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Abstract: Nanosized silicate-substituted hydroxyapatites, characterized by the general formula
Ca9.8−x−nSrnZnx(PO4)6−y(SiO4)y(OH)2 (where: n = 0.2 [mol%]; x = 0.5–3.5 [mol%]; y = 4–5 [mol%]),
co-doped with Zn2+ and Sr2+ ions, were synthesized with the help of a microwave-assisted hydrother-
mal technique. The structural properties were determined using XRD (X-ray powder diffraction) and
Fourier-transformed infrared spectroscopy (FT-IR). The morphology, size and shape of biomaterials
were detected using scanning electron microscopy techniques (SEM). The reference strains of Klebsiella
pneumoniae, Escherichia coli and Pseudomonas aeruginosa were used to assess bacterial survivability and
the impact on biofilm formation in the presence of nanosilicate-substituted strontium-hydroxyapatites.
Safety evaluation was also performed using the standard cytotoxicity test (MTT) and hemolysis assay.
Moreover, the mutagenic potential of the materials was assessed (Ames test). The obtained results
suggest the dose-dependent antibacterial activity of nanomaterials, especially observed for samples
doped with 3.5 mol% Zn2+ ions. Moreover, the modification with five SiO4 groups enhanced the
antibacterial effect; however, a rise in the toxicity was observed as well. No harmful activity was
detected in the hemolysis assay as well as in the mutagenic assay (Ames test).

Keywords: nanosilicate-substituted hydroxyapatite; Sr2+ and Zn2+ doping; antibacterial activity;
antibiofilm activity; cytotoxicity

1. Introduction

In recent years, the overuse of antibiotics has caused the development of microbial
resistance to numerous commonly applied formulations. Apart from drugs, resistance
to some antimicrobial agents (disinfectants) has been also reported over the years [1–3].
Bacteria and fungi have developed many virulence mechanisms that allow them to not
only actively invade the host body but also to remain persistent and less prone to harmful
chemical and physical conditions. Among such factors is biofilm, which is described as
microbial community surrounded by the extracellular matrix which protects the cells [4].
Metal ions seemed to be the most promising solution to combat drug-resistant strains,
but some of them, especially at higher concentrations, are cytotoxic (in vitro) towards
eukaryotic cells. Moreover, applying sublethal doses may also lead to the development
of resistance mechanisms among pathogens. Silver ions are known for their strong an-
timicrobial activity. However, the bacterial tolerance to formulations containing Ag+ ions
has been already reported [5–8]. The reduction of ion concentration and, subsequently,
its cytotoxicity, without decreasing antibacterial effects, may be obtained by combining
various ions [9–15].
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One possible way of using more than one metal ion simultaneously is by co-doping
a hydroxyapatite matrix. Hydroxyapatite (HAp) naturally occurs in the human body as
a component of bones and teeth. However, it can also be found in other organisms, e.g.,
in anthozoa [16]. Its strong biocompatibility with osteoblasts and osteoclasts in the cell
culture is related to its high porosity and structural similarity to natural bone. A beneficial
influence on bone growth after HAp scaffold implantation has also been reported [5,17].
Combining apatites with antimicrobial ions results in obtaining a non-toxic, biocompatible
porous material with the ability to prevent microbial growth. Apart from silver, which is
often described as genotoxic and cytotoxic, such metals as gold, zinc, magnesium, iron
or copper are reported to possess antimicrobial activity, especially against Gram-negative
species, generally considered as more resistant to common antimicrobials [5,17–19]. On
the other hand, it has been proved that nanoparticles are less active against Gram-positive
bacteria. This phenomenon is attributed to a thicker cell wall in Gram-positive strains,
which acts as a barrier for nanoparticles penetration. Moreover, a negative charge on the
surface of Gram-negative bacteria, conferred by the lipopolysaccharide, leads to the higher
affinity for cations [20]. The possible mechanisms of metal ion activity is widely studied
and their antibacterial effects are attributed mainly to the ability of protein (including
enzymes) impairment, reactive oxygen species production (leading to oxidative stress),
cellular membrane disruption and genetic material damages [21].

As already mentioned, zinc ions exhibit antimicrobial activity that affects both Gram-
positive and Gram-negative species, including Staphylococcus epidermidis, S. aureus, Strep-
tococcus mutans, Pseudomonas aeruginosa and Escherichia coli. Moreover, Zn2+ ions were
reported to reduce Candida albicans biofilm [5,22,23]. Zn2+-doped HAp also promotes os-
teoblasts proliferation and viability [5,17,24,25]. Recent studies on zinc-based materials
gained more attention due to its application as biocompatible bioglasses, alloys, ceramics
etc. Moreover, Zn2+ ions are important factors regulating cell metabolism and the expres-
sion of genes involved in bone differentiation and mineralization processes. Therefore,
when Zn2+ ions are maintained in physiological and relatively low concentrations, cells
function properly; however, higher concentrations can lead to cell death and increased
cytotoxicity [26,27]. Strontium is another example of a metal reducing bacterial growth.
However, its antimicrobial activity is not as high as that of the aforementioned metal ions.
On the other hand, its good biocompatibility with osteoblasts and its ability to alter the
physicochemical properties of compounds (such as solubility enhancement) indicates that
it could be a good co-dopant [5,17,28–31]. The research on co-doped HAp materials is still
rather scarce, compared to those with a single dopant, thus the cross-reactions between
different ions are not yet entirely understood [14,32]. In addition to cationic substitution,
HAp can also undergo anionic substitution. Partial replacement of the phosphate groups
with silicate alters the physicochemical properties of the apatite but its impact on antimi-
crobial activity is not fully characterized. There are some reports suggesting its positive
impact on mesenchymal stem cells derived from human adipose tissue when combined
with Ag+-HAp. Ag/Si-Hap also causes a significant reduction in bacterial adhesion [33].
Moreover, silica nanoparticles are a well-known material in biological and medical applica-
tions, therefore they are widely used in cosmetics and the food industry, but also in, e.g.,
car engineering or as a paint component [34]. Surprisingly, the prolonged exposure of silica
nanoparticles on the skin, oral tract and even the respiratory system is confirmed to be safe.
Silica nanoparticles are mainly absorbed in the lungs and intestinal tract, and through that
can be transported to and accumulated in the internal organs, yet no damage was found in
any tissue of the brain, heart, lungs, liver, kidney, large intestine, spleen, heart, stomach
and small intestine, when tested in vivo [35,36].

Properties such as biocompatibility and the safety of the substances with the ability
to promote tissue regeneration are desirable in implantology. Moreover, the ability to
reduce bacterial growth and adhesion is an additional advantage of such materials, since
the surgical procedures carry a risk of an infection [37].
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This work provides complex characterization of newly synthesized nanosilicate-
substituted hydroxyapatites co-doped with Sr2+ and Zn2+ ions, including the evaluation
of their antimicrobial activity against Gram-negative bacteria and cytotoxicity level. It
should be highlighted that the combination of co-doping with Sr2+ and Zn2+ ions of the
hydroxyapatite structure enriched by silicate groups is presented for the first time.

2. Materials and Methods
2.1. Synthesis of the Nanosilicate-Substituted Strontium-Hydroxyapatite Powders

The nanosilicate-substituted hydroxyapatite doped with Sr2+ ions and co-doped
with Zn2+ ions was synthesized using the hydrothermal wet technique. Ca(NO3)2·4H2O
(99.0–103.0% Alfa Aesar), (NH4)2HPO4 (>99.0% Acros Organics), tetraethyl orthosilicate
TEOS (>99% Alfa Aesar), Sr(NO3)2 (99.0% min Alfa Aesar) and Zn(NO3)2·6H2O (pure,
Chempur, Poland) were used as substrates. The stoichiometric amounts of all starting
substrates were dissolved in deionization water, then placed into a Teflon vessel and
mixed. The pH was adjusted with ammonia (NH3·H2O 25% Avantor, Poland) to obtain
a pH = 10. The hydrothermal process was carried out in the microwave reactor (ERTEC
MV 02-02) for 90 min at elevated temperature (250 ◦C) and under autogenous pressure
(40–50 bar). The obtained nanocrystalline powders were centrifuged, rinsed several times
with deionized water and dried. Afterwards, the materials were heat-treated in the range of
600–800 ◦C for 3 h to reject the amorphous phase and receive well-crystalized products with
the chemical formula of Ca9.8−xnSrnZnx(PO4)6−y(SiO4)y(OH)2 (where: n = 0.2 [mol%];
x = 0.5–3.5 [mol%]; y = 4–5 [mol%]). The concentration of Sr2+ and Zn2+ was set in a ratio
to entire calcium ions molar content in the following routine.

2.2. Characterization

X-ray diffraction was used to determine the crystalline structures of the obtained
materials. X-ray diffraction patterns were carried out usinga PANalytical X’Pert Pro X-ray
diffractometer equipped with the Ni-filtered Cu Kα1 radiation (Kα1 = 1.54060 Å, U = 40 kV,
I = 30 mA) in the 2θ range of 10–60◦. The EDS spectra were recorded to confirm the
chemical formula. The EDS spectra and SEM images were measured usinga FEI Nova
NanoSEM 230 scanning electron microscopy equipped with the EDS spectrometer (EDAX
GenesisXM4) and operating at an acceleration voltage in the range of 3.0–15.0 kV and
spot 2.5–3.0 were observed. The infrared spectra were measured using a Thermo Scientific
Nicolet iS50 FT-IR spectrometer equipped with the Automated Beamsplitter exchange
system (iS50 ABX containing DLaTGS KBr detector), built-in all-reflective diamond ATR
module (iS50 ATR), Thermo Scientific Polaris™ and a HeNe laser was used as an IR
radiation source. The FT-IR spectra were measured in KBr (FT-IR grade, ≥99% Sigma-
Aldrich, St. Louis, MO, USA) pellets at room temperature in the range of 4000–400 cm−1

with a spectral resolution of 2 cm−1.

2.3. Antimicrobial Activity

Antimicrobial activity was determined using three reference Gram-negative strains:
Klebsiella pneumoniae subsp. pneumoniae ATCC 700603, Pseudomonas aeruginosa ATCC 27853
and Escherichia coli ATCC 35218 (Department of Pathogen Biology and Immunology, Uni-
versity of Wroclaw). Bacterial cultures were incubated on nutrient agar plates for 24 h and
colonies were transferred to saline (0.9% NaCl) to obtain a final bacterial concentration of
5 × 105 CFU/mL. Bacterial suspensions were incubated for 18 h at 37 ◦C with shaking
(120 rpm) in the presence of 10, 25, 50 and 100 µg/mL of the tested silicate-substituted
strontium-hydroxyapatite (colloidal solutions prepared in the saline). Then, bacterial so-
lutions were diluted and spread on the Mueller Hinton Agar for colony forming units
(CFU/mL) evaluation after 18 h incubation at 37 ◦C. The statistical analysis of the results
was performed using one-way-ANOVA and the Levene test, followed by the Tukey test in
the OriginPro 2019b (OriginLab Corporation, Northampton, MA, USA) software (p < 0.05).
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2.4. Antibiofilm Activity

Antibiofilm activity was evaluated for materials with the highest Zn2+ dopants
(3.5 mol%Zn2+/Sr2+:Si4-HAp and 3.5 mol%Zn2+/Sr2+:Si5-HAp), andthe sample without
Zn2+ ion additive was used as a control. Powders were pressed to obtain pellets (∅ = 10 mm,
mass = 150 mg) which (after UV sterilization) were incubated at 37 ◦C overnight with 1 mL
of Klebsiella pneumoniae ATCC 700603 suspension in nutrient broth (optical density of 0.1)
with shaking (120 rpm). The samples were gently rinsed with saline to remove non-adhered
bacteria and dyed for 20 min with fluorescent dyes: SYTO 9 (λexc = 488 nm) and propidium
iodide (λexc = 543 nm) (both at the concentration of 1 µL/mL) (LIVE/DEAD BacLight
Bacterial Viability Kit, Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA), rinsed
and visualized in the confocal microscope (OlympusIX83 Fluoview FV 1200, magnifica-
tion 20×).

2.5. Cell Cultures

The TC28A2 human chondrocyte cell line and 7F2 mouse osteoblast cell line were
maintained in high glucose Dulbecco’s Modified Eagle Medium (DMEM) with L-glutamine
(Biowest, Nuaillé, France) and supplemented with 10% Fetal Bovine Serum (FBS) South
America Heat Inactivated (Biowest), 200 U/mL penicillin and 200 µg/mL streptomycin.
TC28A2 and 7F2 cell cultures were incubated in standard conditions at 37 ◦C in humidified
atmosphere of 5% CO2 and 95% air. Cell cultures were passaged three times, before
experiments were conducted.

2.5.1. Nanoparticles Stock Preparation

Stock dispersions of the tested silicate-substituted strontium-hydroxyapatite nanopar-
ticles doped with Zn2+ ions and silica groups were prepared with a suspension of used
compounds in distilled water. Then, each stock was bath-sonicated for 1 h at room tem-
perature. Freshly prepared nanosilicate-substituted strontium-hydroxyapatite stocks were
used in the experiments.

2.5.2. MTT Assay

Human chondrocyte and mouse osteoblast cell lines were seeded at a density of
10,000 cells per 1 cm2 in 96-well plates and allowed to attach and grow for 24 h. After
obtaining 60–70% of density, the TC28A2 and 7F2 cell lines were washed with sterile PBS
(Biowest), then sterile media and various concentrations (50 µg/mL, 100 µg/mL) of tested
nanoparticles were added. The MTT (Sigma-Aldrich) assay was performed 24 h after cell
treatment with added nanoparticle compounds. The treatment medium was removed and
sterile PBS containing 0.5mg/mL MTT (tiazol blue tertazolium) was added. Cells were then
incubated for 3 h at 37 ◦C. After incubation, the medium containing MTT was removed
without washing and formed formazan crystals were dissolved in DMSO (Sigma-Aldrich).
Absorbance was read at 560 nm with background reference at 670 nm using the plate reader
(Varioskan LUX, Thermo Fisher Scientific, Waltham, MA, USA). The whole experiment was
repeated three times for each cell line. The viability of used cell lines was estimated via the
following formula:

Cell viability =
sample absorbance
control absorbance

× 100

2.6. Hemolytic Activity

The hemolysis test was performed according to the slightly modified standard proto-
col [38]. Ram blood (ProAnimali, Wroclaw, Poland) was centrifuged (3000 rpm, 10 min)
in order to obtain erythrocyte fraction which was washed with PBS (phosphate-buffered
saline) and mixed with fresh PBS (1:1 v/v). The tested silicate-substituted strontium-
hydroxyapatites were suspended in PBS, mixed with erythrocytes (at the final concentration
of 50 and 100 µg/mL) and incubated at 37 ◦C for 24 h. Then, samples were centrifuged
to obtain supernatant (5000 RPM, 5 min) and the optical density was measured at 540 nm
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using a plate reader (Varioskan LUX, Thermo Fisher Scientific, Waltham, MA, USA). The
solution of 1% SDS (sodium dodecyl sulfate) and saline were used as a reference and as
negative controls, respectively. Statistical analysis was performed using a one-way ANOVA
test (p < 0.05). The hemolysis percentage was calculated using the formula below:

Hemolysis =
sample absorbance − negative control absorbance

positive control absorbance − negative control absorbance
× 100

Then, the erythrocytes were smeared on the glass slide and observed under the micro-
scope to evaluate the effect of silicate-substituted strontium-hydroxyapatite on blood cell
morphology (OlympusIX83 Fluoview FV 1200, camera CCD Hamatsu C13440, magnifica-
tion 20×).

2.7. Ames Test

The Ames test was chosen to investigate the mutagenic potential of the tested silicate-
substituted strontium-hydroxyapatites [39]. For this purpose, two standard bacterial strains
were used: Salmonella Typhimurium TA98 and Salmonella Typhimurium TA100. Minimal
Davis medium was, according to the procedure, described elsewhere [40] and supple-
mented with a 20% solution of glucose. The bacterial suspensions in Luria Broth medium
(optical density of 1.5) were diluted 20× in agar solution (0.6%), mixed with 0.5% of NaCl
and a 10% v/v mixture of D-biotin (0.3 mg/mL) and L-histidine (0.5 mg/mL) solutions.
The obtained top agars were spread on the surface of solid minimal Davis medium and
incubated for 48 h at 37 ◦C. As a positive control the solutions of 15 µg/mL of sodium
azide (for S. Typhimurium TA 98) and 100 µg/mL of acriflavine (for S. Typhimurium TA
100) were applied. As a negative control the saline solution was used. After incubation the
colonies were counted, and the MR (mutagenic ratio) was calculated as follows:

MR =
number o f revertants f ormed a f ter incubation with tested compounds

number o f revertants f ormed spontaneously (negativecontrol)

3. Results
3.1. Structural and Morphology Analysis

The measured X-ray diffraction patterns of the silicate-substituted strontium-
hydroxyapatite were compared with the reference pattern of strontium-substituted hy-
droxyapatite from Inorganic Crystal Structure Database (ICSD-75518). The results were
analyzed and are presented in Figure 1. The pure hexagonal lattice structure (space group:
P63/m, number: 176) was obtained for all samples. The most intense diffraction peaks
are placed at 25.86◦ (002), 31.82◦ (211), 32.16◦ (300), 32.91◦ (202), 39.73◦ (310), 46.66◦ (222)
and 49.44◦ (213). Materials showed stable hydroxyapatite structure up to 700 ◦C of the
heat-treating temperature. Peaks correlating with additional crystal phase appeared at the
XRD pattern of the powder heat-treated at 800 ◦C. Peaks are corresponded to the β-TCP
crystal structure. The theoretical pattern of β-TCP (ICSD-97500) is presented in Figure 1.
Therefore, powders heat-treated at 700 ◦C were chosen for biological activity tests.

The X-ray powder diffraction pattern provides information about the crystals’ size
and crystalline quality. It was observed that the full width at half maximum (FWHM) of
the peaks increased with an increase of Zn2+ ion-dopant concentration. Narrow peaks were
observed in the XRD pattern of Zn2+-doping concentration below Ca9.8−x−nSrnZnx(PO4)6−y
(SiO4)y(OH)2 (where: n = 0.2 [mol%]; x = 0.5–3.5 [mol%]; y = 4–5 [mol%]). An increase of
the FWHM is correlated with a decrease of the average crystal size and unit cell parameters.

Two different calcium positions with different chemical and structural properties are
present in the hydroxyapatite crystal structure. The Ca(1) site is surrounded by nine oxygen
atoms from PO4

3− groups, which formed coordination polyhedron with formula CaO9 with
C3 symmetry. The Ca(2) site is surrounded by six oxygen atoms from PO4

3− and one oxygen
atom from the hydroxyl group. The Ca(2) site is surrounded by an irregular polyhedron
with the formula CaO6OH with Cs symmetry formed by seven oxygen atoms [41,42].
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The representation of the unit cell of silicate-substituted strontium-hydroxyapatite and
polyhedrons surrounding calcium sites are presented in Figure 2.
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3.2. SEM-EDS Analysis

The SEM images and EDS spectra of synthetic silicate-substituted strontium-
hydroxyapatite powders were recorded and presented in Figure 3. SEM images demon-
strate that obtained powders are of irregular-rounded shaped and particles tend to agglom-
erate. The self-aggregation process is common in the case of nanocrystals. The forces that
are responsible for this feature are associated with intramolecular or intraparticle interac-
tions. The presence of der Waals forces, dipole−dipole force, electrostatic interaction and
hydrogen bonds results in the self-aggregation of the particles [43,44]. Figure 3c presents
the histogram of the particle size distribution, and the length was measured based on SEM
images. The particle size is in a range of 60–200 nm. The concentration of elements in the
Ca9.8−xSr0.2Znx(PO4)6−y(SiO4)y(OH)2 (where: x = 0.5–3.5 [mol%] and y = 4–5 [mol%]) was
measured using the EDS technique. The content of dopant ions: Sr2+ and Zn2+ ions, as
well as the amount of silicate groups in obtained samples, is in the agreement with the
assumptions. The content of dopant ions was calculated using the following equation:

Xn/x [mol%] =
mol% X·10

mol% (Ca2+ + Sr2+ + Zn2+)
(1)

The amount of silicate group was calculated using the following equation:

(SiO4)
4−
y [mol%] =

mol%Si4+·6
mol%

(
Si4+ + P5+

) (2)
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3.3. Fourier-Transformed Infrared Spectroscopy

The FT-IR transmission spectra were recorded to investigate the chemical bonding
of the obtained powders. Figure 4 presents the infrared spectra of the compounds that
were heat-treated at 700 ◦C. The characteristic peaks correspond to the apatites and are
in agreement with previous work [45–49].The broad absorption peaks of the bending
mode of the silicate group: Si-O-Si were observed at 420–527 cm−1. The broad bands
corresponding to the O-Si-Omol%] stretching vibes were recorded at 780–842 cm−1 for
all obtained materials. The difficulty in differentiation of all peaks relating to silicon and
phosphate groups in the silicate-substituted strontium-hydroxyapatite could be due to the
similarity of the vibes energy of these bonds. The vibration modes related to the silicate
group can be overlapped with the phosphate modes, which have been noticed in the
following cases:bands corresponding to the bending mode of Si-O-Si and to bending modes
of O-P-Owere observed at approximately 470 cm−1, and the Si-O symmetric stretching
mode and the P-O symmetric stretching mode are detected at approximately 950 cm−1

(precisely at 949 cm−1 and at 965 cm−1, respectively) [49]. The most intense lines related to
theν3 (PO4

3−) stretching modes are located at 1055 cm−1 and at 1095 cm−1. Narrow peaks
ascribed to the bending modes of ν4 (PO4

3−) were detected at 605 cm−1 and at 569 cm−1

wave numbers as expected, two peaks corresponding to the OH-group vibes were detected
in the infrared spectrum of the silicate-substituted strontium-hydroxyapatite samples at
3571 cm−1 and at 633 cm−1. The presence of those peaks clearly confirms the obtainment
of the silicate-substituted hydroxyapatite matrix.
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3.4. Antibacterial Activity

The antibacterial activity was tested using three Gram-negative strains (Pseudomonas
aeruginosa ATCC 27853, Escherichia coli ATCC 35218 and Klebsiella pneumoniae ATCC 700603)
that were recommended for susceptibility testing. The antibacterial activity (Figure 5) of the
tested series of silicate-substituted strontium-hydroxyapatite was observed mainly against
E. coli and K. pneumoniae strains. P. aeruginosa seemed to be the most resistant among all
tested bacteria. Silicate-substituted hydroxyapatite doped only with Sr2+ did not exhibit
antimicrobial activity at the tested concentrations (10–100 µg/mL), but the addition of Zn2+

ions, especially 1 and 3.5 mol% dopants, increased its activity. The strongest antibacterial
effect was observed for Si-HAp co-doped with Sr2+ and 3.5 mol% Zn2+. It could be easily
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seen that the hydroxyapatite modified with five silicone groups was more active than
its four-group compound. However, the EDS measurement (see Table 1) revealed that
actual Zn2+ ion-dopant is higher in the latter, so these two compounds should not actually
be compared.
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Table 1. Results of principal components measured using the EDS technique.

Sample Theoretical Chemical Formula
EDS Technique

n Sr2+ [mol%] x Zn2+ [mol%] y (SiO4)4− [mol%]

0.0 mol% Zn2+/Sr2+:Si4-HAp Ca9.8Sr0.2(PO4)2(SiO4)4(OH)2 0.19 0.00 3.40

0.5 mol%Zn2+/Sr2+:Si4-HAp Ca9.3Sr0.2Zn0.5 (PO4)2(SiO4)4(OH)2 0.15 0.33 3.78

1.0 mol%Zn2+/Sr2+:Si4-HAp Ca8.8Sr0.2Zn1 (PO4)2(SiO4)4(OH)2 0.13 1.12 3.64

3.5 mol%Zn2+/Sr2+:Si4-HAp Ca6.3Sr0.2Zn3.5(PO4)2(SiO4)4(OH)2 0.17 2.49 3.79

3.5 mol%Zn2+/Sr2+:Si5-HAp Ca6.3Sr0.2Zn3.5(PO4)(SiO4)5(OH)2 0.15 3.44 4.23

3.5. Antibiofilm Activity

The ability of the biofilm formation is a very important virulence factor of many
bacterial species. One of them, Klebsiella pneumoniae, produces biofilm for the better colo-
nization of urinary and respiratory tracts. Bacterial cells surrounded by the matrix are less
susceptible to antibiotics and disinfectants, as well as harmful environmental conditions,
including immune defense mechanisms [50,51]. P. aeruginosa and E. coli are also known for
their high biofilm production [37,52]. Impairments in the bacterial biofilm formation on
abiotic surfaces is essential in reducing implant-associated infections cases. The obtained
results point to the possibility of the future application of tested materials as coatings
of biomedical devices, such as catheters, prosthetics and others [37]. Figure 6 shows the
biofilms that formed on the surface of silicate-substituted strontium-hydroxyapatite pel-
lets. Generally, no significant growth reduction was observed for any of tested bacteria.
Moreover, the biofilms are mainly composed of living cells (green color). However, it could
be seen that the morphology of biofilms is different on the surfaces. In the case of E. coli
and P. aeruginosa, single adhered cells can be observed at Zn2+ ion-doped pellets, rather
than the more complex biofilm fragments which are present at the Zn2+ ion-free sample.
K. pneumoniae, on the contrary, seems to form more a complex biofilm structure on Zn2+

ions-doped materials than on the non-doped one.
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3.6. Cytotoxicity Evaluation

The results clearly indicate that the viability of the TC28A2 and 7F2 cell lines strongly
depends on the concentration of the tested compounds. An evident difference in cell viabil-
ity can be observed between the cells treated with 50 ug/mL and 100 ug/mL. Although
the percentage of living TC28A2 and 7F2 cells is maintained at approximately 80% to 100%
among all tested compounds when treated with 50 ug/mL, a significant drop of viability
is observed when treated with 100 ug/mL (Figure 7); especially, when the concentration
of doped Zn2+ ions in the nanopowder samples increases. The highest number of viable
cells is observed after treatment with 50 µg/mL ofCa9.3Sr0.2Zn0.5(PO4)2(SiO4)4(OH)2 and
Ca9.3Sr0.2Zn0.5(PO4)2(SiO4)4(OH)2 and still, when cells are treated with 100 ug/mL, the
amount of metabolically active cells is maintained highly above 80%. The results presented
in Figure 7 also showed that the increased concentration of doped Zn2+ ions in silicate-
substituted strontium-hydroxyapatite materials causes the reduction of the viability of both
TC28A2 and 7F2 cells. The experimental results indicate that neither the concentration of
Sr2+ ions doped into hydroxyapatite structure of obtained materials, nor the presence of
SiO4 affect the viability of mouse osteoblast and human chondrocyte cell lines. The results
also point out that the more Zn2+ ions that are doped into the hydroxyapatite structure and
the greater the number of silica groups substituted in hydroxyapatite-based compounds,
the more severe the cytotoxic effect among both cell lines is observed. This can be caused
by synergic effect of both silica group and zinc ions. However, the substitution of (PO4)
group with five (SiO4) groups instead of four does not seem to have a large effect on cell
viability; rather that the Zn2+ ions are considered to have bigger impact and disturb cell
proliferation (Figure 7).

3.7. Hemolysis

Testing the newly synthesized compounds for the hemolytic properties is an essen-
tial step in the assessment of their cytotoxicity. This is especially important when the
materials are intended to come into direct contact with the human body. The results of
hemolysis assay are shown in Figure 8 and in the microscopic images in Figure 9, depicting
erythrocyte morphology after incubation in the presence of a tested material. None of
the tested compounds caused hemolysis at a level above approvable (5%) [53]. Moreover,
the microscopic observations revealed that none of the tested compounds caused visible
changes in erythrocyte morphology (Figure 9). The results confirm the non-hemolytic
activity of the tested materials.

3.8. Ames Test

The Ames test is the well-known method used for the assessment of the mutagenic
properties of different substances. In this research, none of the tested silicate-substituted
strontium-hydroxyapatites showed a mutagenic ratio above the acceptable level of 1.7
(Table 2), hence it is clearly visible that these materials, at the tested concentration, do not
have mutagenic properties.

Table 2. Mutagenic ratio of tested silicate-substituted strontium-hydroxyapatites calculated for S.
Typhimurium TA98 and TA100 strains.

Compound Concentration [µg/mL]
S. Typhimurium TA98 S. Typhimurium TA100

Mutagenic Ratio (MR) Mutagenic Ratio (MR)

Negative control 1.00 1.00
Positive control 13.20 9.14

0.0 mol% Zn2+/Sr2+:Si4-HAp
50 0.88 1.31
100 0.68 1.42

0.5 mol% Zn2+/ Sr2+:Si4-HAp
50 0.90 1.00
100 0.78 1.04
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Table 2. Cont.

Compound Concentration [µg/mL]
S. Typhimurium TA98 S. Typhimurium TA100

Mutagenic Ratio (MR) Mutagenic Ratio (MR)

1.0 mol% Zn2+/ Sr2+:Si4-HAp
50 0.78 1.35

100 0.80 0.98

3.5 mol% Zn2+/ Sr2+:Si4-HAp
50 0.90 1.02

100 0.78 1.25

3.5 mol% Zn2+/ Sr2+:Si5-HAp
50 0.82 1.09

100 0.83 1.40
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4. Discussion

Since synthetic hydroxyapatites are commonly used in many clinical aspects, modifi-
cation of their structure for the enhancement of its properties is an obvious approach [54].
The doping of HAp with metal ions might not only increase tissue regeneration but also
provide antimicrobial properties; thus studies regarding various potential dopants (single
or multiple) are indeed needed. The implantation procedures bear a risk of an infection,
mainly of bacterial origin, with P. aeruginosa and E. coli being one of the most common
nosocomial pathogens among Gram-negative bacteria [37]; however, such infections are
also noted for K. pneumoniae [55,56].

The antibacterial activity of hydroxyapatites doped with Zn2+ ion was previously
thoroughly investigated and obtained data suggest the highest bacterial growth reduction at
the Zn2+ ion concentration of 1–2 mol% [5]. Moreover, activity against E. coli was confirmed
for colloidal solutions of Ca10−xZnx(PO4)6(OH)2 (x = 0.0, 0.07 or 0.2) at concentrations from
1.95 µg/mL up to 1 mg/mL [57]. In our previous work, the Zn2+-doped hydroxyapatite
(5 mol%) was tested against P. aeruginosa and E. coli and no activity was spotted. Hence, in
the present work, we investigated antibacterial activity of HAp co-doped with Zn2+ against
three Gram-negative strains: P. aeruginosa, E. coli and K. pneumoniae and we decided to lower
the Zn2+ content to 3.5 mol%. Moreover, the Sr2+ was added to enhance water solubility [58].
Even though HAp doped with strontium alone did not show any antibacterial effects, co-
doping with Zn2+ ions significantly reduced bacterial growth, especially in the cases of
E. coli and K. pneumoniae. Although nanoparticles of ZnO have well-documented activity
against P. aeruginosa, this species appeared to exhibit a higher tolerance to Zn2+ ions released
from HAp, which was also shown by Karetsi et al., 2019 [59].

In the hospital environment, nosocomial pathogens may adhere to surgical devices
or implanted materials, and once adhered, they may develop into the biofilm, a three-
dimensional bacterial community with an increased resistance to drugs [60,61]. Thus, the
exhibition of antibiofilm properties of grafted materials would be an additional advantage.
Apart from growth inhibition caused by the local release of metal ions, the material structure
might be modified to reduce the adhesion of hazardous bacteria. However, our research
showed that there was no significant effect of HAp doped with Sr2+ and Zn2+ on bacterial
biofilm reduction or survival. This results are to be expected, since the surface of HAp is
porous, which might facilitate interaction with bacterial cells [62], a phenomenon often
observed in the case of dental plaque development [63]. Although some changes in the
biofilm architecture could be seen after co-doping with Zn2+ ions, it should be noted that
the most probable reason for such slight alterations is the difference between particular
pellets’ surfaces. In our previous research, it was proved that generally the surface of
hydroxyapatite pellet is smooth, which prevents bacteria adherence but when the surface
is “rough” (more porous), the bacterial (and cellular) attachment is greater [19]. Thus, it
can be assumed that the differences observed between particular materials in the present
research may be the result of differences in the pellets’ surfaces which cannot be avoided
using the hand press in the preparation process.

However, although the anti-biofilm properties of the newly synthesized materials are
highly desirable, one of the most important features should be also the lack of cytotoxicity.
Hydroxyapatite nanoparticles are known to be an inseparable part of the vertebrate skeletal
system and bone structure. Hydroxyapatites along with collagen fibers create natural
and solid bone framework and, therefore, many studies have proved the non-cytotoxic
character of synthetic HAp nanoparticles. Prior to medical application, all materials and
substances must be conducted to toxicity testing (e.g., cytotoxicity, mutagenic potential
or effects on blood cells) to verify their safety. The cytotoxicity studies of Sr2+/Zn2+

doped Si-HAp showed no toxic effects at the lower concentration. However, cell viability
decreased when Zn2+ ions amount in the Si-HAp structure was elevated. These results
agree with previously published data. Qiu et al. (2006) showed that strontium-doped
calcium polyphosphate scaffolds (even with 100% of strontium substitution for calcium)
were not toxic against the proliferation of osteoblastic cell lines [64]. Similarly, when Ni
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et al. (2011) doped hydroxyapatite with Sr2+, it not only caused no loss in the cell viability
but also increased the mineralization and differentiation processes [65]. The Zn2+ ion, on
the other hand, was proved to have a significant influence on cell viability, since rather
low concentrations of Zn2+ are able to reduce cell viability, adhesion and increase reactive
oxygen species (ROS) production [66]. The present study shows that only a low amount of
Zn2+ ion-dopant might be introduced to the HAp structure to consider this material as safe,
and these results are also supported by other published data [67,68]. Introducing silicate
into hydroxyapatite might also influence its toxicity. Numerous studies indicate that the
toxicity of silica nanoparticles strongly depends on their size and concentration [69–71].
Our results may indicate that an increase in the number of silica groups from four to five
causes some reduction of cell viability; however, a decreased number of living cells was
caused rather by Zn2+ ions than in (SiO4) groups substituted by (PO4). Hemolysis assay is a
crucial step of safety investigation of newly synthesized materials. Generally, apatite-based
materials are considered biocompatible and are not expected to exhibit any significant
hemolytic activity [72,73], but the confirmation is necessary, especially for materials co-
doped with metal ions. Sr2+/Zn2+-doped HAp did not cause erythrocyte disruption and
hemoglobin release. No mutagenic potential showed in the Ames test which also points at
the safety of the tested materials, corresponding with previously published data [74].

5. Conclusions

This study is the first successful obtainment of the silicate-substituted hydroxyapatite
co-doped with Sr2+ and Zn2+ ions by the hydrothermal method assisted with the microwave
technique. The pure hexagonal structure has been confirmed by XRD analysis. The nominal
Si content incorporated in the PO4

3− sites of the HAp lattice cell is in agreement with the
theoretical value. The FT-IT spectra present characteristic absorption lies corresponds with
the chemical bands of HAp molecules. Silicate-substituted strontium-apatites co-doped
with Zn2+ ion exhibit dose-dependent antibacterial activity against Klebsiella pneumoniae
and Escherichia coli. No inhibition of the biofilm formation was observed. However,
biofilm morphology is different for the Zn2+ ion-doped and Zn2+ ion-free pellets. Tested
materials do not possess hemolytic and mutagenic properties. Furthermore, they cause
dose-dependent cytotoxicity towards chondrocytes and osteoblasts. The results obtained
for the antimicrobial and cytotoxic studies correlate and prove that the biological activity
of Sr2+/Zn2+-doped Si-HAp increased with the increase of Zn2+ ions content as well as
with the number of silica groups. However, the number of silica groups only has a visible
impact in antibacterial tests.
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