau pathology is not only presented in AD but also associated with many
other tau pathologies, such as chronic traumatic encephalopathy (CTE), a subclass of
frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17tau); Pick’s
disease (PiD); progressive supranuclear palsy (PSP); corticobasal degeneration (CBD); and
argyrophilic grain disease (AGD) [94]. As mentioned above, in AD the neurofibrillary
tangles formed by tau aggregation usually initiate in the neurons of the medial temporal
lobe regions (i.e., hippocampus, entorhinal cortex, and amygdala) in the form of both 3R
and 4R tau. Likewise, in CTE, the tau filaments are also detected in frontal and temporal
cortices in the form of both 3R and 4R. However, in PiD, tau pathology is mainly found
in granular neurons in the hippocampal dentate gyrus, the hippocampal CA1 pyramidal
neurons, and layer II of the frontal and temporal cortices in the form of 3R, while in PSP,
CBD, and AGD it mainly presents in the form of 4R in astrocytes. The affected regions
include the basal ganglia, subthalamic nucleus, substantia nigra, and limbic lobe.

Mutated human tau has been found in familial primary tau pathology but not in AD.
Many mutations function in reducing the affinity of tau to microtubules, facilitating its
phosphorylation by altering the interaction with other proteins, impairing the splicing of
exon 10, or promoting the aggregation of tau into a beta-sheet structure. The mutation
of tau is also known to induce insulin resistance [95,96] by increasing pSer-IRS1 [97] and
to cause insulin accumulation as oligomers [98]. In addition, the MAPT gene has two
main haplotypes, namely, H1 and H2, as a result of a 900 kb inversion in the q21 region
of chromosome 17. The H1/H1genotype is considered a risk factor for PSP, CBD, and
AGD. Moreover, the H1/H2 genotype confers a greater risk of developing dementia before
the age of 45 years in individuals with Down’s syndrome. Tau species are capable of
propagating from neuron to neuron through exosomes [99]. The propagation of tau raised
the notion that tau is a prion protein which spreads in a conformational, strain-specific
manner [100], and the toxicity of tau spreading is dependent on endogenous tau [101].
These above observations suggest that AD is likely a secondary tau pathology.

In the NFTs of AD and other tau pathologies, tau is hyperphosphorylated. The hyper-
phosphorylation of tau results in its dissociation from the microtubules; the detached tau
misfolds and begins to aggregate and form the NFT. The posttranslational modifications
of tau play an important role in tau aggregation. The phosphate group, methyl groups,
and acetyl group to lysine residue change the basic character of tau. To evaluate the ef-
fects of phosphorylation on aggregation, scientists used Asp and/or Glu to replace the
Ser320 and Ser324 on the R3 fragment of tau, which is the core of the NFT, and found
that these pseudophosphorylations enhanced the aggregation of tau [102,103]. In another
study, Briner et al., showed that in Src family non-receptor tyrosine kinase Fyn knockout
mice the tau hyperphosphorylation was reduced, along with the near-complete ablation
of NFTs [104]. However, when using chemical methods to synthesize the phosphorylated
K18 fragment (four microtubule-binding repeats), the study showed that the phospho-
rylation at S258, S262, and S356 dramatically reduced the aggregation and fibril seeding
activity of K18 in vitro [105]. Similarly, the phosphorylation at Tyr310 were also found to
inhibit the aggregation and microtubule-binding activity of full-length tau and the K18
fragment [106]. Overall, it seems that the phosphorylation at different residues may have an
alternative influence on the aggregating property [107]. Additionally, the phosphorylation
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of tau at the KXGS motifs in the C-terminal microtubule-binding domains prevented the
ubiquitination and degradation of tau by proteasome. Likewise, the phosphorylation at
S293, S324, and S356 inside the microtubule-binding domains diminished its degradation
through the lysosome system. However, it seems that the NFT itself is not the direct reason
for cognitive decline or neuronal death [108], whereas the phosphorylated tau promoted
mitochondrial dysfunction in neurons with an FTLD mutant by impairing complex I of the
electron transport chain [109,110]. The phosphorylated tau has also been demonstrated to
interact with dynamin-related GTPase Drp1, thus promoting mitochondrial fission and
morphology change [111]. Besides the hyperphosphorylation, the cleavage of tau has been
found to precede and promote the tangle formation [112]. More importantly, the cleaved
tau also induced the dysfunction of mitochondrial dynamics [113,114] (Figure 2).

Multiple kinases are involved in tau phosphorylation, including GSK-3β [115], AMP-
activated protein kinase (AMPK) [116], cyclin-dependent protein kinase 5 (CDK5), CDK2,
and CaMKII. Conversely, the dephosphorylation of tau is mainly afforded by protein phos-
phatase 2A (PP2A) [117]. Since the abnormal phosphorylation of tau is closely correlated
with the aggregation, accumulation, and toxicity of tau pathology, the molecules that inhibit
tau phosphorylation have been tested in curing AD. The functions of GSK3β have been
extensively studied in cell proliferation, embryonic development, and immune response.
It has been well established that phosphorylation at serine 9 and 389 inhibits GSK3β activity
whereas phosphorylation at tyrosine 216 increases its activity. Lithium is a selective GSK3β
inhibitor which acts by competition with magnesium in the ATP-binding pocket. In vitro
and in vivo studies clearly showed that lithium treatment effectively reduced tau phospho-
rylation [118]. Other non-ATP-competitive GSK3β inhibitors, such as Tideglusib [119,120],
oxadiazole containing small molecules, and pyrimidinone containing small molecules also
showed beneficial effects in an AD model [121]. However, the adverse effects of GSK3β
inhibitors were monitored in control animals [120], suggesting that a more specific inhibitor
of GSKβ on tau phosphorylation is needed in future studies. In contrast to the kinases
that induce the phosphorylation of tau, PP2A is responsible for the dephosphorylation of
tau. In the brain of AD patients, the protein level and phosphatase activity of PP2A was
reduced [122]. Transgenic mice with reduced PP2A activity presented somato-dendritic
accumulation of hyperphosphorylated and aggregated tau in cortical pyramidal cells [123].
Using okadaic acid to inhibit PP2A and PP1 also increased tau phosphorylation [124].
The sphingosine-1-phosphate receptor selective agonist SEW2871 has been shown to re-
duce the tau Ser262 phosphorylation via the AMPK-PP2A pathway [125]. In addition, the
zinc chelator clioquinol has been demonstrated to be capable of elevating PP2A activity
and deceasing PP2A Tyr307 phosphorylation [126]. However, the problem with these PP2A
agonists remains because of lacking specificity for different substrates.

5. Microglia Depletion and Repopulation

Microglia are innate immune cells in the brain which originate from erythromyeloid
progenitor cells in the yolk sac [127]. Microglia exhibit a remarkable capacity for prolifera-
tion and self-regeneration in the central nervous system [128]. In the brain, microglia serve
as resident phagocytes, playing an important role in pathogen defense and injury response.
Microglia are also involved in sculpting synapses by phagocytizing inappropriate synaptic
connections, which is necessary for normal brain development [129]. In the brain of AD
patients, microglia are stably associated with Aβ deposition [130], and they are responsible
for Aβ uptake and clearance [131]. However, Aβ aggregates can act as disease-associated
molecular patterns and trigger microglia activation through pattern recognition receptors,
such as Toll-like receptors and NRLP3 inflammasomes [132,133], leading to the secretion of
TNFα, IL1β, and other inflammatory cytokines. Single-cell sequencing revealed that the
mRNA profiles of microglia in the brain of AD patients were switched from the homeostatic
stage to the disease-associated microglial (DAM) stage [134,135].

Chemically or genetically activating microglia significantly accelerated tau pathol-
ogy and behavioral abnormalities in the human tau mouse model of tauopathy [136,137].
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In addition, deleting the microglia protein Cx3cr1 in transgenic tau models showed that
the onset and progression of tau pathology were accelerated by artificially activating mi-
croglia. Moreover, APOE4 variants were found to exacerbate the tau pathology in tau P301S
transgenic mice in a microglia-dependent manner [138]. However, other studies demon-
strated that the activated microglia mitigate Aβ-associated tau seeding and spreading [139].
TREM2 deficiency and mutation leads to a decrease in Aβ-plaque-associated microglia and
facilitates the seeding and spreading of neuritic plaque tau aggregates [140,141]. It was
suggested that, although DAM attenuated the progression of neurodegeneration in certain
mouse models, inappropriate DAM activation accelerates neurodegenerative disease [142].
Interestingly, APOE [49] and TREM2 [55] are both implicated in regulating the DAM status
through the PI3K and Akt signaling pathways (Figure 2). It is also worth noting that the
mutation of TREM2 is not only associated with the onset of sporadic AD but also correlated
with Parkinson’s disease, ALS, and frontotemporal dementia [143].

Microglia are critically dependent on the colony-stimulating factor-1 receptor (CSF1R)
for their survival [144]. CSF1R is expressed on all myeloid cells, so the signaling interfer-
ence through this receptor will not only affect microglia cells but also influence peripheral
macrophages [145]. For this reason, Csf1r−/− mice display mononuclear phagocyte de-
ficiency, neurodevelopmental abnormality, and a shortened lifespan [146,147]. Thus, a
pharmacological method to deplete microglia were used in the AD model. GW2580 is the
first reported CSF1R-kinase inhibitor as well as the first CSF1R inhibitor utilized in a mouse
model of AD [148,149]. It blocks microglial proliferation, shifts the microglial transcrip-
tomic profile to an anti-inflammatory profile in APP/PS1 mice, and prevents cognitive
decline, although it did not modify the burden of Aβ [149]. Although the microglia are
capable of clearing Aβ, the depletion of microglia in mice with established brain amyloid
had no effect on Aβ deposition but resulted in less spine and neuronal loss [150]. It is
suggested that following the initial period of plaque formation, microglia surround the
plaques and subsequently mount a harmful and non-resolving inflammatory response;
however, prolonged depletion of microglia throughout the plaque-forming period impaired
the plaque formation, compaction, and growth [151].

Pexidartinib is a selective CSF1R/KIT/FLT3 inhibitor [152]. Treatment with pexidar-
tinib enabled the depletion of more than 99% of all microglia for 3 or 8 weeks in adult mice
with no deficits in any behavioral cognitive task administered [153,154]. The depletion of
microglia by a CSF1R inhibitor was found to arrest tau propagation in PS19 mice and in C57
mice that were forced to express tau by an adeno-associated virus (AAV) [155], suggesting
that microglia are involved in the cell-to-cell spread of tau. In mice with forced P301L
tau overexpression, Calton et al., found that the depletion of microglia using PLX5622
dramatically reduced the propagation of phosphorylated tau [156]. Casali et al., demon-
strated that in 5xFAD mice PLX5622 elicited microglial repopulation and subsequent plaque
remodeling, resulting in more compact plaques predominating microglia-repopulated regions.
Microglia limit diffuse plaques by maintaining compact-like plaque properties, thereby blocking
the progression of neuritic dystrophy [157]. Similarly, Gratuze et al., found that after microglia
depletion using PLX3397, repopulated microglia clustered around plaques, and they found
a reduction in disease-associated microglia (DAM) gene expression [139]. However, another
study stated that the repopulation of microglia induced by PLX5622 did not impact the amyloid
pathology in 3xAD model mice but did change the phosphorylation style of tau [158].

6. Conclusions and Perspectives

To date, many hypotheses of AD etiology have been proposed based on clinical research
and experimental data, including the amyloid cascade hypothesis [159], cholinergic hypothe-
sis [160], neuroinflammatory hypothesis [161], mitochondrial hypothesis [162], oxidative stress
hypothesis [163], insulin resistance hypothesis [164], and calcium hypothesis [165]. They are
also supported by substantial evidence. In this review, we tried to piece together the evidence
and find the key nodes that link amyloid-beta overproduction, neuroinflammation, insulin
resistance, tau pathology, mitochondrial impairment, and neuron death.



Curr. Issues Mol. Biol. 2022, 44 6181

Previously, the Aβ oligomer mono-antibody aducanumab had been approved by the
FDA; it showed great efficiency in clearing Aβ from the parenchyma of the brain, though
side effects, such as encephaledema, were also seen (Table 1). These observations suggest
that accelerating the clearance of Aβ with an antibody is viable with the proper dose in an
earlier stage of AD. However, with the presence of tau pathology it may not be enough to
stop the progress of AD only by reducing the level of Aβ. Based on the evidence collected,
we propose that the insulin signaling pathway may act as a linkage between Aβ, tau
pathology, and microglia activation. Efficient insulin supply may prevent or postpone the
initiation of tau pathology. On the other hand, it may be helpful to maintain microglia
homeostasis through the PI3K-Akt pathway to restrain the propagation of tau (Figure 2).

Table 1. Overview of different strategies for the treatment of AD.

Strategies Targets Drugs or Methods Anticipating Function Side Effects

Lowering Aβ

ADAM 10 Retinoid acitretin
PEP3

Activating ADAM10
Upregulating the

postsynaptic localization
and activity of ADAM10

Perturbed unspecific
substrates besides APP

BACE1 Verubecestat
Lanabecestat BACE1 inhibitor Perturbed unspecific

substrates besides APP

γ-secretase Semagacestat
Avagacestat γ-secretase inhibitor Perturbed unspecific

substrates besides APP
Aβ-oligomer Aducanumab Aβ-oligomer antibody Encephaledema

Increasing insulin
signaling Insulin deficiency Intranasal insulin

administration
Increasing insulin level in

CNS -

Insulin insensitivity Metformin Increasing insulin
insensitivity -

PPARγ Pioglitazone
Rosiglitazone

Increasing insulin
insensitivity Edema and weight gain

Limiting tau
phosphorylation

GSK3β Lithium
Tideglusib GSK3β inhibitor Perturbed unspecific

substrates besides tau

PP2A SEW2871
Zinc chelator clioquinol PP2A activator Perturbed unspecific

substrates besides tau

Restrict
inflammations Microglia

GW2580
PLX5622
PLX3397

Depletion and
repopulation of microglia -
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