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Abstract: Natural products are a boundless source for the development of pharmaceutical agents
against a wide range of human diseases. Accordingly, naturally occurring aurones possess various
biological benefits, such as anticancer, antioxidant, antimicrobial, antidiabetic, anti-inflammatory,
antiviral and neuroprotective effects. In addition, various studies have revealed that aurones are
potential templates for the regulation of diabetes mellitus and its associated complications. Likewise,
certain aurones and their analogues have been found to be remarkable kinase inhibitors of DARK2,
PPAR-γ, PTPM1, AGE, α-amylase and α-glucosidase, which represents a promising approach for
the treatment of chronic metabolic disorders such as diabetes. Therefore, in our present study, we
provide a detailed account of the advances in aurones as antidiabetic agents over the past decade.
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1. Introduction

Among the world’s fastest-growing non-communicable diseases, diabetic mellitus
(DM) is the foremost chronic metabolic disorder, threatening people’s lives and resulting
in economic burden. According to a study by the International Diabetic Federation (IDF),
approximately 552 million people might be suffering from diabetes worldwide by the
year 2030 [1,2]. Blood glucose intolerance is the main reason for the chronic metabolic
disorder called “diabetic mellitus”. The disorder can be classified into three categories:
type-I DM is due to insufficient insulin secretion triggered by mechanical failure of the
pancreas, and type-II DM occurs due to insulin resistance. Gestational and neonatal
diabetes belong to the third category of DM [3,4]. In general, type-II DM is very common,
and it is induced by lifestyle habits and hereditary factors [5]. Currently, various types
of drugs, such as sulfonylureas, biguanides, thiazolidinediones, α-glucosidase inhibitors,
meglitinides, GLP-1 mimetics, DPP-IV inhibitors, SGLT2 inhibitors, etc., are available to
treat diabetes and associated mechanisms [6]. However, medicines currently in use have
various moderate to lethal adverse effects, such as dehydration, diarrhea, constipation,
bloating, nausea, gastrointestinal problems, kidney disease, respiratory tract infections,
coronary artery diseases (CAD), dermatological problems, and injection site infections,
etc. In addition, the number of people being diagnosed with diabetes is also increasing
massively. Therefore, new therapeutic approaches and amplified drugs are needed to tackle
this complex-patterned metabolic disorder.

In this regard, natural products are a prominent resource for modern drug discovery,
having already provided a range of therapeutic drugs [7,8]. For instance, broad-spectrum
antibiotics such as β-lactam, tetracycline, ciprofloxacin and erythromycin are still important
clinical drugs of choice for various diseases today [9,10]. In addition, people are now
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aware of the role of natural antioxidants in the prevention of various non-communicable
diseases and of their health promoting benefits [11,12]. Therefore, fruits and food bev-
erages that are richer in polyphenolics such as anthocyanins, catechins, phenolic acids,
flavonoids, stilbenes and resveratrols have strategic key roles in health promotion and
disease prevention [12–14].

Interestingly, aurones [2-benzylidenebenzofuran-3(2H)-ones] are naturally occurring
five-membered flavonoids with benzofuran class heterocycles having benzylidene moiety
at C-2. In the last decade, they have been recognized as a template for diverse pharma-
cological activities (Figure 1), such as antioxidant, antimicrobial, antimalarial, antitumor,
antidiabetic and neuroprotective capabilities [15]. Moreover, a recent study also summa-
rized the potential for using aurone scaffolds as markers in the preventive and therapeutic
mechanisms of various cancers [16]. Accordingly, aurone scaffolds exhibit a wide range of
anticancer properties through various modes of action, such as adenosine receptor, cyclic
dependent kinase, DNA scissoring, histone deacetylase, sirtuins, topoisomerase, tubulin,
tyrosinase, TNFα, PEG2 and nitric oxide inhibitory mechanisms. However, there have
been no significant comprehensive studies on the antidiabetic potentialities of aurones.
Therefore, in the current study, we provide a focused account of advances in the use of
aurones in the amelioration of glucose metabolisms and in antidiabetic drug development.
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species. In addition to plant sources, aurones are also distributed in certain brown algae, 
bryophytes and gymnosperms class species [17,18]. Indeed, aurones occur in minute 
concentrations in natural sources and are therefore described as minor flavonoids that 
are not yet well explored. Principally, aurones act as a coloring agent, giving bright and 
attractive colors to flowers such as cosmos, snapdragons and some ornamental plants, 
etc. Therefore, aurones also play an important role in pollination, which gives them an 
essential role in crop production from an agricultural point of view [19]. Aurones are 
distributed in a limited number of genera, such as Asteraceae, Anacardiaceae, Cactaceae, 
Cyperaceae, Fabaceae, Gesneriaceae, Oxalidaceae, Moraceae, Plumbaginaceae, Rhamnaceae, 
Rosaceae, Rubiaceae and Scrophulariaceae, etc. [18,20]. Also, depending on their taxonomic 
importance in the plant kingdom, aurones may have various skeletal substitution pat-
terns, as shown in Figure 2. Principally, aurones can be classified as 4-hydroxyaurones, 
4-deoxyaurones, penylated aurones, glycosylated aurones, epimeric mixtures (aurones in 
bimers or trimers), etc. Interestingly, the Asteraceae species is rich in 4-deoxyaurones, for 
instance Sulfuretin, Sulfurein, Maritimetin, Maritimein, Leptosidin and Leptosin, etc. 
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2. Occurrence and Distribution of Aurones

Aurones are the essential plant secondary metabolites of biologically stimulating
natural products and are widely distributed in the flowers and fruits of various plants
species. In addition to plant sources, aurones are also distributed in certain brown algae,
bryophytes and gymnosperms class species [17,18]. Indeed, aurones occur in minute
concentrations in natural sources and are therefore described as minor flavonoids that
are not yet well explored. Principally, aurones act as a coloring agent, giving bright and
attractive colors to flowers such as cosmos, snapdragons and some ornamental plants, etc.
Therefore, aurones also play an important role in pollination, which gives them an essential
role in crop production from an agricultural point of view [19]. Aurones are distributed
in a limited number of genera, such as Asteraceae, Anacardiaceae, Cactaceae, Cyperaceae,
Fabaceae, Gesneriaceae, Oxalidaceae, Moraceae, Plumbaginaceae, Rhamnaceae, Rosaceae, Rubiaceae
and Scrophulariaceae, etc. [18,20]. Also, depending on their taxonomic importance in the
plant kingdom, aurones may have various skeletal substitution patterns, as shown in
Figure 2. Principally, aurones can be classified as 4-hydroxyaurones, 4-deoxyaurones,
penylated aurones, glycosylated aurones, epimeric mixtures (aurones in bimers or trimers),
etc. Interestingly, the Asteraceae species is rich in 4-deoxyaurones, for instance Sulfuretin,
Sulfurein, Maritimetin, Maritimein, Leptosidin and Leptosin, etc. [18,21]. In addition, the
flowers of the Asteraceae species are rich in aurone glycosides such as di-glucosides and
acetylated aurone glucosides. In particular, the aurones isolated from the sunflower family
or the Bidens genus interestingly showed hydroxylation in the 6-position (ring A) and the 3-
and 4-positions (in ring B), but not in the 4-position of the aurone skeleton [20]. Moreover,
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the Moraceae species was rich in structurally distinct auronols, prenylated and geranylated
aurones [22]. Interestingly, various aurone dimers such as flavanone-auronol, isoflavanone-
auronol, deoxyauronol-auronol, auronol-auronol (biauronols) and other epimeric mixtures
from the plant species Anacardiaceae and Rhamnaceae have also been reported [20]. Moreover,
the 4-, 6-hydroxyl substitutions in the ring-A and the 4′, 3′-hydroxyl substitutions in
the ring-B of aroune are most common and are related with the biosynthetic pathways.
However, the skeletal substitutions of aurones depended on the biochemical reactions
connected in the biosynthesis of aurones [23], which might vary by family and tropical
subcontinent depending on seasonal temperatures.
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3. Biosynthesis of Aurones

The occurrences of secondary metabolites, for example, polyphenols, alkaloids, ter-
penoids, steroids, polyketides, and so on are common in the plant kingdom. In partic-
ular, secondary metabolites which are produced in plants have diverse functions such
as photoprotection, enzyme modulation, defense against pathogen invasion, reproduc-
tive persistence, symbiosis and other growth-regulating defenses mechanisms. However,
polyphenols represent the largest family of plant secondary metabolites formed via bio-
genesis pathways and are generally involved in protection against disease mechanisms
and photoprotection. The biosynthesis or biogenesis of aurones in plant kingdom can
be comprehensively classified into two steps: the primary step involves the synthesis of
2′-hydroxychalcones from coumaryl-CoA, and the second step involves hydroxylation
and oxidative cyclization of hydroxychalcones [24–26]. The biogenesis of chalcones was
catalyzed by chalcone synthase (CHS) via the reaction between the acetate and shikimic
acid, which has been well described in several reports [27,28]. Therefore, the present sec-
tion discusses the biosynthesis of aurones from chalcones in the following mechanisms as
described in Figure 3. Principally, aurone biosynthesis was catalyzed by two important
enzymes such as chalcone hydroxylase (CHH) and aurone synthase (AUS) [24,25]. The
homolog of plant polyphenol oxidase (PPO), chalcone 3-hydroxylase (CH3H) enzyme,
catalyzes the addition of hydroxyl groups to the ortho-position to the existing hydroxyl
group on ring-B, through oxidation prototyping [21]. Likewise, the second enzyme aurone
synthase (AUS) plays a crucial role in the cyclization to form benzofuran skeleton [25],
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while the other enzyme chalcone 4′-glucosyl transferase (C4′GT) effectively catalyzes in
the formation of glycosylated aurones in the plant kingdom. Therefore, the PPO plays
a key role in the oxidation and existence of diverse substitutional pattern of aurones in
plant sources.
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4. Outline on the Concealed Pathways of Aurone Synthesis

In general, the isolation of natural products is a lengthy process and sometimes only
very rare pure substances are obtained, so the structure elucidation is often insufficient.
However, once the structure is confirmed, biological studies sometimes require more
substance to conduct experiments and sometimes take years to establish their prominence.
In such a case, medicinal chemistry is the promising avenue to synthesize and provide
the desired natural compounds for clinical and therapeutic purposes without distressing
the natural sources. Accordingly, the synthesis of aurones with grouped substituents
worked with admittance to pharmaceutical and materials science applications. According
to the literature, the highly selective synthesis of aurones can be basically divided into five
synthetic routes based on the starting materials.

4.1. Route 1: Condensation of Benzofuran-3(2H)-one

This is the simplest approach to obtain aurones from easily accessible starting materi-
als such as benzofuran-3-one 16 and aldehydes 17 (Scheme 1). Lunven et al. [29] prepared
a series of aurones 18 in 17–85% yields using a base (K2CO3)-mediated condensation of
benzofuran-3-one with various aldehydes. Later, Schmitt and Handy [30] also prepared sev-
eral aurones in 40–83% yields using neutral alumina-mediated Knoevenagel condensation
of benzofuran-3-one 16 with various aldehydes 17. Likewise, Taylor et al. [31] proposed a
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rapid synthesis of aurones using a eutectic solvent under microwave irradiation (MWI) for
30 min, resulting in 17–96% yields.
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Scheme 1. Synthesis of aurones; Reagents and conditions: (i) KOH (50 mol%), alcohol, reflux;
(ii) neutral alumina, DCM (dry), N2, rt, overnight; (iii) Choline chloride, urea, MWI, 30 min. Pink
color represents benzofuran moiety and blue color represents benzylidene moiety.

4.2. Route 2: Annulation of Ortho-Iodophenol

The second synthetic approach to aurones is the Pd-catalyzed regioselective coupling
of o-iodophenols 19 with terminal alkynes 20 (Scheme 2) under a carbonylation source. As
such, Qi and co-workers [32] reported a palladium-catalyzed synthesis of aurones 21 in
51–82% yields via an innovative carbonylation approach using formic acid as the CO source
and acetic anhydride as the additive. Later, Xi et al. [33] proposed another palladium-
catalyzed regioselective carbonylation reaction under Et3N, which provided aurones 21 in
good to excellent yields (72–93%).
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Me2CO, PhMe, 80 ◦C; (ii) Pd(OAc)2 (5 mol%), dppf (10 mol%), Et3N, CO, THF, 50 ◦C, 24 h. Pink color
represents benzofuran moiety and blue color represents benzylidene moiety.

4.3. Route 3: Cyclization of Chalcones

This approach is similar to the biosynthesis of aurones, in which 2′-hydroxychalcones
undergo dehydrogenative cyclization on exposure with oxidative agents (Scheme 3). In
2006, Agrawal and Soni [34] first proposed a convenient method for the synthesis of aurones
23 excellent yields (77–85%) via the oxidation of 2′-hydroxychalcones 22 in presence of
mercury(II) acetate in pyridine under refluxed conditions for 10–15 min. Subsequently,
the same research group also proposed a second oxidation method, which also succeeded
in oxidizing chalcone 22 to aurones 23 in 70–80% yields by using a catalytic amount of
copper(II) bromide in DMSO under refluxed conditions for 60–90 min. Later, Yatabe and
co-workers [35] also developed another oxidation procedure for cyclization of chalcones to
aurones 24 in 16–80% yields with <99% enantiomeric selectivity by using the heterogeneous
nano-catalyst Pd-Au-supported CeO2.
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4.4. Route 4: Intramolecular Rearrangement of Oxiranes

In this approach, oxiranes were initially prepared by the oxidation of chalcones using
H2O2 (30%). Further, a copper-catalyzed tandem intramolecular ring-opening of oxiranes
25 followed by Ullman coupling [36] provided various stereoselective (Z)-aurones 26 in
moderate to good yields (57–84%) (Scheme 4). Certainly, this is the best one-pot tandem
intramolecular stereoselective approach to attain desired natural aurone analogues from
inexpensive starting materials.
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4.5. Route 5: Ring Contraction of Flavones

This approach enables the synthesis of hydride aurone analogues as aspects of heter-
ocycles-assimilated aurones for the design and development of new therapeutic agents
(Scheme 5). Initially, Kandioller et al. [37] proposed a ring-contraction reaction by treating
3-tosylflavones 27 with (1′-alkyl)amines to obtain the corresponding regiomeric mixture of
E/Z 2′-alkylamino aurones 28 in 81–93% yields. Interestingly, upon further treatment with
Lawesson’s reagent, the alkylamino-substituted aurones gave exclusively the stereoselec-
tive E-isomers of 3(2H)-thiaurones 29 in 88% yield. Likewise, Praveen and Ahmed [38] pro-
posed a convenient approach to stereospecific E-aminated aurones 30 in 61–83% yields via
the sequential aza-Michael addition, ring opening and subsequent ring-closing approach.
This method is very facile as the 3-bromoflavones 27 provided the desired E-aminated
aurones 30 upon treatment with amines or N-phenylurea in the presence of KOtBu and CuI
in DMF under mild conditions.
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5. Antidiabetic Potentialities of Aurones

Aurones are the most interesting secondary metabolites of plants, since they possess
diverse pharmacological activities due to structurally distinctive substitutions and possible
skeletal modifications via approaches of medicinal chemistry [39]. Certainly, aurones are
specific templates with compelling antioxidant potential, as the polyhydroxy substitution
pattern and the conjugated benzylidene moiety play crucial roles in shielding free radicals
through H-atom donor and electron-transfer mechanisms [40,41]. Hence, aurones also
play a crucial role in the prevention and diagnosis of the multiple pathogenesis of various
diseases such as cancers, diabetes, inflammation and neurodegenerative disorders, etc. [40].
In fact, very few studies have been reported on the prospective of aurones as antidiabetic
drug developments. Consequently, the prominence of aurones and their key role in the
prevention and treatment of diabetes mellitus have been summarized in this section.

Accordingly, the intention of diabetes mellitus and the associated molecular mecha-
nism can be classified broadly into two pathways: (i) non-enzymatic pathway and (ii) enzy-
matic pathway. Extensive studies are currently being conducted on the enzymatic catalysis
pathways and their prevention of diabetes mellitus [42,43]. Among them, the inhibitors of
α-glucosidase, aldose reductase (ALR2), diacylglycerol acyltransferase (DGAT), protein
tyrosine phosphatase localized to mitochondrion 1 (PTPM1), peroxisome proliferator-
activated receptor gamma (PPARγ), DRAK2 and advanced glycation end products (AGE)
are excessively studied enzymatic mechanisms of diabetes [42]. Excitingly, the anural
aurone, i.e., sulfuretin 3, showed broad-spectrum antidiabetic results through various
pathways (Table 1, Figure 4). As such, a study has revealed that sulfuretin 3 showed
significant ALR2 activity with identical IC50 1.3 µM compared to the standard drug Epalre-
stat [44]. Further, the study also disclosed that sulfuretin plays a crucial role in inhibiting
AGE formation, with an IC50 124.7 µM, which is 10-fold lower than that of the reference
aminoguanidine (1231.0 µM). Another study found that sulfuretin 3 had a potential antidi-
abetic strategy of suppressing the molecular mechanisms of NF-κB, which is also beneficial
in preventing to damage of pancreatic β-cells [45]. Likewise, another study also disclosed
that sulferetin 3 is useful as an antidiabetic agent due to its ability to quench Maillard
reactions, a non-enzymatic reaction of glucose with protein to form reversible Schiff’s base
adducts [46,47].
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In 2019, Zhu and co-workers [48] reported structurally interesting C-prenylated au-
rones 31 and 32 from the seed extract of Psoralea corylifolia. Subsequently, an in vitro enzyme
inhibitory evaluation of plant metabolites was performed against diabetes targets such
as diacylglycerol acyltransferase (DGAT), protein tyrosine phosphatase 1B (PTP1B) and
α-glucosidase [48]. The aurone 31 showed remarkable antidiabetic activities against PTP1B
(IC50 11.3 µM) and DGAT (IC50 35.2 µM). While the aurones 31 and 32 displayed promi-
nent α-glucosidase enzyme inhibitory activities (Table 1, Figure 4) such as IC50 73.8 and
62.1 µM, respectively.

In 2021, Chen and co-workers [49] isolated a C-prenylated aurone 33 from the stems of
Acanthopanax senticosus. The subsequent in vitro α-glucosidase inhibitory study disclosed
that compound 33 was beneficial as prominent antidiabetic agent with IC50 64.1 µM as
compared to the standard acarbose (IC50 214.5 µM). A recent study [50] also revealed
another interesting aurone glycoside 34 (Figure 4) from Saussurea involucrate and showed
potent inhibitory activities against α-glucosidase enzyme with IC50 47.1 µM compared to
the standard acarbose.

In addition, Mai and co-workers [51] isolated three structurally interesting C-geranylated
aurones 35–37 (Figure 5) from the leaves of Artocarpus altilis. Subsequent antidiabetic
bioactivity experiments revealed that the geranylated aurones 35–37 presented potent
α-glucosidase inhibitory concentrations IC50 of 4.9 µM, 5.4 µM and 5.1 µM, respectively,
than the standard acarbose (241.8 µM). Therefore, these natural aurones could be beneficial
for the development of principal clinical antidiabetic agents; however, in vivo experimental
studies and drug toxicity of aurones are still needed.

Curr. Issues Mol. Biol. 2023, 3, FOR PEER REVIEW 8 
 

 

 

Figure 4. Natural aurones as antidiabetic lead agents. Pink color represents benzofuran moiety and 

blue color represents benzylidene moiety. 

In 2019, Zhu and co-workers [48] reported structurally interesting C-prenylated 

aurones 31 and 32 from the seed extract of Psoralea corylifolia. Subsequently, an in vitro 

enzyme inhibitory evaluation of plant metabolites was performed against diabetes tar-

gets such as diacylglycerol acyltransferase (DGAT), protein tyrosine phosphatase 1B 

(PTP1B) and α-glucosidase [48]. The aurone 31 showed remarkable antidiabetic activities 

against PTP1B (IC50 11.3µM) and DGAT (IC50 35.2µM). While the aurones 31 and 32 dis-

played prominent α-glucosidase enzyme inhibitory activities (Table 1, Figure 4) such as 

IC50 73.8 and 62.1 µM, respectively. 

In 2021, Chen and co-workers [49] isolated a C-prenylated aurone 33 from the stems 

of Acanthopanax senticosus. The subsequent in vitro α-glucosidase inhibitory study dis-

closed that compound 33 was beneficial as prominent antidiabetic agent with IC50 64.1 

µM as compared to the standard acarbose (IC50 214.5 µM). A recent study [50] also re-

vealed another interesting aurone glycoside 34 (Figure 4) from Saussurea involucrate and 

showed potent inhibitory activities against α-glucosidase enzyme with IC50 47.1 µM 

compared to the standard acarbose. 

In addition, Mai and co-workers [51] isolated three structurally interesting 

C-geranylated aurones 35–37 (Figure 5) from the leaves of Artocarpus altilis. Subsequent 

antidiabetic bioactivity experiments revealed that the geranylated aurones 35–37 pre-

sented potent α-glucosidase inhibitory concentrations IC50 of 4.9 µM, 5.4 µM and 5.1 µM, 

respectively, than the standard acarbose (241.8 µM). Therefore, these natural aurones 

could be beneficial for the development of principal clinical antidiabetic agents; however, 

in vivo experimental studies and drug toxicity of aurones are still needed. 

 

Figure 5. Natural geranylated aurones as antidiabetic lead agents. Pink color represents benzofuran
moiety and blue color represents benzylidene moiety.



Curr. Issues Mol. Biol. 2023, 45 8469

In the same way, Wang et al. [52] investigated a series of synthetic aurones as target of
death-associated protein kinase-related apoptosis-inducing kinase-2 (DARK2) inhibitors.
In a preliminary examination of the study revealed that the aurone 38 displayed significant
DARK2 inhibition with an IC50 of 3.15 µM. Subsequently, quantified structure–activity
relationship study results concealed that the aurones 39 and 40 (Figure 6) displayed superior
activities with IC50 0.33 µM and 0.25 µM in a dose-dependent manner and might be
beneficial for antidiabetic therapeutic agents to protect islet β-cells from apoptosis.
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Further, Sun and co-workers [53] proposed a series of 6-hydroxyaurones as target for
the development of new α-glucosidase enzyme inhibitors. The results of inhibitory kinetics
and molecular docking studies revealed that the aurone 41 was a potent α-glucosidase
inhibitor with an IC50 30.94 µM than standard acarbose (IC50 50.30 µM). Interestingly, the
compound 41 exhibited an identical glucose consumption-promoting activity in HepG2
cells at 1 µM as like metformin.

Also, mitoNEET is a 2Fe-2S cluster membrane protein and a key regulator of mitochon-
drial functions in various metabolic diseases such as cancers and obesity, etc. [54]. Also, the
potent antidiabetic drugs such as rosiglitazone and pioglitazone were found to be effective
mitoNEET binders, and hence, the protein mitoNEET was considered as diabetic target.
Accordingly, a rationalized identification study of the mitoNEET inhibitor of mitochondrial
protein revealed that aurone 42 (Figure 6) exhibited potent binding affinity Ki 6nM with
mitoNEET [55].

Later, Roshanzamir and co-authors [56] proposed a structure-optimized study of a
series of aurones to evaluate their in vitro and in silico biological activities against porcine
pancreatic α-amylase (PPA). Accordingly, the study revealed that the hydroxyl groups on
both phenyl rings of the aurone are crucial for the formation of hydrogen bonding inter-
actions with the catalytic residues of the binding target and for their increased inhibitory
activities. Also, the aurone (43) with 4,6-dihyroxybenzofuranone and a 4′-hydroxyl group
on the benzylidene (Figure 7) showed important binding interactions with amino acid
residues in the active sites of the target PPA. Therefore, the aurone 43 showed an interesting
in vitro enzyme inhibitory IC50 40.25 µM of PPA activity (Table 1) and could be beneficial
as a leading drug template for future developments of anti-diabetic drugs. In addition, a
recent study [57] also reflected a series of synthesized phenylureidoaurones as targets for
the development of effective anti-diabetic therapeutic agents. Consequently, the conducted
enzyme inhibitory and computational study identified two phenylureidoaurones 44 and
45 (Figure 7) with strategic anti-diabetic results. The aurone 44 demonstrated principal
inhibitory activity on α-amylase with an IC50 142.0 µM, and a moderate α-glucosidase
inhibition IC50 292.7µM compared to standard acarbose. However, the bis-phenylureido
aurone 45 showed the highest α-glucosidase inhibition with an IC50 of 6.6 µM and could
be beneficial for the development of lead anti-diabetic drugs.
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Table 1. Summary of aurones and analogue aurones listed as antidiabetic lead agents.

Compound Antidiabetic Target IC50 Ref.

Natural aurones

Sulfuretin (3) ALR2 1.3 µM [44]

AGE 124.7 µM [44]

NF-κB - [45]

Millard reaction
(non-enzyme) inhibitor - [46]

(Z)-6-Hydroxy-2-(4-hydroxybenzylidene)-7-(3-methylbut-2-en-1-
yl)benzofuran-3(2H)-one (31) PTP1B 11.3 µM [48]

DGAT 35.2 µM

α-glucosidase 73.8 µM

(R,Z)-2-(3,4-Dihydroxybenzylidene)-7-(2-hydroxypropan-2-yl)-7,8-
dihydro-2H-indeno[4,5-b]furan-3(6H)-one (32) α-glucosidase 62.1 µM [48]

(2Z)-2-[(4′-Hydroxy-3′-methoxyphenyl)
methylene]-6-methoxy-7-prenyl-3(2H)-benzofurane (33) α-glucosidase 64.1 µM [49]

Licoagroaurone-6-O-α-L-arabinopyranoside (34) α-glucosidase 47.1 µM [50]

Altilisin H (35) α-glucosidase 4.9 µM [51]

Altilisin I (36) α-glucosidase 5.4 µM [51]

Altilisin J (37) α-glucosidase 5.1 µM [51]

Synthetic aurones

(Z)-2-(3,4-Dihydroxybenzylidene)benzofuran-3(2H)-one (38) DARK2 3.15 µM [52]

(Z)-2-(3-Ethoxy-4-hydroxybenzylidene)-5-methoxybenzofuran-3(2H)-
one (39) DARK2 0.33 µM [52]

(Z)-2-(3,4-Dihydroxybenzylidene)-5-methoxybenzofuran-3(2H)-
one (40) DARK2 0.25 µM [52]

(Z)-2-Benzylidene-5-(4-fluorophenyl)-6-hydroxybenzofuran-3(2H)-
one (41) α-glucosidase 30.94 nM [53]

(Z)-6-Hydroxy-2-(2-hydroxybenzylidene)benzofuran-3(2H)-one (42) mitoNEET 0.62 nM [55]

(Z)-4,6-dihydroxy-2-(4-hydroxy-3-methoxybenzylidene)benzofuran-
3(2H)-one (43) PPA 40.25 µM [56]

(Z)-1-(4-((5-methyl-3-oxobenzofuran-2(3H)-ylidene)methyl)phenyl)-3-
phenylurea (44) α-glucosidase 292.7 µM [57]

(Z)-1-(4-((5-(3-Phenylureido)-3-oxobenzofuran-2(3H)-
ylidene)methyl)phenyl)-3-phenylurea (45)

α-amylase 142.0 µM [57]
α-glucosidase 6.6 µM [57]

(Z)-6-(2-benzylidene-4,6-dihydroxy-3-oxo-2,3-dihydrobenzofuran-7-
yl)-7-methoxy-2H-chromen-2-one (46)

α-glucosidase 3.55 µM [58]
α-amylase 10.97 µM [58]

Analogue aurones

(Z)-4-(5-((3-oxobenzo[b]thiophen-2(3H)-ylidene)methyl)furan-2-
yl)benzoic
acid (47)

PTPM1 11.8 µM [59]

(E)-5,6-dimethoxy-2-(2-(2-(thiophen-2-yl)ethoxy)
benzylidene)-2,3-dihydro-1H-inden-1-one (48) PPAR-γ 0.61 µM [60]

(E)-2-(4-(2-(5-ethylpyridin-2-yl)ethoxy)benzylidene)-5,6-dimethoxy-
2,3-dihydro-1H-inden-1-one (49) PPAR-γ 1.20 µM [60]
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In addition, Sun and co-workers [58] also considered four series of natural coumarin,
i.e., umbelliferon integrated synthesized hybrids, as targets for the development of novel
antidiabetic agents. As a result of the in vitro enzyme inhibitory studies and its kinetic
analysis, the coumarin–aurone hybrid 46 was found to have strategic α-amylase and
α-glucosidase inhibition activities with IC50 10.97 and 3.55 µM, respectively. Moreover,
the coumarin–aurone hybrid 46 presented both α-glucosidase and α-amylase equally as
the standard acarbose drug and also exhibited HepG2 cell-based glucose consumption-
promoting activity in insulin and non-insulin resistant models. Therefore, this dual-
pharmacophore-based scaffold 46 could be beneficial for drug developments to tackle
the complex pattern disorders such as diabetes mellitus.

Owing to the significant antidiabetic activities of natural aurones, some examples of
aurone analogues have also been identified as targets of inhibitory agents via in silico and
synthetic approaches. Accordingly, Park et al. [59] reported a quantified in silico study to
identify protein tyrosine phosphatase mitochondrial 1 (PTPM1) inhibitors for the treatment
of type II diabetes. The computational screening of inhibitors of human PTPM1 conceals
that an analogue aroune 47 (Figure 8) exhibited potent IC50 11.8 µM concentrations, and
further clinical experimental studies are needed to establish its therapeutic potency. In
addition, Chaturvedi and co-workers [60] reported various series of synthetic analogues as
a target for the development of effective antidiabetic lead agents. Accordingly, the in vitro
inhibitory and molecular docking studies showed that the analogue of aurones 48 and 49
exhibited strong IC50 0.62 µM and 1.20 µM concentrations, respectively, against peroxisome
proliferator-activated receptor-γ (PPAR-γ).
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Glycosidase Activity of Aurones

Glycosidase enzymes are important for the catalytic mechanisms of hydrolysis of
glycosidic bonds of polysaccharides. To date, more than 50 families of glucosidases have
been compiled in the literature based on amino-acid sequences [61,62]. However, based
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on the catalytic activity, glycosidases can be categorized into (i) endo-glycosidase that hy-
drolyze the internal glycosidic bonds of oligosaccharides and the other (ii) exo-glycosidases
that hydrolyze a single monosaccharide (at control rates) from the non-reducing terminus
of the oligosaccharide [61]. Glycosidases are particularly degradative enzymes for the
digestion of extracellular carbohydrates into monosaccharides. Moreover, glycosidase also
accomplish another important degradative intracellular function, namely the catabolism of
polysaccharides, as a physiological function of the energy source [62]. Therefore, glycosides
are responsible for both extracellular and intracellular activities and are necessary for
carbohydrate and glycoprotein degradation.

Interestingly, a recent study [63] revealed that aurone showed significant glycosidase
activity in their in vitro enzymetic model experiments. Accordingly, an analogue aurone
uridine diphosphate glycosyltransferase (OsUGT1) was isolated from the medicinal plant,
Ornithogalum saundersiae, and prepared as a biocatalyst for the glycosylation reaction. Later,
a representative aurone sulfuretin was subjected to glycosylation with the sugar donor UDP-
O-glucose in the presence of catalyst OsUGT1, as characterized in Figure 9. Subsequently,
through purification and characterization, it was found that the glycosylation reaction yields
three regioselective monoglycosides such as sulfuretin 3′-O-glucoside (50), sulfuretin 4′-O-
glucoside (51) and sulfuretin 6-O-glucoside (4). Further, the catalytic glycosidase ability of
OsUGT1 was reexamined through a transglycosylation approach using an alternative ortho-
nitrophenyl-β-O-glucoside (oNP-β-Glc). Accordingly, intermolecular transglycosylation
between sulfuretin and oNP-β-Glc afforded the corresponding monoglycosides (50 and
51) and deglucosylated O-nitrophenol (oNP). Overall, the study reveals the biocatalytic
application of OsUGT1 and the biosynthesis of aurone glucosides.
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Indeed, glycosidase activity and anti-diabetic activity are two different parameters,
but aurone scaffolds showed interesting results in both studies. The authors of the current
study hypothesize that the aurone may be beneficial in delaying glucose digestion since; as
discussed above, aurones readily bind glucose and forms aurone glycosides via enzymatic
biosynthetic pathways, while in the currently practiced anti-diabetic diagnosis tactics,
delayed glucose digestion is one of the key processes of blood glucose tolerance. Therefore,
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concurrent antidiabetic studies of aurones are required for their capabilities in delayed
sugar digestion experiments.

6. Conclusions and Future Perspectives

In summary, aurone is an interesting and skillful template for diverse biological activi-
ties and potential materials science applications. Additionally, various studies have shown
that aurones play a strategic physiological role in the inhibition and prevention of tumors
and certain types of cancers. Equally, plant aurones act as proficient anti-oxidants as they
are rich in poly-hydroxylated and active-benzylidene moieties which play a crucial role in
shielding exogenous and endogenous free-radicals. Therefore, the persuasive antioxidant
properties of aurones could be helpful in retarding the metabolic pathways of diabetes
mellitus. In addition, the studies summarized above on the anti-diabetic potentialities of
aurones and their analogues also showed promising results on impaired glucose amelio-
ration and inhibition of the various diabetic molecular signaling pathways. In particular,
sulfuretin 3 showed promising antidiabetic activities through targeting various chronic
metabolic signaling pathways. In addition, the C-gernalylated aurones, i.e., Altilisin H-I
(35–37), showed significant α-glucosidase inhibition IC50 4.9–5.4 µM and could be valuable
for the development of antidiabetic drug leads. Accordingly, aurones are considered as
key scaffolds in delaying glucose digestion and absorption and are the most important
antidiabetic approach in postprandial hyperglycemia. Sequentially, the aurones with po-
tential α-glucosidase inhibitors are also constructively effective in inhibiting or preventing
various metabolic diseases such as cancers, viral diseases, etc. However, today there is
only very limited clinical evidence on antidiabetic studies of aurones, which are also ex-
clusively based on cell-based studies. Further imminent studies are required to develop
effective anti-diabetic aurones and to address this complex-patterned metabolic disorder.
Considering this, the current review could be useful as a template for future design and
development of biologically important aurones.
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