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Abstract: Since the discovery of dendritic cells (DCs) in 1973 by Ralph Steinman, a tremendous
amount of knowledge regarding these innate immunity cells has been accumulating. Their role
in regulating both innate and adaptive immune processes is gradually being uncovered. DCs are
proficient antigen-presenting cells capable of activating naive T-lymphocytes to initiate and generate
effective anti-tumor responses. Although DC-based immunotherapy has not yielded significant
results, the substantial number of ongoing clinical trials underscores the relevance of DC vaccines,
particularly as adjunctive therapy or in combination with other treatment options. This review
presents an overview of current knowledge regarding human DCs, their classification, and the
functions of distinct DC populations. The stepwise process of developing therapeutic DC vaccines to
treat oncological diseases is discussed, along with speculation on the potential of combined therapy
approaches and the role of DC vaccines in modern immunotherapy.
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1. Introduction

Dendritic cells (DCs) are proficient antigen-presenting cells (APCs) that play a pivotal
role in initiating an adaptive immune response [1]. Among the diverse range of APCs in
the human body, such as macrophages and B-lymphocytes, DCs are considered the most
efficient in capturing antigens at the site of infection and delivering them to secondary
lymphoid organs, where T-cell clustering takes place for subsequent antigen presentation
and the activation of effector cells [2].

DCs are usually referred to as a link between innate and adaptive immunity. As part
of the innate immune system, DCs contribute to the initiation of inflammatory processes
while also playing a crucial role in activating the acquired immune response by presenting
antigens on major histocompatibility complex (MHC) molecules [3]. Modern sequencing
technologies have enabled the gradual characterization of the diversity of human DC
subsets, with the determination of their exceptional role in shaping the immune response.

The main concept behind creating a vaccine based on DCs is to utilize their ability to
activate and enhance the immune response against specific antigens [4]. Mature antigen-
loaded DCs are capable of activating the immune system and directing it towards fighting
tumors. Therefore, a DC-based vaccine allows us to increase the immune response against
a specific antigen and improves the treatment effectiveness. One of the main advantages
of this type of therapy is its low toxicity compared to other methods and its use as a safe
adjuvant treatment method [5].
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2. Biology of Dendritic Cells

Among other populations of immune cells, DCs are identified by their high expression
of MHC II molecules and CD11c, which are considered necessary for their primary functions
of antigen capture and subsequent processing in complex with MHC molecules [6]. To
carry out the processes of the modulation of the immune response, DCs must migrate
to the site of inflammation along the gradient of chemokine concentration. DCs express
the chemokine receptors C-C type 5 and C-C type 6. The signaling axes CCR5-CCL5
and CCR6-CCL20, which include CCR5 and CCR6 and their ligands expressed by the
tumor microenvironment (TME), are important for the successful recruitment of DCs to
the TME [7]. DCs, which penetrate into the TME under cytokine gradient conditions, are
capable of producing cytokines, which induce the migration and modulate the action of
lymphocytes [8–10]. Additionally, DCs are able to effectively recruit NK cells into the
TME [11] and activate them, particularly through the production of cytokines CXCL9 and
CXCL10 [12].

DCs exist in two distinct physiological states in the human body. In tissues, DCs
in a steady state or immature condition display low levels of costimulatory molecules
and are incapable of activating naive T-lymphocytes [13]. Immature DCs also exhibit
high endocytic capacity, high levels of adhesion molecules for tissue localization, and
low levels of immune-stimulatory cytokines. Antigen capture processes performed by
DCs are diverse and involve mechanisms such as phagocytosis [14], receptor-mediated
endocytosis (lectin-dependent endocytosis, Toll-like receptor-mediated endocytosis) [15,16],
and macropinocytosis [17].

The recognition of pathogen-associated molecular patterns (PAMPs) or damage-
associated molecular patterns (DAMPs) serves as a stimulus for DCs to transition into a
mature state. This transition is accompanied by changes in the expression of costimula-
tory molecules, integrin, and chemokine receptors, as well as the suppression of adhesion
molecule expression [18]. All these processes contribute to the migration of DCs from the
initial tissue site to the secondary lymphoid organs for the presentation of endogenous
peptides via MHC I to CD8+ T-cells, and exogenous peptides in complex with MHC II to
CD4+ T-lymphocytes [19]. In addition to antigen presentation, DCs can interact with T-cells
through protein factors and costimulatory molecules such as CD80, CD86, OX40 ligand
(OX40L), and CD70 [13,20].

3. Dendritic Cell Populations in the Human Body

DC populations in the human body demonstrate complex phenotypic and functional
heterogeneity, which accounts for their broad functionality and substantial role in modu-
lating immune responses. The following major subsets of DCs are observed in the human
body: plasmacytoid DCs (pDCs), monocyte-derived DCs (moDCs), and conventional
dendritic cells (cDCs) (Figure 1). These populations share a common myeloid precursor
and are distinguished from other immune cells by their high expression of MHC II and
CD11c molecules. However, during ontogenesis, they exhibit distinct repertoires of sur-
face markers [6], which will be further discussed below. Interestingly, DC development
is influenced by the microenvironment, especially in non-lymphohematopoietic tissue
(lungs, skin, etc.), which additionally emphasizes their functional plasticity [21].
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Figure 1. The scheme of the ontogenesis of DC populations. Myeloid and lymphoid precursors de-
velop from hematopoietic stem cells. From the myeloid precursor, the macrophage DC progenitor 
(MDP) develops. The MDP further differentiates into monocytes and AXL+ SIGLEC6+ cells (AS DCs). 
AS DCs are capable of giving rise to both pre-DCs and pDC lineages. Pre-DCs are the precursors of 
cDC1 and cDC2. The pDC population, which originates from the lymphoid precursor, is also con-
sidered heterogeneous, with three distinct groups identified: P1-pDC, P2-pDC, P3-pDC. 

3.1. Conventional Dendritic Cells (cDCs) 
cDCs are considered to play a crucial role in the activation of naive T-cells. Their main 

function is to capture and degrade protein antigens and present them as peptides in com-
plex with MHC class I or II molecules [22]. cDCs are predominantly located in non-lym-
phoid tissues, especially in barrier tissues, which are the main sites of pathogen entry, 
where they perform antigen capture functions [23]. 

There are two main subsets of cDCs, cDC1 and cDC2, with each performing specific 
functions. The cDC1 subset is characterized by chemokine receptor XCR1 expression, with 
its ligand XCL1 secreted on the surfaces of CD8+ T-cells [24]. Among the distinctive set of 
specific markers, CLEC9A, involved in the uptake of necrotic cells; CD141, a cell adhesion 
molecule; and CADM1, CD103, CD8α, and BDCA-3, whose role is not fully understood, 
should be noted [25]. This subset is characterized by the expression of transcription factors 
BATF3 and IRF8 [26]. cDC1s are also major producers of IL-12, which is necessary for the 
differentiation of various T-cell populations [27]. cDC1s are also specialized in activating 
CD8+ naive T-cells through cross-presentation via MHC I molecules, playing a crucial role 
in anti-tumor and antiviral immune responses [24,28]. The presence of Toll-like receptor 
3 (TLR3), an endosomal protein, is characteristic of cDC1s, and it is necessary for the 
recognition of double-stranded RNA, an intermediate in the replication of many viruses 
[29]. 

Subpopulation cDC2 is predominantly localized in secondary lymphoid tissue and 
is characterized by the expression of CD11b, CD1c, BDCA-1, and Dectin-1 surface markers 
[30,31]. Unlike cDC1, this subset neither expresses TLR3 nor is a major producer of IL-12. 
Physiologically, cDC2s induce the activation of naive CD4+ cells [30,32]. For example, in 
the induction of Th17 cells, cDC2s express IL-23 and IL-6 molecules, although the exact 
activation mechanisms are still being elucidated [18]. 

Using RNA sequencing technologies, it is possible to identify new subsets of DCs 
from those described above. The diversity of the precursors of the aforementioned 

Figure 1. The scheme of the ontogenesis of DC populations. Myeloid and lymphoid precursors
develop from hematopoietic stem cells. From the myeloid precursor, the macrophage DC progenitor
(MDP) develops. The MDP further differentiates into monocytes and AXL+ SIGLEC6+ cells (AS DCs).
AS DCs are capable of giving rise to both pre-DCs and pDC lineages. Pre-DCs are the precursors
of cDC1 and cDC2. The pDC population, which originates from the lymphoid precursor, is also
considered heterogeneous, with three distinct groups identified: P1-pDC, P2-pDC, P3-pDC.

3.1. Conventional Dendritic Cells (cDCs)

cDCs are considered to play a crucial role in the activation of naive T-cells. Their
main function is to capture and degrade protein antigens and present them as peptides
in complex with MHC class I or II molecules [22]. cDCs are predominantly located in
non-lymphoid tissues, especially in barrier tissues, which are the main sites of pathogen
entry, where they perform antigen capture functions [23].

There are two main subsets of cDCs, cDC1 and cDC2, with each performing specific
functions. The cDC1 subset is characterized by chemokine receptor XCR1 expression, with
its ligand XCL1 secreted on the surfaces of CD8+ T-cells [24]. Among the distinctive set of
specific markers, CLEC9A, involved in the uptake of necrotic cells; CD141, a cell adhesion
molecule; and CADM1, CD103, CD8α, and BDCA-3, whose role is not fully understood,
should be noted [25]. This subset is characterized by the expression of transcription
factors BATF3 and IRF8 [26]. cDC1s are also major producers of IL-12, which is necessary
for the differentiation of various T-cell populations [27]. cDC1s are also specialized in
activating CD8+ naive T-cells through cross-presentation via MHC I molecules, playing a
crucial role in anti-tumor and antiviral immune responses [24,28]. The presence of Toll-like
receptor 3 (TLR3), an endosomal protein, is characteristic of cDC1s, and it is necessary
for the recognition of double-stranded RNA, an intermediate in the replication of many
viruses [29].

Subpopulation cDC2 is predominantly localized in secondary lymphoid tissue
and is characterized by the expression of CD11b, CD1c, BDCA-1, and Dectin-1 surface
markers [30,31]. Unlike cDC1, this subset neither expresses TLR3 nor is a major producer
of IL-12. Physiologically, cDC2s induce the activation of naive CD4+ cells [30,32]. For
example, in the induction of Th17 cells, cDC2s express IL-23 and IL-6 molecules, although
the exact activation mechanisms are still being elucidated [18].

Using RNA sequencing technologies, it is possible to identify new subsets of DCs from
those described above. The diversity of the precursors of the aforementioned populations at
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different stages of differentiation is increasingly taken into account. A. Villani’s group iden-
tified a population of DC precursors—AS DCs—characterized by the expression of AXL,
SIGLEC1, and SIGLEC6 antigens, capable of giving rise to both cDC and pDC lineages [33].
P. See and others have identified a population of pre-DCs with an immunophenotypic
profile of CD123+ CD33+ CD45RA+. Pre-DCs appear to be a later stage of differentiation
from AS DCs and are precursors of cDC1 and cDC2, but not pDCs. Due to the presence of
common markers, pre-DCs may be mistakenly classified as pDCs. Therefore, the secretion
of IL-12 and activation of T-cells in pDCsare likely due to the presence of a small population
of classical DC precursors. Pre-DCs differentiate towards CADM1+ CD1c− pre-cDC1 and
CADM1-CD1c+ pre-cDC2 [34].

3.2. Plasmacytoid Dendritic Cells (pDCs)

PDCs are characterized by the production of type I interferons (IFN-α), which is
attributed to the endoplasmic reticulum and Golgi apparatus in their cellular structure [35].
Among the expressed receptors, CD11c, CD33, CD11b, and CD13 are absent, while GMDP,
CD123 (IL-3R), and CD45RA are observed. Receptors involved in IFN-α production
include CD303 (CLEC4C; BDCA-2), CD304 (neuropilin; BDCA-4), CD85k (ILT3), CD85g
(ILT7), Fc ε R1, BTLA, CD358, and CD300A [36–38]. pDCs are primarily involved in the
detection of viral infections and do not play a significant role in stimulating naive T-cells.
pDCs express TLR7 and TLR9 in order to recognize nucleic acid molecules, which are key
receptors in recognizing endosomal patterns [39–41].

The production of IFN-α is not the only function of this subset. Alculumbre et al.
were able to characterize three subsets of pDCs from the general population based on the
expression of the costimulatory and inhibitory molecules PD-L1 and CD80. After removing
AS DCs that could have influenced the experimental results, the multifunctional property
of pDCs was determined. P1-pDCs (PD-L1+CD80−) displayed a pronounced plasmacytoid
morphology, and they are the main producers of IFN-α. P3-pDCs (PD-L1−CD80+) acquire a
dendritic morphology and adaptive immune functions. P2-pDCs (PD-L1+CD80+) promote
T-cell activation and differentiation towards Th2 cells.

3.3. Monocyte-Derived Dendritic Cells (moDCs)

MoDCs are derived from monocytes, and they undergo functional changes in inflam-
matory foci. Similar to other DC populations, moDCs can also transport antigens to lym-
phoid tissue [42]. However, the process of differentiation can be significantly influenced by
the TME conditions, such as increased lactate levels, a byproduct of tumor cell metabolism,
which has a negative effect on the increase in moDCs in the TME [43]. In addition, high
levels of lactate also negatively affect the production of anti-inflammatory cytokines and
the cytotoxic properties of T-cells and NK cells [44,45]. MoDCs can be easily obtained
from human peripheral blood monocytes by laboratory generation [46]. Experiments show
that moDCs are weaker stimulators of T-cell activation; nevertheless, upon migration to
the lymph nodes, moDCs can transfer captured antigens from the periphery and present
them to resident DCs in the lymphoid organs. This cell population exhibits heterogeneous
expression of markers including CD13, CD33, CD11b, CD11c, CD172a, S100A8/9, CCR2,
CD1c, CD1a, Fc εR1, IRF4, and ZBTB46. Similar to classical DCs, they express CD11c and
MHC II [47]. moDCs are effective and perform their functions efficiently in vivo, by inter-
acting with cDCs and responding to the microenvironment’s cytokine profile. However,
in vitro studies of moDC-based vaccines have often yielded disappointing results, which
can vary depending on the utilized activation and differentiation methods [48].

4. In Vitro DC Vaccine Design
4.1. DC Differentiation

DC vaccine development is a multi-step process, with its efficacy influenced by factors
such as the culture conditions, antigen selection, and additional parameters. The first step in
DC vaccine development is obtaining a sufficient number of cells for further manipulations.
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Current approaches to generating DCs mainly focus on in vitro differentiation from CD14+

or CD34+ monocyte precursors [49–52] (Figure 2). This direction is driven by the fact that
DCs, circulating in the body, are a small population of immune cells, and isolating them in
the required quantity to achieve therapeutic effects is rather challenging.
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Figure 2. DCs can be created by various methods in vitro. (A) MoDCs are obtained through directed
differentiation from CD14+ monocytes using various cytokine combinations, such as IL-4, GM-CSF,
IFN-α, IL-15, etc. Resulting cells express several surface markers that are characteristic of moDCs
and necessary for antigen presentation [53]. (B) A combination of three main subsets of DCs—cDC1,
cDC2, and pDC—can be obtained from HSC CD34+ using FMS-like tyrosine kinase 3 ligand (FLT3L),
thrombopoietin (TPO), and stem cell factor (SCF). A population similar in marker composition
to cDC1 can be obtained through the direct reprogramming of fibroblasts transduced with the
transcription factor set PU.1 + IRF8 + BATF3 (PIB) [54]. (C) The process of antigen internalization and
DC activation occurs, where the antigens can be tumor vesicles, inactivated tumor cells, or the lysates
of tumor cells. Antigen capture occurs, mainly through receptor-mediated phagocytosis mechanisms
(lectin-dependent endocytosis, Toll-like receptor endocytosis, and macropinocytosis). One method
involves transduction, where the DNA sequence encodes for antigens. An electroporation procedure
is used to internalize mRNA molecules. In addition to antigen processing in complex with MHC
molecules, a combination of activating molecules serves as a stimulus for maturation under in vitro
conditions. The activated (mature) state of DCs is characterized by changes in the expression of
costimulatory molecules (CD80, CD86) and integrin and chemokine receptors (CCR7), as well as the
suppression of adhesion molecule expression.

It is worth noting that ex-vivo-generated cells exhibit transcriptional profile differences
compared to their in vivo counterparts [55,56]. This could potentially be the cause of the
limited therapeutic efficacy observed in DC vaccines utilizing these strategies. Nevertheless,
many preclinical and clinical trials have demonstrated the ability of generated DCs to
activate T-cells and secrete anti-inflammatory cytokines, such as IL-12 [57].

4.1.1. DCs Derived from Monocytes (moDCs)

MoDCs are derived through the directed differentiation of monocytes isolated from
the peripheral blood mononuclear cell fraction (PBMC), obtained from whole blood or
leukapheresis [58,59] (Figure 3). Isolation is commonly performed using plastic adherence,
positive selection using antibody-coated magnetic beads, or flow cytometry. This method
represents the most commonly used approach among published articles [60–64]. CD14+

monocytes are differentiated into immature DCs over several days, alongside various
factors, with the combination of IL-4 and granulocyte–macrophage colony-stimulating
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factor (GM-CSF) being the “gold standard” [65,66]. However, other combinations of
different cytokines have also been tested. DCs differentiated in the presence of GM-CSF and
IL-15 have shown to be the most effective inducers of Th17 responses [67]. The combination
of GM-CSF and IFN-α also contributes to the activation of effector CD8+ lymphocytes and
Th1 cells [68]. Subsequently, immature moDCs are loaded with antigen and matured using
a set of factors. After 1–2 days, mature moDCs present as cells loaded with tumor-associated
antigen (TAA), which are then cryopreserved and thawed as needed [59]. Although this
method is considered to be time-consuming, it is, however, being currently used in several
medical institutions.
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Figure 3. The main stages of creating a personalized DC-based vaccine for cancer treatment. Natural
DCs, CD14+ monocytes, or CD34+ are isolated from leukapheresis material. CD14+ and CD34+

cells are differentiated into immature DCs. For TAA, tumor material is isolated, which can be used
to construct the necessary antigen. Mature DCs are obtained using a combination of activating
molecules and loading TAA. The ready-made injection consists of mature TAA-activated DCs or
vesicles obtained from activated DCs (Dex).

The use of autologous DCs is considered a priority approach, as it avoids the
immune rejection of the cells. Despite the explicit advantages of autologous therapy,
allogeneic DC therapy also has been tested in several clinical trials [69]. Allogeneic DCs
represent an attractive material, as the donor’s immune system is not compromised
due to oncological conditions. However, this approach can be challenging given that it
requires careful donor selection.

4.1.2. DCs Derived from CD34+ Progenitors

Another approach to generating DCs involves differentiating CD34+ hematopoietic
stem progenitor cells (HSPCs). By combining specific factors, certain populations of DCs
can be obtained. For example, in several studies, the generation of cDC1s, the most efficient
in antigen cross-presentation, has been demonstrated using a combination of recombinant
FLT3L, SCF, GM-CSF, and IL-4 [70,71]. Generated cells exhibited the phenotype of true
cDC1s: CD141+ CLEC9A+ XCR1+. However, obtaining an adequate number of cells to
achieve therapeutic effects and multiple infusions remains a challenge [72]. Some studies
have reported an up to 20-fold increase in the yield of generated cDC1s when co-cultured
with HSPCs and the OP9 cell line, compared to classical methods [73,74].

4.1.3. Genetic Reprogramming in DCs

Another approach to obtaining DCs involves genetic reprogramming, which, in theory,
can allow the generation of the desired DC population, depending on the designed genetic
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cassette. Using a lentiviral vector encoding GM-CSF, IL-4, and melanoma-associated
antigen (TRP2), it has been possible to differentiate CD14+ monocytes into moDCs loaded
with the tumor antigen TRP2 from melanoma [75]. A similar approach has been used to
generate induced cDC1s from fibroblasts by transducing a lentiviral vector that induces the
expression of key transcription factors for cDC1s: PU.1, IRF8, and BATF3 [76,77].

4.2. DC Maturation

The next rational step in creating a DC vaccine is the process of DC maturation. This
process involves antigen loading and the activation of DCs using factors that influence
their physiological processes. There is currently no consensus on the optimal composition
of activating molecules. These can include cytokines such as TNF-α, IFN-γ, Toll-like
receptor (TLR) agonists (e.g., LPS), and agonistic recombinant proteins (e.g., CD40L). It
should be noted that IFN-α is included in the cytokine combination in order to mimic
viral infection [78]. Several approaches have been developed for the ex vivo generation
of therapeutic DC vaccines, involving the acquisition of TAA. Such approaches include
synthesized tumor peptides [79], full-length proteins, tumor heat shock proteins [80],
autologous tumor cells (lysates and inactivated cells) [81,82], the introduction of mRNA
encoding tumor antigens [83], and tumor vesicles [84]. All antigen-loading methods have
shown efficacy under in vitro conditions, considering the combination with maturation
factors. The use of tumor lysates is considered the most common approach to loading
tumor cells [85,86]. A significant advantage of this method is enabling the loading of DCs
with a polyantigen complex, including neo-antigens, specific to the patient’s tumor, due to
the cellular heterogeneity of the malignancy.

An alternative approach to loading DCs would be the in vivo delivery of antigens to
DCs, using liposomes [87], genetic vectors [88], or the fusion of antigens with monoclonal
antibodies [89]. In this case, liposomes serve as a delivery method, for example, of RNA
molecules encoding tumor antigens. This method leads to the activation of DCs in situ
through endocytosis mechanisms [87]. Adeno-associated viruses carrying an antigen
sequence can also act as viral delivery agents [88]. Liposomes conjugated with antibodies on
their surfaces can also serve as an alternative antigen delivery method, which can enhance
specific binding to target cells [89]. A proper combination of antigens and activating
molecules, which do not induce immunosuppression or immune tolerance, would ensure
optimal DC maturation and the subsequent priming of T-cells.

4.3. Vesicles Derived from Dendritic Cells

It is known that extracellular vesicles (EVs) released by immune cells modulate cell
interactions in the TME [90]. For example, EVs can inhibit tumor growth, stimulate an
immune response against malignant cells, and improve the infiltration of other immune
cells into the TME [91]. Additionally, EVs can transmit information between immune cells,
allowing them to coordinate their actions and enhance the immune response against the
tumor [92]. Therefore, one of the new approaches to oncotherapy is the use of vesicles
obtained from dendritic cells (Dex), which possess the properties of stem cells and have
several advantages. The utilization of Dex as an alternative antigen delivery method,
and their involvement in the in vivo activation of effector cells, is currently considered a
promising direction in immunotherapy [93].

The process of Dex production involves all previous stages of DC creation, with the
final step being the isolation of these structures from the supernatant through sequential
centrifugation. Dex is naturally secreted by DCs and, similar to the parent cell, possesses
a bilayer lipid membrane with a characteristic repertoire of protein molecules, including
MHC I and MHC II, as well as costimulatory molecules such as CD80 and CD86, necessary
for the interaction and activation of CD8+ and CD4+ T-cells [94]. Additionally, the Dex
membrane expresses intercellular adhesion molecule 1 (ICAM-1) [45]. Research also indi-
cates that Dex contains various cytoplasmic proteins and microRNAs [95]. As extracellular
structures, Dex are less susceptible to tumor immunosuppressive mechanisms, suggesting
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a potentially more effective T-cell response [96]. Moreover, due to their stable configuration
resembling exosomes and other extracellular vesicles, Dex can be stored frozen for at least
six months [97].

4.4. Adaptive Transfer of DC Vaccines

In the context of in vivo conditions, DCs, following successful activation, migrate
to the lymph nodes, via chemokine gradient, in order to interact with T-cells. Therefore,
choosing a delivery method for autologous or allogeneic DC injections is crucial in achieving
the required therapeutic effects. Intradermal injections of labeled DCs have shown that
only approximately 2–4% of DCs migrate to the draining lymph nodes. Remaining cells
perish at the injection site and are subsequently eliminated by immune cells (macrophages).
However, W. Joost Lesterhuis et al. conducted a study comparing different methods of DC
administration. In the study, it was demonstrated that the subcutaneous injection of DCs
leads to the higher induction of anti-tumor properties in T-cells [98]. These findings can be
explained by the fact that only the most mature and differentiated cells reach the lymph
nodes. In intranodal injection, DCs are delivered directly to the site of interaction with
lymphocytes. Nonetheless, this method does not achieve an optimal response, compared
to subcutaneous injection, which may be attributed to the administration of activated and
non-activated DCs, as well as non-viable vaccine cells [99]. Direct injection into the lymph
nodes eliminates the loss of non-migratory cells; however, this approach requires precise
manipulation control.

5. Application of DC Vaccines in Cancer Therapy

Currently, a wealth of preclinical research results has accumulated and been pub-
lished, demonstrating the anti-tumor potential of DC vaccines. Despite progression in
DC development from different precursors, and the utilization of TAA and activation
factor combinations, as mentioned earlier, DC vaccines have shown discouraging results in
clinical practice. Undoubtedly, one of DC vaccines’ advantages is the rare occurrence of
third–fourth-grade adverse effects, as demonstrated in numerous clinical trials. Most side
effects are minimal and characterized by first–second-grade symptoms, such as weakness,
irritation at the injection site, and flu-like symptoms [100]. Toxic effects of the third–fourth
grade have been reported in some published clinical trials and are likely to be associated
with the therapeutic combination used [64].

5.1. Preclinical Studies

The diversity of preclinical studies aimed at assessing the effectiveness of DC-based
vaccines demonstrates the current and future directions of development in this field. We
consider several types of studies that reflect general trends in DC vaccine development.

Accumulating data suggest that DC vaccines, based on cDC1s, are more effective in
priming T-cell responses, compared to similar moDC therapies. In their study, Stephen
Ferris et al. evaluated the induction of T-cell responses by moDCs of bone marrow origin
and generated cDC1s using mouse models. The study compared the ability of moDCs and
cDC1s to directly prime T-cells in lymphatic vessels, without natural DCs’ involvement.
Irf8+32−/− mice, which lack endogenous cDC1s, were used for this purpose. Although the
cross-presentation of antigens was demonstrated in in vitro models, the authors concluded
that moDC injection in Irf8+32−/− mouse xenotransplant models did not lead to tumor-
specific responses without the involvement of cDCs [101]. The results of preclinical studies,
involving various combinations of DC-based therapies, are presented in Table 1.

Shin-Wha Lee et al. found that a therapy approach using CD8α+ DCs, induced
from HSCs, similar to the population of human CD141+ DCs, not only promotes tumor
regression but also contributes to a higher level of immune-stimulating cells such as CD4+,
CD8+, and CD11c+, as well as a lower level of the immunosuppressive cytokine IL-10
at lower therapeutic doses, compared to moDC therapy in a mouse model [102]. This,
therefore, emphasizes the relevance of developing therapeutic vaccines based on cDCs.
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The current preclinical development of cDC-based vaccines aims not only to demonstrate
differences, but also to optimize the protocol of obtaining cDCs from HSCs with maximal
yields and a complete immunophenotypic marker set. Yuanzhi Bian et al. established the
synergistic role of IFN-γ and TLR agonists in activating an immortalized mouse DC cell line
(JAWSII (ATCC® CRL-11904™, Manassas, VA, USA). Their research established a significant
difference in the percentage of activated DCs treated with IFN-γ+poly I:C (polyinosinic-
polycytidylic acid, a TLR agonist), compared to DCs treated with IFN-γ alone, indicating
IFN-γ involvement in TLR signaling pathways upon their co-administration [103]. Mariana
Oliveira et al. found that inhibiting signal transmission through WASp and Arp2/3, using
a small molecule called CK666, promotes cross-presentation by reducing phagosomal
acidification, resulting in antigen release into the cytoplasm. As a result, TAA presentation
is mediated by MHC I molecules instead of MHC II molecules, leading to a higher level
of proliferation of specific CD8+ T-cells in vitro and in vivo and the prolonged survival of
mice receiving CK666-treated DCs [104].

Table 1. Results of some preclinical studies based on DC therapy.

Therapy Model for Research Results References

Comparison of moDC-based
therapy and cDC1-based therapy

Irf8+32−/−, Batf3−/− mice
C57BL/6, CD45.2+ Irf8+32−/−,

mice with subcutaneous
methylcholanthrene

(MCA)-induced
fibrosarcoma injections

Lack of tumor-specific response in the
therapy of moDCs in Irf8+32−/− mice [101]

Comparison of CD8α+DC-based
therapy and moDC-based therapy

C57BL/6 mice with orthotopic
model of ID8 cancer

Reduced volume of ascites in both
groups

Decreased level of regulatory T-cells
(Treg), IL-10, increased expression of

CD3, CD4, CD8, and CD11c markers in
the CD8α+ DC group

[102]

DC-based therapy +
inhibitor Arp2/3 CK666

CD45.2 WT, OT-I and CD45.1
(Ly5.1) mice

The combination of DCs and CK666
inhibitor led to a reduction in

phagosomal acidification and an
increase in CD8+ T-cell proliferation,

compared to the control group

[104]

bmDC therapy +
DNA vaccine Human MUC1 transgenic mice

Tumor regression was observed only in
mice receiving therapy with bmDCs +

DNA vaccine
[105]

DC-based vaccine +
αPD-1

C3H/HeJ mice by transplanting
murine MBT-2 bladder cancer cells

In the group “DC + αPD-1”, there was
higher survival, IFN-γ production, and
frequency of CD8+ and CD4+ T-cells in

the spleen

[106]

Retno Murwanti et al. presented data on combined therapy using a DNA vaccine along
with DCs derived from bone marrow (bmDCs). The DNA vaccine targeting MUC1, a tumor-
associated antigen, and autologous bmDCs was tested as a monotherapy in human MUC1
transgenic mice with colorectal tumors. However, results showed that tumor regression
was only achieved through the combination of the DNA vaccine and bmDCs. Accordingly,
the authors highlighted bmDCs’ crucial contribution in enhancing the anti-tumor immune
response in combination with a DNA vaccine designed for a specific target molecule [105].

Soyeon Lim et al. found that the combination of a DC vaccine loaded with lysate
and an anti-PD-1 antibody (αPD-1) had a more pronounced therapeutic effect, compared
to mice receiving either DC therapy alone or αPD-1 in a mouse model of bladder cancer.
In the study, increased secretion of IFN-γ and splenocyte cytotoxicity were also found in
mice [106]. Felipe Cezar de Mato tested the influence of peptides, isolated from spider
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venom, on the modulation of mouse DCs in vitro, based on previous data on the cytotoxic
properties of these peptides on glioblastoma cells. The study results showed statistically
significant differences in the expression of the costimulatory molecule CD86, when using
the peptide and tumor cell lysate, compared to a DC + lysate, as well as the increased
secretion of some proinflammatory cytokines [107].

5.2. Clinical Studies

To date, a multitude of clinical trials have used different DC vaccines, with the majority
of them utilizing monocyte-derived DCs for loading with antigens [60,62,108,109], while
only a few highlight the use of neoantigens [61]. Some studies employ DCs of natural
myeloid origin [110]; however, the method of generating DCs from monocytes is considered
the most commonly encountered. Selective clinical trials will be discussed further, as they
reflect general trends in vaccine development and demonstrate patient outcomes.

5.2.1. DC Progenitor-Based Therapy

At the end of 2022, data from phase 3 clinical trials of therapy, under the registered
trademark DCVax-L—autologous mature DCs loaded with tumor lysate for the treatment of
glioma (NCT00045968)—were published. PBMCs were obtained by leukapheresis and then
cultured in the presence of GM-CSF and IL-4 cytokines. Antigen loading was performed
using a tumor lysate obtained from tumor resection [111]. The phase 3 trials involved
331 patients, of whom 232 received DCVax-L injections, along with standard temozolomide
treatment, and 99 patients were in the placebo group. The study aimed to analyze the
vaccine effectiveness and its impact on the survival of patients with newly diagnosed
glioblastoma (nGBM) or its recurrent form (rGBM). The study, which started in 2007,
showed a statistically significant increase in patient survival for both NDGB and RGB
patients. The median overall survival (mOS) for 232 NDGB patients receiving DCVax-
L was 19.3 (95% confidence interval (CI) 17.5–21.3) months, compared to 16.5 (95% CI
16.0–17.5) months in the control group (98% CI 0.00–0.94). Among 64 RGB patients receiving
DCVax-L, the mOS was 13.2 (95% CI 9.7–16.8) months after recurrence, compared to 7.8
(95% CI 7.2–8.2) months in the control group (98% CI) [60]. Clinical trial results based on
personalized DC vaccines are presented in Table 2.

Nicholas J Vogelzang and colleagues demonstrated the results of phase 3 of a com-
pleted VIABLE study. The study tested the efficacy of autologous DCs, combined with
docetaxel and prednisone, compared to a placebo group receiving only standard chemother-
apy (NCT02111577), for 1182 men with metastatic castration-resistant prostate cancer. The
vaccine contained moDCs loaded with inactivated human prostate adenocarcinoma cell
line cells (LNCaP). Despite promising results from phase 1/2 clinical trials, prior to VIABLE,
the mOS was 23.9% in the treatment group and 24.3% in the placebo group, indicating no
difference in overall survival between the two groups [112]. The authors also highlighted a
lack of adverse events (AE) in patients. Such results were attributed to the terminal stage of
cancer in many patients, and the fact that the mOS rate in patients who had been receiving
abiraterone or enzalutamide prior to the trial was significantly lower, indicating possible
drug resistance [63].

Trials involving DC transduction for antigen processing are of particular interest. A
phase 1 clinical trial (NCT01730118) tested the therapeutic efficacy of autologous DCs,
transduced with an adenovirus expressing human epidermal growth factor receptor 2
(HEP2), for patients with metastatic solid tumors overexpressing HEP2. These patients
had either progressive disease after standard treatment or no evidence of disease after
tumor resection. Thirty-three patients were included in the study and divided into several
groups, with each receiving different amounts of DCs. One patient achieved a complete
response (CR), one achieved a partial response (PR), and five patients achieved disease
stabilization (DS). Significantly, the study showed no AE with transduced DC therapy [109].
In the study NCT01826877, DCs delivering antigens via an adenoviral vector were also
tested. No significant results were obtained in the study, with only one patient completing
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the treatment and achieving DS after 27 months [108]. Lisa H. Butterfield and colleagues
investigated the effect of transduced DNA vaccines on patients with melanoma, in combi-
nation with intravenously administered IFN-α. The vaccine was constructed against three
commonly known melanoma antigens (tyrosinase, MART-1, and MAGE-A6), in order to
stimulate polyclonal CD8+ and CD4+ responses. Two CR, eight cases of stable disease (SD),
and 14 cases of disease progression (PD) were recorded. In 51% of patients (18 out of 35),
first–fourth-grade AE were observed; however, second–fourth-grade AE were likely associ-
ated with the use of IFN-α. Most participants showed an enhancement in tumor-specific
CD8+ and CD4+ T-cell responses, which did not correlate with increased levels of IL-12.
Moreover, it is worth noting that adding IFN-α did not improve the immune or clinical
response in this trial [113].

As an example of a clinical trial based on a neoantigen DNA vaccine, the study by
Zhenyu Ding et al. (NCT02956551) can be considered. For 12 patients with non-small
cell lung cancer, DCs loaded with neoantigen peptides were used as immunotherapy in
combination with cyclophosphamide treatment. In order to obtain neoantigens, the study
authors performed RNA sequencing, along with the whole exome sequencing of DNA
from patient biopsy material. The method of obtaining monocyte-derived DCs was chosen
quite classically (leukapheresis + IL-4 and GM-CSF). Along with DC vaccination, patients
received maintenance therapy, such as ipilimumab, radiation therapy, or chemotherapy,
as the disease progressed. In the latest published trial report, AE 1–2 were recorded, an
objective response (OR) was achieved in 25% of cases, and it was also mentioned that
personalized neoantigen vaccines have the ability to induce a T-cell response [61].

Koichi Mitsuya and colleagues used polarized α-type 1 DCs in a clinical trial as a
vaccine against multifocal glioblastoma. DCs were activated with a cytokine cocktail and
a complex of synthetic peptides. Combining the vaccine with standard therapy showed
an anti-tumor effect, with an mOS of 19.0 months. The study also found significant IL-
12 secretion by α-type DCs, which correlated with increased levels of IFN-γ, potentially
inducing the IFN-γ-mediated stimulation of effector T-cells. The long-term follow-up of
patients (up to 6 years) revealed better outcomes for those receiving DC therapy, compared
to the control group [114].

5.2.2. Therapy Based on Natural DCs

Clinical trial NCT02574377 evaluated immunological effects in patients with stage 3
resected melanoma, who had undergone autologous myeloid-derived cDC2 or pDC therapy.
Cells were isolated by apheresis and loaded with melanoma-associated peptides. No third-
grade or higher AE were observed, and antigen-specific CD8+ T-cells were present in 80% of
patients, and CD4+ T-cells in 64%, following the first vaccine injection. Median disease-free
survival (mDFS) was 19.4 months, and 6 out of 15 patients showed no recurrence at the
end of the study [110]. In 2023, a phase 1/2 clinical trial of a neoadjuvant DC vaccine for
ovarian cancer treatment was launched, with the selection of natural cDC1 as the most
effective DC population for antigen cross-presentation as a therapy basis (NCT05773859)

5.2.3. Therapy Based on DC-Derived Vesicles (Dex)

Dex vaccines have been tested in a series of clinical trials. In phase 1 of the Dex clinical
trial, those obtained from autologous DCs were administered to patients with metastatic
melanoma. Despite the promising method, only 2 out of 15 participants developed a PR,
while SD was observed in two patients. However, no AE were identified, and 8 out of
13 individuals showed increased effector function of NK cells [115]. In another phase 1
clinical trial, autologous Dex therapy loaded with MAGE tumor antigens demonstrated
MAGE-specific T-cell responses in 33% of patients with non-small cell lung cancer, as well
as an increase in NK lytic activity in 16% of patients [116]. After the phase 2 study using
Dex-stimulated IFN-γ, Dex was shown to enhance anti-tumor immunity in the NK cells
of patients with advanced non-small cell lung cancer (NCT01159288). The results indicate
that the Dex vaccine promotes the increased effector function of NKp30-NK cells, which is
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closely related to high levels of MHC II expression and IFN-γ content. No T-cell response
was detected in patients. One patient developed third-grade hepatotoxicity, while, in other
cases, AE did not exceed the second grade [117].

Table 2. Results from clinical trials using dendritic-cell-based therapeutic vaccines.

Therapy Type of Cancer Participants Efficiency, % References

Neoantigen-primed DC vaccine
+ cyclophosphamide Non-small cell lung cancer 12

25 OR
75 DCR

100 AE (1–2)
NCT02956551

Adenoviral transduced autologous
human epidermal growth factor

receptor (AdHER)/neu DC vaccine

Metastatic solid tumors
characterized by

HER2/Neu expression
33

3 CR
3 PR

15 SD
100 AE

[116]

Autologous DCs transduced with
AdGMCA9 (DC-AdGMCAIX)

Metastatic renal cell
carcinoma 11 45 AE (1–2)

9 SD NCT01826877

Autologous DCs pulsed with tumor
lysate antigen (DCVax®-L)

Newly diagnosed
glioblastoma (NDG);

recurrent glioblastoma
(RG)

232—NDG
64—RG

1,5 AE
19.3 mOS (months),

NDG
13.2 mOS (months), RG

NCT00045968

IKKβ-matured RNA-transfected DC
vaccine + immune checkpoint

blockade (ICB)
Metastatic uveal melanoma 12 No published results NCT04335890

Autologous DCs + docetaxel
+ prednisone

Metastatic
castration-resistant

prostate cancer
1182

23.9 mOS (months)
24.3 mOS (months,

placebo group)
NCT02111577

Alpha-type-1 polarized DC-based
vaccination

Newly diagnosed
high-grade glioma 16 19 mOS (months) [114]

DCs transduced with MART-1,
tyrosinase, and MAGE-A6+ IFN-α Melanoma 35

5.7 PR
23 SD
40 PD

51.4 AE
36 mOS (months)

NCT01622933

Therapy based on natural autologous
cDC2 and pDCs Melanoma 15 19.4 mDFS (months)

100 AE (1–2) NCT02574377

Exosomes derived from
autologous moDCs Metastatic melanoma 15 13 PR

13 SD [58]

IFN-γ-exosomes derived from DC
(IFN-γ- Dex) Non-small cell lung cancer 22

15 mOS (months)
19 AE (1–3)

32 SD (for 4 months)
NCT01159288

OR—objective response, DCR—disease control rate, AE—adverse events, CR—complete response, PR—partial
response, SD—stable disease, mOS—median overall survival, PD—progressive disease, mDFS—median disease-
free survival.

6. Conclusions

Despite the discouraging results of DC-based immunotherapy approaches, addressing
the challenge of enhancing the clinical response remains relevant. Vaccines may be a proper
treatment choice for individuals with tumors non-responsive to CAR-T therapy, immune
checkpoint inhibitors, or monoclonal antibodies and may also be suitable for maintaining
remission. The analysis of different populations of DCs in the human body provides a clear
understanding of their contribution to the mechanisms of immune function—in particular,
anti-tumor processes. Among preclinical studies, there is a trend towards using generated
cDCs and pDCs as immunotherapy, demonstrating promising results. However, obtaining
sufficient quantities of DCs from precursors in vitro to achieve a clinical response in patients
remains an open question.
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In conclusion, it should be noted that numerous clinical trials aiming to test combined
treatment options are currently either in the patient recruitment stage or have not been
completed yet. Although DC-based vaccines face a number of difficulties, recent advances
in the development of new DC vaccination schemes as adjuvant therapy will make a
significant contribution to therapy, especially for solid tumors. It is likely that the new
generation of DC vaccines based on mRNA loading and combined with various immune
adjuvants will lead to a significant T-cell response and a reduction in the influence of the
TME. An alternative and promising therapy option is the direct generation of cDC1 from the
patient’s blood as the most effective APC for an anti-tumor response. The most important
steps in improving DC vaccines are optimizing the methods of differentiating DCs from
precursor cells, selecting the most effective method of loading, and combining DC vaccines
with other forms of therapy, which may contribute to increasing their effectiveness and
achieving the best clinical outcome for cancer patients.
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