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Abstract: Clear cell renal cell carcinoma (ccRCC) is the most frequent form of kidney cancer.
Metastatic stages of ccRCC reduce the five-year survival rate to 15%. In this report, we analyze
the ccRCC-induced remodeling of the five KEGG-constructed excretory functional pathways in a
surgically removed right kidney and its metastasis in the chest wall from the perspective of the
Genomic Fabric Paradigm (GFP). The GFP characterizes every single gene in each region by these
independent variables: the average expression level (AVE), relative expression variability (REV),
and expression correlation (COR) with each other gene. While the traditional approach is limited
to only AVE analysis, the novel REV analysis identifies the genes whose correct expression level
is critical for cell survival and proliferation. The COR analysis determines the real gene networks
responsible for functional pathways. The analyses covered the pathways for aldosterone-regulated
sodium reabsorption, collecting duct acid secretion, endocrine and other factor-regulated sodium
reabsorption, proximal tubule bicarbonate reclamation, and vasopressin-regulated water reabsorp-
tion. The present study confirms the conclusion of our previously published articles on prostate
and kidney cancers that even equally graded cancer nodules from the same tumor have different
transcriptomic topologies. Therefore, the personalization of anti-cancer therapy should go beyond
the individual, to his/her major cancer nodules.

Keywords: ADCY6; aldosterone-regulated sodium reabsorption; AP2A1; AVP; collecting duct acid
secretion; CREB3L4; endocrine and other factor-regulated sodium reabsorption; ESR1; proximal
tubule bicarbonate reclamation; vasopressin-regulated water reabsorption

1. Introduction
Limits of the Gene Biomarker Paradigm in Cancer Diagnostics and Therapy

Cancer is a major cause of death worldwide and is likely the most funded and re-
searched group of lethal diseases. Depending on the tumor localization, size, and metastatic
stage, treatment options in specialized clinics may include surgery, chemotherapy, radi-
ation therapy, hormone therapy, bone marrow transplantation, targeted therapy, and
immunotherapy [1]. For smaller tumors, at early stages, thermal ablation offers a low-risk
and minimally invasive solution [2,3]. Nevertheless, despite all the academic and indus-
try efforts, we still do not have an efficient answer to cancer, suggesting the need for a
novel approach.

According to the American Cancer Society, 52,360 men and 29,440 women are expected
to be diagnosed with kidney and pelvis cancer in 2023, out of whom 9920 men and
4970 women may die from this disease [4]. The prevalence of kidney cancer is strongly
dependent on age (most diagnosed people are over 65 years old), sex (twice more frequent
in men than in women), and race (African Americans, American Indians, and Alaska
Natives are affected in higher percentages than other races). When the cancer is localized
only in the kidney, the 5-year survival rate is good (93%), however, it declines rapidly (15%)
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when the cancer spreads to the lungs, brain, or bones [4]. The vast majority of kidney
cancers are clear cell subtypes of Renal Cell Carcinoma (ccRCC), characterized by high inter-
and intra-tumor heterogeneity and strong crosstalk with the cellular microenvironment [5].

A very dynamic and promising avenue is provided by gene therapy as an alternative
to kidney transplantation [6]. As of 5 October 2023, PubMed lists 143,107 articles for
“cancer gene therapy” published from 1966 onward, of which 12,818 were published
in 2021 alone. The majority of these articles looked for gene biomarkers whose altered
sequence and expression level were supposedly responsible for triggering cancerization
and whose restoration allegedly provides the cure. In most publications, the biomarkers
were identified by comparing sequencing (e.g., [7–9] and/or transcription (e.g., [10–12])
data in tissues collected from cancer-stricken and healthy people.

A potentially effective yet insufficiently exploited tool for both diagnostics and therapy
is quantifying and managing the amount of cancer cell-secreted microRNAs in blood and
urine. Certain miRNAs have been shown to alter the expression of oncogenic or tumor-
suppressive genes, thus regulating the proliferation of cancer cells. Owing to accessibility,
the dosing and manipulation of the amounts of selected types of urine miRNAs was pro-
posed as an excellent non-invasive instrument for cancer detection and management [13].

The potency of gene therapy was also tested on standard human cancer cell cultures
(e.g., [14–17]), but the relevance of the experimental results from the cell culture to the
cancer reality is disputable. Nonetheless, as recently summarized [18], the non-malignant
cells and molecular factors from the tumor microenvironment play “crucial roles” in the
development of ccRCC. Thus, when taken from their natural environment and plated in
a homo-cellular culture, the cancer cells will adapt their gene expression profiles to the
new conditions. Therefore, interpreting the results from homo-cellular culture as valid
for the hetero-cellular tissue is disputable. We have proven that the transcriptome of one
cell type changes significantly in the proximity of another cell type by profiling mouse
cortical astrocytes and immortalized precursor oligodendrocytes when plated separately or
co-cultured in insert systems [19].

However, what are the real predictive values of the gene biomarkers for cancer diag-
nosis and therapy? The 38.0 release (31 August 2023) of the NIH-National Cancer Institute
GDC Data Portal [20] containing genomic data collected from 88,991 cancer cases in 68
primary sites, reported a total of 2,903,037 mutations located in 22,588 genes. Importantly,
the Portal reported mutations in almost all genes affecting each of the 68 primary sites.
Table 1 summarizes the GDC data for 14 primary sites by presenting the number of mutated
genes found in the investigated cases, how many of the mutated genes are protein coding,
and the total number of mutations detected thus far for each site.

Table 1. Numbers of mutated genes in 14 primary sites (data from [20]). Note that the number
of mutated genes in the listed individual sites represents from 86.94% (prostate cancer) to 95.07%
(bone marrow cancer) of the 22,588 mutated genes reported in all 88,991 cancer cases located in all
68 primary sites.

Primary Site # of Cases # of Genes Protein
Coding

# of
Mutations Primary Site # of Cases # of Genes Protein

Coding
# of

Mutations

Bladder 1725 20,183 19,692 114,662 Lung 12,262 21,318 19,790 443,974

Bone
marrow 11,027 21,474 19,705 163,756 Ovary 3381 20,266 19,673 64,142

Brain 1452 20,343 19,729 93,128 Pancreas 2776 19,874 19,502 36,676

Breast 9121 20,454 19,727 113,777 Prostate 2387 19,638 19,402 27,468

Colorectal 8140 21,060 19,794 337,634 Skin 2893 20,739 19,770 353,213

Head & neck 2792 20,535 19,712 116,274 Stomach 1631 20,336 19,739 182,493

Kidney 3501 20,129 19,631 65,471 Uterus 2803 21,471 19,781 769,622

Moreover, almost every single gene was found to be mutated in at least one case from
each of the 68 primary sites. For instance, with respect to the reported cancer cases from
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Table 1, the titin (TTN) appeared to be mutated in the following percentages of reported
cases: 12.41 of bladder cases, 2.75 of bone marrow, 14.47 of brain, 2.99 of breast, 5.05 of
colorectal, 10.28 of head and neck, 5.71 of kidneys, 6.88 of lungs, 2.17 of pancreas, 2.60 of
prostate, 13.46 of skin, 15.51 of stomach, and 12.21 of uterus cases. The percentages include
all 13,073 distinct somatic mutations observed for this gene in 4512 out of the 88,991 cases
included in the portal database. Thus, not only do none of the distinct mutations, but
all kinds of altered sequences of TTN as a whole do not exhibit statistically significant
sensitivity and/or specificity for a particular form of cancer. The same lack of significance is
carried by all other “regular suspects”, like tumor protein p53 (TP53), with 1341 mutations
identified in 4934 cases across 47 out of 82 projects, or KRAS (1500 cases, 125 distinct
mutations identified in 43 projects), or PTEN (1228 cases, 846 mutations across 38 projects).
The most frequently mutated gene in kidney cancer is the von Hippel-Lindau tumor
suppressor (VHL) which was detected in 342 (9.77%) out of 3501 cases. However, the VHL
was also found to be mutated in 50 cases of cancer in other organs.

An excellent recent review indicated that one possible explanation for the unsatisfac-
tory conventional anti-cancer therapy is its targeting of the somatic tumor cells instead of
the cancer stem cells (CSC), “assumed to be responsible for tumor recurrence and metas-
tasis” [21]. Therefore, targeting the CSC-signaling pathways might offer a much better
alternative than attacking the cancer-specific surface proteins.

Mimicking a human cancer phenotype in genetically engineered animals (e.g., [22–25])
provides disputable etiologies showing that together with the manipulated gene, hundreds
of other genes are regulated, as reported in many studies, ours included (e.g., [26]). The
set of significantly regulated genes in the tissues of genetically engineered animals, with
respect to their wild-type counterparts, depends on the profiled tissue (e.g., [27]), silencing
method used (e.g., [28]), and the genetic background (e.g., [29]).

Owing to the unrepeatable combination of favoring factors (some of them changing in
time) of race, sex, age, medical history, diet, climate, exposure to toxins, stress, and other
external stimuli, each human is a DYNAMIC UNIQUE. This dynamic unicity requires a
time-sensitive personalized therapeutic approach.

Some very important factors, as of yet still neglected in many published papers
and public repositories, include the tumor’s genomic, transcriptomic, and proteomic
heterogeneity [30–33]. Thus, histopathologically distinct cancer nodules from the same
tumor most frequently have different characteristics. Therefore, the best REFERENCE
for cancer-related genomic alterations of an individual is not the tissue of the average
healthy person of the same race, sex, and age group, but rather the quasi-normal tissue
surrounding his/her cancer nodules [34]. With this reference in mind, the true goal of
anti-cancer therapy is to restore what is considered normal for that person, hence the need
for a personalized approach.

While the diagnostic value of the gene biomarkers is disputable, let us see whether
the restoration of the correct sequence and/or expression level of the biomarkers can
provide the therapeutic answer for cancer. Since the biomarkers are selected from the most
frequently altered genes in cancer patients, it means that their sequences and/or expression
levels are poorly protected by cellular homeostatic mechanisms like the minor players in
cell life. Therefore, their restoration might be of little consequence.

It is very surprising (and disappointing) that almost all gene expression studies neglect
about 99.99% of the information provided by the high throughput transcriptomic platforms
(RNA-sequencing, Agilent microarray, Affimetrix, Illumina BeadChip arrays, etc.), which
will be presented in the Results section below. The traditional analysis considers ONLY
the expression levels of the quantified genes whose comparison between conditions tells
what gene was significantly up-/down-regulated (according to the arbitrarily introduced
cut-off for the absolute fold change) or turned on/off. The genes are eventually clustered
according to their similar behaviors across conditions (e.g., [35,36]), but similar regulation
does not necessarily mean that the clustered genes are interacting with each other (they
may have an upstream common regulator or transcription factor).
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Using publicly available software (based on text mining the peer-reviewed literature)
such as Ingenuity [37], DAVID [38], and KEGG [39], the regulated genes might be organized
into functional pathways. However, the topology of the pathways constructed by such
software has three major flaws: universality, rigidity, and unicity. They are universal in
that they do not discriminate with respect to the strain/race, sex, age, hormonal activity,
etc., and even with respect to the tissue, such as those of the Ca2+- and other signaling
pathways. They are considered to be rigid for not changing in response to aging, medical
treatment, external stimuli, and the progressions of a disease or other dynamic influencing
factors. Finally, each constructed pathway has unique wiring for the genes and not a
spectrum of several possible gene circuits. If two simple elements like hydrogen and
carbon can combine in so many ways to form an unlimited variety of hydrocarbons, how
could one assume that tens of much more complicated units (the genes) network in only a
single way to accomplish a particular task? Therefore, we have used KEGG-constructed
pathways only for illustrative purposes and the coordination analysis to determine the real
gene networking.

Because of the above-discussed deficiencies of the biomarker approach, we switched
our research from the biomarker to the Genomic Fabric Paradigm (GFP, [40]) approach. The
GFP incorporates the traditional analysis of gene expression regulation while considering
two additional classes of independent descriptors, and so offers the most theoretically
possible comprehensive characterization of the transcriptome and personalized solutions
for cancer gene therapy. The two additional transcriptomic descriptors of individual genes,
the Relative Expression Variation and the Expression Correlation with each other gene,
can be determined using the gene expression profiles of biological replicas without supple-
mentary experimental costs. Through the use of the two additional groups of descriptors,
the GFP approach increases by four orders of magnitude the amount of transcriptomic
information extracted from a high throughput (ng RNA-sequencing or microarray) gene
expression platform.

The present study complements a previously published article [40], with GFP analyses
of the remodeling of the five KEGG-constructed excretion system’s functional pathways
in the kidney and chest wall regions of a 74-year-old man affected by metastatic clear cell
renal cell carcinoma (ccRCC).

2. Materials and Methods
2.1. The Best Choice of Tissue Samples

Nevertheless, for statistical significance, a transcriptomic study should profile several
biological replicas of the compared conditions. Most authors use three biological replicas,
but four is (in our view) the best compromise between getting enough statistical relevance
and the errors resulting from the inherent technical noise of the profiling method. In the
case of solid tumors, the most reasonable choice is to take a point biopsy from the center
of a cancer nodule (or each cancer nodule, if there are more) and another one from the
surrounding (almost normal) tissue, split each biopsy into four parts, and profile separately
the resulted quarters. Thus, the reference for the patient’s cancer and the aim of the therapy
is no longer the abstract, racially blind, ageless, and sexless model of the human body but
rather his/her own normal tissue for his/her race, age, and sex. This procedure is standard
in our lab and was used in investigations of surgically removed tumors from kidney [40],
thyroid [41], and prostate [42] cancer patients.

In this study, we re-analyzed transcriptomic data from the surgically removed right
kidney affected by ccRCC Fuhrman grade 3 (two primary cancer nodules, denoted as
PTA and PTB in the renal medula) and its metastasis in the chest wall (CWM). The gene
expression profiles of the three cancer nodules were compared to those of the quasi-normal
surrounding kidney tissue (NOR). Data were obtained using Agilent-026652 Whole Human
Genome Microarrays 4 × 44K v2 and are publicly accessible [43].
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2.2. Data Filtering and Normalization

The hybridized microarray spots with a foreground fluorescence less than twice the
background in one biological replica profiled with microarrays are eliminated from the
analysis of all samples to be compared owing to the non-negligible technical noise. With this
filtering, every profiled sample from all conditions to be compared was reduced to the same
number of distinct transcripts, here “N = 13,314”. The background-subtracted forward
fluorescence of the microarray hybridized spot(s) with transcript “i” from the biological
replica “k” (k = 1, 2, 3, 4) of condition “c”, “ai

(c;k)” were normalized to the expression of
the median gene for that profiled sample. This normalization strategy makes comparable
the expression profiles of all samples, with ai

(c;k) > 1 indicating genes with a higher than
median expression level and ai

(c;k) < 1 genes with a lower than median expression level.
For the analyzed microarray experiment, ai

(c;k) was the sum of the net fluorescence of all
spots probing redundantly transcript “i” in the biological replica “k” of condition “c” (see
Equation (A1) in Appendix A).

2.3. Independent Characteristics of Gene Expression
2.3.1. Normalized Average Expression Level

The filtered and normalized expression values of each transcript “i” were averaged
over the biological replicas of each condition “c” resulting in AVE(c)

i . AVE(c)
i is the genomic

measure that everybody in the field uses to determine whether that transcript abundance
was up-/down-regulated or turned on/off when comparing cancer with healthy samples.
Thus, the GFP includes but is not reduced to the traditional gene expression analysis.

2.3.2. Relative Expression Variability

When properly selected (as quarters of point biopsies), the biological replicas may
be considered as different instances of the same system subjected to distinct local (not
significantly regulating) conditions. This applies to ccRCC samples owing to the strong
crosstalk of cancer cells within the non-uniform microenvironment [5,18]. Thus, we can
add as an independent feature of the transcript “i” in condition “c” the Relative Expression
Variability, “REVi

(c)”, computed as the mid-chi-square (χ2) interval estimate of the coeffi-
cient of variation for “n = 4” biological replicas and “υi” spots probing redundantly the
transcript “i” (Equation (A2) in Appendix A). The REV provides an indirect estimate of
the strength of the cellular homeostatic mechanisms to control the transcript abundances,
with the smallest REV indicating the most stably expressed (i.e., the most controlled) gene
and the largest REV pointing to the most variably expressed (i.e., the least controlled) gene.
Since more control means more energy spent by the cell, it is natural to assume that the right
expressions of the most controlled genes were more important for the cell’s survival and/or
proliferation in the multicellular tissue. As such, the REV analysis tells the investigator
firsthand about the cell priorities.

2.3.3. Expression Coordination

Genes are not single but team players in cell life. Considering the high efficiency of the
cellular phenomena, we have introduced the Postulate of the Transcriptomic Stoichiometry
(PTS) [44] as an extension to gene networking in functional pathways of Proust’s Law of
Definite Proportions from chemistry [45]. The PTS states that: in any steady-state condition,
expressions of genes whose encoded products are part of a functional pathway are coordinated to
ensure the maximum efficiency of that functional pathway. This means that the involved genes
are set to produce the transcripts at the right abundance proportions. The PTS and the
coordination analysis can be used to determine the real gene network responsible for a
particular pathway in a given condition.

The most difficult question is how the genes are networked: in pairs (e.g., agonist-
antagonist), in “ménage à trois” (e.g., agonist, antagonist, and a modulator of both), or in
more complex gene inter-coordination clusters? To answer this question, we adopted a
formalism of correlation functions similar to that used to describe the structure of simple
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liquids (like liquid argon) [46]. Thus, the configuration function “F” of “N” distinct genes
is considered as a superposition of virtual configurations in which the genes are: indepen-
dently expressed (“f 1”), coordinately expressed in pairs (“f 2”), coordinately expressed in
triplets (“f 3”), and so on until all “N” genes are coordinately expressed in a cluster of all
genes (“fN”). As shown in Appendix A, the contributions of the distribution functions of
higher than pair-correlated genes can be neglected, so that the configuration function can
be approximated with a distribution of independently expressed genes and a distribution
of coordinately expressed gene pairs (Equation (A3) in Appendix A).

The problem is now to select the suitable algorithm for gene pairing. There are several
weighted and unweighted types of correlation algorithms (e.g., [47–50]) aiming to identify
the interconnected genes based on their co-regulation determined from the meta-analysis
of genomic data on healthy and cancer-affected populations. By contrast, our aim is to
determine the gene network in a particular condition (normal or cancerous) of only one
individual, so none of these cluster analyses are suitable for our endeavor.

The simplest gene pairing is completed using the Pearson pair-wise correlation coeffi-
cient (hereafter denoted as “COR” instead of the traditional “r”) between the log2 of the
normalized expressions of two genes (“i” and “j”) in the four replicas of the same condition
“c” (shown in Equation (A4) in Appendix A). Although Marbach et al. [51] have shown
that Pearson’s correlation coefficient is not the strongest way to determine gene networks,
it is accurate enough when taking into account the technical noise of the gene expression
platform. With four biological replicas, two genes are (p < 0.05) significantly synergis-
tically expressed (i.e., a positive correlation) if COR ≥ 0.951, antagonistically expressed
(negative correlation) if COR ≤ −0.95, and independently expressed (null correlation) if
|COR| ≤ 0.05. For microarrays probing the same transcript with two spots (i.e., 8 paired
values), the p < 0.05 significance cut-off for synergism/antagonism is |COR| ≥ 0.71, for
three spots (12 paired values) it is |COR| ≥ 0.58, and so on, with the Pearson cut-off
decreasing when the number of probing spots increases [52].

In [53], we defined the coordination score “COORD” with p-value “p” of a pathway
“Γ” in condition “c = NOR, PTA, PTB, CWM” as:

COORD(c)
Γ (p) ≡ SYN(c)

Γ + ANT(c)
Γ − IND(c)

Γ (1)

where “SYN/ANT/IND” are the percentages of all gene pairs from the pathway “Γ” that
are synergistically/antagonistically/independently expressed with a statistical significance
(p-value) “p” in condition “c”.

The COORD score indicates the (p > 0.05) statistically significant influence of that gene
on all other genes.

2.3.4. Topology of the Transcriptome and the Gene Master Regulator

The “REV” and “COR” can be used to determine the Gene Commanding Height
(GCH) that establishes the importance hierarchy of the genes in each region. The top gene
(highest GCH) is termed the Gene Master Regulator (GMR) of that region. The GMR is the
highly protected gene (i.e., low REV, meaning it is critical for cell survival) that also has the
strongest influence on the expression of other genes through expression coordination [54,55]
(Equation (A5) in Appendix A). In all our cancer genomics studies to date ([34,40–42,54,55]),
we found that cancer and normal cells from the same tumor are controlled by different
GMRs. Moreover, the GMR gene of the cancer cells has low GCH in the normal cells.
Therefore, silencing the GMR of the cancer cells is expected to selectively kill the cancer
cells from the tissue with very little influence on the normal cells.

Note: For the GFP users, the transcriptome is no longer a chaotic collection of tran-
scripts, but a multi-dimensional hierarchized mathematical entity subjected to dynamic
sets of expression variability and expression correlations of its components.



Curr. Issues Mol. Biol. 2023, 45 9477

2.4. Transcriptome Alteration in Cancer
2.4.1. Measures of Expression Regulation

We use the GFP to compare the transcriptome of a cancer nodule with that of the
surrounding normal tissue in a tumor. Thus, in addition to identifying what genes were
significantly up-/down regulated in cancer, we determine also how much of the homeo-
static control of the transcript abundance was altered for each gene or group of genes, and
how the gene networks were remodeled.

The traditional analysis considers a gene as significantly regulated in cancerous tissue
compared to normal tissue if the expression ratio “x” (negative for down-regulation) has
an absolute fold-change |x| larger than an arbitrarily introduced cut-off (most frequently
1.5). In most cases, it also adds the condition that the p-value of the heteroscedastic t-test of
mean expressions is less than 0.05. However, the cut-off fold-change could be too stringent
for very stably expressed genes (leading to false negatives) or too lax for very unstably
expressed ones (introducing false positives). Therefore, we use for each gene the cut-off of
the absolute fold-change, “CUT”, considering the combined contributions of its biological
variability and the technical noises of the platform in the two profiled conditions. Thus,
the gene “i” is considered significantly regulated in “cancer” with respect to the normal
tissue (NOR), if the absolute fold-change exceeds the respective “CUT” and the p-value is
less than 0.05 (Equation (A6) in Appendix A).

In many studies, transcriptome alteration is presented as percentages of the sig-
nificantly up- and down-regulated genes. Nonetheless, the percentage of presentation
implicitly assumes that all regulated genes are uniform (+1 or −1) contributors to the
overall transcriptome alteration while neglecting the contributions of the not significantly
regulated genes. A more accurate measure of the expression regulation is the Weighted
Individual (gene) Regulation “WIR”, whose absolute values can be averaged for the genes
included in a functional pathway “Γ” as the Weighted Pathway Regulation “WPR”. In
addition to being applied to all genes (including those not significantly regulated), WIR
takes also into account the absolute expression change and the statistical significance of the
regulation (as shown in Equations (A7) and (A8) in Appendix A).

2.4.2. Regulation of the Control of Transcript Abundance

In a previous paper [56], we defined the Relative Expression Control, “REC,” of gene
“i” in condition (here region) “c” so that positive RECs indicate more than the median-
controlled genes and negative values indicate less than the median-controlled genes in that
condition (shown as Equation (A9) in Appendix A). As shown below (Figure 1), the ccRCC
altered the REVs of individual genes and as a consequence, their hierarchy (illustrated in
Figure 2 below). The difference between the REV inverses in a cancer nodule and those in
the surrounding normal tissue (Equation (A10) in Appendix A) indicates how much the
ccRCC altered the transcript abundance control.

2.4.3. Regulation of Expression Coordination

The regulation of expression coordination can be computed with regard to a single
gene, a group of genes (like those involved in a particular pathway), or all quantified
genes. In this report, the regulation of the expression coordination is limited to the five
KEGG-constructed excretory system pathways (shown in Equation (A11) in Appendix A).
Positive regulation values indicate an overall increase in the expression coordination while
negative values indicate an overall decrease in the expression coordination of gene “i” with
expressions of all genes from the reference pathway “Γ”.
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Figure 1. Independence of: (a) AVE, (b) REV, and (c) COR with ESR1 characteristics for 37 genes
involved in the KEGG-constructed pathway of the “Endocrine and other factor-regulated calcium
absorption”. The CORESR1,ESR1 = 1 values in all conditions validate the coordination analysis. Observe
the differences in all three gene characteristics between the two equally graded and located close to
each other nodules of PTA and PTB.
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2.4.4. The Transcriptomic Distance

Nonetheless, the most comprehensive measure of the transcriptome alteration should
include all changes: in expression level, expression control, and expression coordination
with all other genes. The Transcriptomic Distance of an Individual gene, “TDI”, is the
Euclidian distance from the origin of the 3D space whose orthogonal axes are: WIR, the
regulation of the expression control, and the regulation of expression coordination (shown
in Equation (A12) in Appendix A).

2.5. Functional Pathways

In this report, we used our experimental data from the profiled samples of a man with
metastatic ccRCC [43] to determine the topology and the ccRCC-induced remodeling of
the transcriptomes associated with the five KEGG-constructed functional pathways of the
excretory system. The analyzed pathways were: (ALDO) hsa04960 Aldosterone-regulated
sodium reabsorption [57], (COLL) hsa04966 Collecting duct acid secretion [58], (ENDO)
hsa04961 Endocrine and other factor-regulated calcium reabsorption [59], (PROX) hsa04964
Proximal tubule bicarbonate reclamation [60], and (VASO) hsa04962 Vasopressin-regulated
water reabsorption [61].

3. Results
3.1. The Global Picture

Expressions of 13,314 unigenes were adequately quantified, normalized, and organized
in functional pathways in all 16 samples. However, not all excretory genes identified by
the KEGG were analyzed. The missing genes were the ones that: (i) were not expressed in
one of the four profiled regions, (ii) had no microarray spot to be probed by, or (iii) were
probed by spots excluded from the analysis because of corrupted pixels.
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Nonetheless, the functional pathways of the excretory system were not mutually
exclusive, some genes being counted in two (e.g., ADCY9 in ENDO and VASO) or even
three excretory pathways (e.g., ATP1A1 in ALDO, ENDO, and PROX). Therefore, the total
number of the quantified distinct excretory genes was 108.

3.2. Independent Characteristics of Gene Expression

Figure 1 illustrates the independence of the three types of expression characteristics
for 37 genes involved in the KEGG-constructed pathway of the “Endocrine and other
factor—regulated calcium reabsorption” [59] using our microarray data on Fuhrman grade
3 metastatic ccRCC samples [38]. For the COR analysis, we chose to represent the expression
correlation with the estrogen receptor 1 (ESR1), owing to the kidney being one of “the most
estrogen-responsive, not reproductive organs in the body” [62].

Of note are the differences between the normal tissue and the cancer nodules not
only in the average expression levels of certain genes (AVE, as expected and reported
by the traditional analysis), but also in the relative expression variability (REV) and
correlation (COR) with other genes (here with ESR1). For instance, the significant ex-
pression antagonism (COR(NOR) = −0.96624, p = 0.0338) of AP2A1 (adaptor-related pro-
tein complex 2, alpha 1 subunit) with ESR1 in the normal tissue is switched into ex-
pression synergism in each of the three cancer nodules. We obtained the following
correlation values (and statistical significances) between ESR1 and AP2A1 in the cancer
samples: COR(PTA) = 0.9607 (p-val = 0.03093), COR(PTB) = 0.970449 (p-val = 0.02955), and
COR(CWM) = 0.958562 (p-val = 0.04144). This result means that in the normal tissue, when
the expression of ESR1 goes up, that of AP2A1 goes down, and when ESR1 goes down,
AP2A1 goes up. By contrast, in cancer, the expression of ESR1 oscillates in-phase with the
expression of AP2A1, so that expressions of both genes go up or down simultaneously. It is
interesting to also note the differences in all three characteristics of the individual genes
between the nodules of PTA and PTB.

The independence of the three characteristics of the individual genes collected from a
regular gene expression experiment with four biological replicas of each histopathologically
distinct region is visually evident. Therefore, each of the three types of analyses brings
non-redundant information and is worth taking into account.

3.3. ccRCC Changed the Gene Hierarchy

Figure 2 presents the GCH scores for all quantified genes selected by the KEGG as
involved in the five excretory functional pathways. Of note are again the substantial
inter-regional differences in the genes’ GCH scores, indicating distinct gene hierarchies
within the corresponding pathways. For instance, the GCH of the IGF1 (insulin-like
growth factor 1 (somatomedin C)) from the “Aldosterone-regulated sodium reabsorption”
pathway increased from 1.41 in NOR to 13.11 (9.28×) in PTA, although it remains practically
unchanged in PTB (2.25) and in CWM (2.38). The CREB3L2 (cAMP responsive element
binding protein 3-like 2) from the “Vasopressin-regulated water reabsorption” pathway
exhibited a GCH increase of 9.57× in PTB compared to PTA. The GCH of the ATP1A2
(ATPase, Na+/K+ transporting, alpha 2 polypeptide) decreased by 16.85× in CWM with
respect to PTB.

3.4. Measures of Individual Gene Regulation

Figure 3 illustrates the six types of quantifying measures of the ccRCC-induced alter-
ations of the genes from the KEGG-constructed pathway hsa04961 of “Endocrine and other
factor-regulated calcium reabsorption”. The six measure types are: the uniform +1/−1 for
significant regulation, the expression ratio (negative for the down-regulation), the WIR
(Weighted Individual (gene) Regulation, negative for down-regulation), the regulation of
the transcription control, the regulation of the expression correlation with all other genes
from the pathway, and the TDI (Transcriptomic Distance of Individual gene).
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Figure 3. Six measures of individual gene regulation in the KEGG-constructed pathway of ENDO
(Endocrine and other factor-regulated calcium reabsorption). (a) Uniform (+1/−1 for significant up-
/down regulation). (b) Expression ratio × (negative for down-regulation). (c) Weighted individual
(gene) regulation (WIR, negative for down-regulation). (d) Regulation of transcript abundance control
mechanisms (negative for decreased control). (e) Regulation of expression coordination (with respect
to every other gene of the pathway, negative for reduced correlation); (f) Transcriptomic distance of
individual (gene) (here with respect to all its partners within the pathway). Observe that all but the
uniform measure takes into account the contributions of every single gene.

There are notable differences among the three cancer nodules in all six measures. For
instance, SLC8A1 (solute carrier family 8 (sodium/calcium exchanger), member 1), which
was not regulated in PTA, was significantly up-regulated in PTB (x = 2.75) and significantly
down-regulated in CWM (x = −1.84). Only one gene, ATP1B2 (ATPase, Na+/K+ transport-
ing, beta 2 polypeptide), was significantly upregulated in both PTA (x = 1.91) and PTB
(x = 2.67), but not in CWM. PLCB1 (phospholipase C, beta 1 (phosphoinositide-specific)
was the single gene significantly down-regulated in PTB (x = −2.60) and CWM (x = −2.01),
but not in PTA.

As defined, the WIR takes larger absolute values for highly expressed genes in
the reference (here NOR) region, sometimes even larger for not significantly regulated
genes than for significantly regulated ones. For instance, DNM2 (dynamin2), which is
a significantly down-regulated gene in PTB (x(PTB→NOR) = −2.47, CUT(PTB→NOR) = 1.81,
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p(PTB→NOR) = 0.0242), had a WIR(PTB→NOR) = 4.73. The DNM2 contribution to the tran-
scriptomic alteration in PTB was substantially overpassed by that of the not statistically
significantly regulated DNM1 (dynamin1: WIR(PTB→NOR) = 95.74, x(PTB→NOR) = −2.12,
CUT (PTB→NOR) = 1.66, p(PTB→NOR) = 0.0969 > 0.05). The reason for this is that in NOR,
AVEDNN1 = 94.30 >> 3.30 = AVEDNN2. Nonetheless, by considering the whole change in the
expression level, the WIR tells the investigator much more about the contribution of a gene to
the transcriptome expression alteration than the uniform +1/−1 up-/down regulation.

Overall, the median expression control 100/<REV> increased from 2.58 in NOR to
4.27 in PTA, 2.92 in PTB, and 3.96 in CWM. In the illustrated pathway, we found genes
with a substantial increase in expression control and genes with a substantial decrease in
control in cancer. The most substantial increase of the expression control was for ADCY9
(adenylate cyclase 9) in PTB (∆REC(PTB→NOR) = 12.38). It is remarkable that the control of
ADCY9 had a modest change in PTA (∆REC(PTA→NOR) = 2.08) but the largest decrease of
all in CWM (∆REC(CWM→NOR) = −15.50). The largest decrease in PTA was exhibited by
AP2A1 (adaptor-related protein complex 2, alpha 1 subunit) with ∆REC(PTA→NOR) = −7.97,
but with insignificant changes in the other nodules with ∆REC(PTB→NOR) = −0.17, and
∆REC(CWM→NOR) = 0.26. Interestingly, there are genes (e.g., DNM2) whose control increased
with respect to NOR in one cancer nodule (PTA, ∆REC(PTA→NOR) = 6.2) but decreased in the
equally ranked other nodule from the same tumor (∆REC(PTB→NOR) = −7.2), indicating a
shift in the cell’s priorities. A substantial shift in cell priorities occurred also for VDR (vita-
min D (1,25-dihydroxyvitamin D3) receptor) between the nodules of PTB (∆REC(PTB→NOR)

= 7.92) and CWM (∆REC(CWM→NOR) = −6.07).
We found genes, such as ADCY6, with an increased overall correlation with the other

pathways’ genes with respect to NOR in one nodule (∆COR(PTA→NOR) = 7.39) but decreased
in the other nodules (∆COR(PTB→NOR) = −6.04, ∆COR(PTB→NOR) = −5.92), indicating a
profound remodeling of the gene networking. Interestingly, ADCY6 was significantly
up-regulated in PTA (x = 1.54) and CWM (x = 1.96), but not in PTB (x = 1.29). A very
similar behavior, except that it was not significantly regulated in any of the three can-
cer nodules, was exhibited by AP2A1 (∆COR(PTA→NOR) = 7.60, ∆COR(PTB→NOR) = −7.02,
∆COR(PTB→NOR) = −6.84).

Nevertheless, the most comprehensive measure that incorporates the changes in all
three types of characteristics is the transcriptomic distance of an individual gene (TDI)
from its AVE(NOR), REV(NOR), and COR(NOR) (with all other genes within the pathway)
in the normal tissue. From the TDI perspective, DNM1 (TDI(PTB→NOR) = 95.95 in PTB)
followed by FXYD2 (TDI(PTB→NOR) = 80.21 in PTB) were the most altered genes within this
set. Interestingly, with all differences at the individual gene level, the median TDIs of the
three nodules were close to each other (5.72 for PTA, 5.73 for PTB, and 5.37 for CWM).

3.5. Overall Regulation of the Excretory Pathways

Table 2 presents the overall gene expression alterations of the five KEGG-constructed
excretory pathways as percentages of up- and down-regulation out of the quantified genes
in each of the cancer nodules. Table 2 presents also the WPRs of the analyzed pathways.

With 23.08% in PTA and CWM, and 30.77% in PTB total percentage of up- and down-
regulated genes, the ALDO appears as the most altered pathway. However, from the more
comprehensive WPR perspective, the COLL is the most altered of the five pathways in all
three cancer nodules.

Interestingly, all significantly regulated genes are up for PROX in all three cancer nod-
ules, indicating a major activation of this pathway in ccRCC. The results on the ALDO are
intriguing: while there were equal numbers of up- and down-regulated genes (11.54% of 26)
in both PTA and CWM, in PTB all 30.77% significantly regulated genes were over-expressed.
This means that the ALDO was balanced in PTA and CWM, but strongly activated in PTB.
The ALDO regulomes (sets of significantly regulated genes in this pathway) of the three
cancer nodules are different, with only one gene, PIK3R2 (phosphoinositide-3-kinase,
regulatory subunit 2 (beta)), being significantly up-regulated in all three nodules.
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Table 2. Number of quantified out of number of included genes in the five KEGG-constructed
functional pathways of the excretory system, their percentages, and overall weighted regulations in
each cancer nodule. ALDO = Aldosterone-regulated sodium reabsorption, COLL = Collecting duct
acid secretion, ENDO = Endocrine and other factor-regulated calcium reabsorption, PROX = Proximal
tubule bicarbonate reclamation, and VASO = Vasopressin-regulated water reabsorption.

PTA PTB CWM

Path Genes %Up %Down WPR %Up %Down WPR %Up %Down WPR

ALDO 26/37 11.54 11.54 1.12 30.77 0.00 8.19 11.54 11.54 2.32

COLL 16/27 6.25 12.50 5.20 12.50 0.00 16.36 12.50 0.00 9.69

ENDO 37/53 5.41 2.70 0.88 18.92 5.41 7.68 8.11 5.41 2.15

PROX 18/23 16.67 0.00 0.96 38.89 0.00 9.04 11.11 0.00 2.12

VASO 36/44 8.33 11.11 0.69 11.11 5.56 0.93 2.78 8.33 0.77

Results from Table 2 show that even when closely located and with equal pathology
grades, cancer nodules from the same tumor (PTA and PTB) may exhibit different gene
alterations, questioning the validity of meta-analyses comparing ccRCC patients with
healthy counterparts.

3.6. False Hits

Figure 4 presents the excretory genes that would have been considered as significantly
regulated in the traditional analysis (|x(cancer→NOR)| > 1.5) but were identified by our cut-off
criterion as false positive hits (|x(cancer→NOR)|≤ CUT(cancer→NOR)). In contrast, the CREB3L4
(cAMP responsive element binding protein 3-like 4) was identified as a false negative hit
(|x(PTA→NOR)| < 1.50) in PTA because |x(PTA→NOR)| = 1.40 > CUT(PTA→NOR) = 1.38). In con-
sequence, the false positive hits were eliminated, and the false negative hits were included
in the “excretory regulomes” of the three cancer nodules.
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GeneName PTA CUT PTB CUT CWM CUT

AP2A2 −1.94 2.16

AP2M1 1.67 2.00

AQP4  −1.79 2.26

ATP1B2 1.80 1.87

ATP1B3 −1.63 1.77

ATP6V1E1 −1.58 1.92

CLTA −1.56 2.21

CREB3L4 −1.40 1.38

DYNC2LI1 1.60 2.69

GLS −1.54 2.07

GLUD2 −1.62 1.66 −1.57 1.65  −1.59 1.71

IGF1 −1.59 1.72

INSR  −1.86 2.03

KL 1.80 1.93

MDH1 1.51 2.05

NEDD4L −1.51 1.60

PCK2 −1.69 2.19  −1.76 2.27

PIK3CB 1.55 1.99

RAB11A 1.59 1.67

SGK1 1.61 1.93

SLC38A3 1.53 1.75

SLC4A4 1.73 1.89

STX4  −1.55 1.80

TCIRG1 1.64 2.00

VDR −1.77 1.99  −1.78 1.91

Figure 4. Excretory genes identified by our absolute fold-change criterion
(|x(cancer→NOR)| > CUT(cancer→NOR)) as false positive hits (red accent 2 lighter 60% back-
ground) and false negative hits (light blue background) in the traditional analysis of gene expression.
PTA/PTB/CWM = expression ratio (negative for down-regulation) in the indicated cancer nodule
with respect to the normal tissue (NOR). CUT = absolute fold-change cut-off to consider a gene as
significantly regulated.
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3.7. Location of the Regulated Genes in the Excretory System’s Functional Pathways

See Figure 5 for the hsa04962 (VASO) “Vasopressin-regulated water reabsorption”
and Figures S1–S4 from Supplementary Material for the other four KEGG-constructed
excretory system pathways present for every profiled cancer nodule and the localizations
of the regulated genes. Of note are the inter-nodule differences in the subsets of the
regulated genes.

We found that although the VASO gene of AVP (arginine vasopressin) was not
significantly regulated in any of the three cancer nodules, expressions of several other
genes were significantly altered (though not in the same way) in all profiled regions. For
instance, the AQP3 (aquaporin 3 (Gill blood group)) was found as down-regulated in
PTA (x(PTA→NOR) = −2.808) and CWM (x(CWM→NOR) = −5.846) but up-regulated in PTB
(x(PTB→NOR) = 2.034).

The opposite regulations of the AQP3 in the two closely located and equally patholog-
ically graded nodules of PTA and PTB is another argument to consider the “transcriptomic
signature” unreliable for ccRCC [63]. The GDC data Portal of the National Cancer Institute
reports four cases of kidney cancer (three females and one male) where AQP3 was found to
be mutated.

Unfortunately, the important AQP2 (aquaporin 2) and AVPR2 (arginine vasopressin
receptor 2) were not quantified in this experiment.

Only two excretory genes were similarly regulated in all three cancer nodules. The
VASO gene CREB3L4 (cAMP responsive element binding protein 3-like 4) was down-regulated:
x(PTA→NOR) = −1.40 (CUT (PTA→NOR) = 1.38, p(PTA→NOR) = 0.040); x(PTB→NOR) = −1.74
(CUT(PTB→NOR) = 1.63, p(PTB→NOR) = 0.031), x(CWM→NOR) = −1.95 (CUT(CWM→NOR) = 1.48,
p(CWM→NOR) = 0.003). The down-regulation of the CREB3L4 gene in PTA would have been
considered not significant in the traditional analysis requiring |x(PTA→NOR)| > 1.50, but
was identified as significant by our algorithm that requires the absolute fold-change to
exceed the cut-off value computed for that gene in the compared samples.

Curr. Issues Mol. Biol. 2023, 45, FOR PEER REVIEW  14 
 

 

Figure 4. Excretory genes identified by our absolute fold-change criterion (|x(cancer→NOR)| > CUT(can-

cer→NOR)) as false positive hits (red accent 2  lighter 60% background) and false negative hits (light 

blue background) in the traditional analysis of gene expression. PTA/PTB/CWM = expression ratio 

(negative  for down-regulation)  in  the  indicated  cancer nodule with  respect  to  the normal  tissue 

(NOR). CUT = absolute fold-change cut-off to consider a gene as significantly regulated. 

3.7. Location of the Regulated Genes in the Excretory System’s Functional Pathways 

See Figure 5  for  the hsa04962  (VASO) “Vasopressin-regulated water reabsorption” 

and Figures S1–S4 from Supplementary Material for the other four KEGG-constructed ex-

cretory system pathways present for every profiled cancer nodule and the localizations of 

the regulated genes. Of note are the inter-nodule differences in the subsets of the regulated 

genes. 

Figure 5. Cont.



Curr. Issues Mol. Biol. 2023, 45 9485
Curr. Issues Mol. Biol. 2023, 45, FOR PEER REVIEW  15 
 

 

Curr. Issues Mol. Biol. 2023, 45, FOR PEER REVIEW  16 
 

 

Figure 5. The regulated genes from the KEGG-constructed pathway of hsa04962 “Vasopressin-reg-

ulated water  reabsorption”  in  the  three  cancer nodules with  respect  to  the  surrounding normal 

(NOR) tissue in the right kidney: (a) PTA, (b) PTB, and (c) CWM. Red/green background of the gene 

symbol indicates significant up-/down-regulation, yellow background indicates not statistically sig-

nificant  regulation, while blank background  indicates  that  that gene was not quantified. Signifi-

cantly  regulated genes: ADCY6  (adenylate  cyclase  6), AQP3, CREB3  (cAMP  responsive  element 

binding protein 3), CREB3L2/3/4 (cAMP responsive element binding protein 3-like 2/3/4), DCTN1/2 

(dynactin 1/2), DYNC2LI1 (dynein, cytoplasmic 2, light intermediate chain 1), GNAS (GNAS com-

plex locus), and VAMP2 (vesicle-associated membrane protein 2 (synaptobrevin 2)). Note the differ-

ences among the three nodules including that AQP3 is down-regulated in PTA and CWM, but up-

regulated in PTB. 

We found that although the VASO gene of AVP (arginine vasopressin) was not sig-

nificantly regulated in any of the three cancer nodules, expressions of several other genes 

were significantly altered  (though not  in  the same way)  in all profiled  regions. For  in-

stance, the AQP3 (aquaporin 3 (Gill blood group)) was found as down-regulated in PTA 

Figure 5. The regulated genes from the KEGG-constructed pathway of hsa04962 “Vasopressin-
regulated water reabsorption” in the three cancer nodules with respect to the surrounding normal
(NOR) tissue in the right kidney: (a) PTA, (b) PTB, and (c) CWM. Red/green background of the
gene symbol indicates significant up-/down-regulation, yellow background indicates not statistically
significant regulation, while blank background indicates that that gene was not quantified. Signif-
icantly regulated genes: ADCY6 (adenylate cyclase 6), AQP3, CREB3 (cAMP responsive element
binding protein 3), CREB3L2/3/4 (cAMP responsive element binding protein 3-like 2/3/4), DCTN1/2
(dynactin 1/2), DYNC2LI1 (dynein, cytoplasmic 2, light intermediate chain 1), GNAS (GNAS complex
locus), and VAMP2 (vesicle-associated membrane protein 2 (synaptobrevin 2)). Note the differences
among the three nodules including that AQP3 is down-regulated in PTA and CWM, but up-regulated
in PTB.
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In contrast, the ALDO gene PIK3R2 (phosphoinositide-3-kinase, regulatory subunit 2
(beta)) was upregulated in all three cancer nodules: x(PTA→NOR) = 3.31 (CUT(PTA→NOR) = 1.89,
p(PTA→NOR) = 0.013), x(PTB→NOR) = 1.85 (CUT(PTB→NOR) = 1.82, p(PTB→NOR) = 0.046),
x(CWM→NOR) = 3.30 (CUT(CWM→NOR) = 1.90, p(CWM→NOR) = 0.032).

Two genes were oppositely regulated in the nodules of PTB and CWM: the ALDO gene
SFN (stratifin; x(PTB→NOR) = 2.03, x(CWM→NOR) =−1.95) and the ENDO gene SLC8A1 (solute
carrier family 8 (sodium/calcium exchanger), member 1; x(PTB→NOR) = 2.75,
x(CWM→NOR) = −1.84).

Three genes were similarly regulated in PTA and PTB: the ATP1B2 (ATPase, Na+/K+

transporting, beta 2 polypeptide; x(PTA→NOR) = 1.91, x(PTB→NOR) = 2.67), the DCTN2 (dyn-
actin 2 (p50); x(PTA→NOR) =−1.51, x(PTB→NOR) =−2.06), and the SLC4A4 (solute carrier fam-
ily 4 (sodium bicarbonate cotransporter), member 4; x(PTA→NOR) = 2.19,
x(PTB→NOR) = 2.57).

Three regulated genes in PTA were similarly regulated in CWM: the ADCY6 (adenylate
cyclase 6; x(PTA→NOR) = 1.52, x(CWM→NOR) = 1.96), the KRAS (Kirsten rat sarcoma viral oncogene
homolog; x(PTA→NOR) = 2.21, x(CWM→NOR) = 2.77), and the PIK3CD (phosphatidylinositol-4,5-
bisphosphate 3-kinase, catalytic subunit delta; x(PTA→NOR) = −1.65,
x(CWM→NOR) =−1.97).

Two genes were similarly regulated in PTB and CWM: the CA2 (carbonic anhy-
drase II; x(PTB→NOR) = 9.94, x(CWM→NOR) = 3.44) and the PLCB1 (phospholipase C, beta 1
(phosphoinositide-specific), x(PTB) = −2.60, x(CWM) = −2.01).

3.8. Tumor Heterogeneity of the Transcriptomic Networks

Figure 6 presents the (p < 0.05) significant synergism, antagonism, and indepen-
dence among the genes from the hsa04961 pathway of ENDO (Endocrine and other factor-
regulated calcium reabsorption) [59]. It is interesting to observe that the percentage of
the synergistic pairs increased from 12.28% in NOR to 26.90% in PTA, 20.76% in PTB,
and 16.96% in CWM. The percentage of the antagonistic pairs increased from 9.65% in
NOR to 21.92% in PTA, 20.76% in PTB, and 16.08% in CWM, while that of the indepen-
dently expressed pairs decreased from 12.28% in NOR to 4.09% in PTA, 4.68% in PTB, and
6.43% in CWM. Altogether, the coordination score COORD = %synergistic + %antago-
nistic − %independent increased from 9.65% in NOR to 44.74% in PTA, 36.84% in PTB,
and 26.61% in CWM. These results indicate a substantial ccRCC-triggered increase in the
inter-coordination of the genes involved in this pathway.

Of note are again the substantial differences between the PTA and PTB regions, indi-
cating distinct wiring of the genes in the functional network. For instance, there are 7 genes
(AP2S1, ATP1A2, ATP2B3, CLTCL1, DNM3, ESR1, and PLCB2) whose significant correla-
tions with the sodium/calcium exchanger SLC8A1 are opposite in the two kidney nodules,
indicating major differences in the gene networking. Thus, the ATP1A2, ATP2B3, CLTCL1,
DNM3, and ESR1 are synergistically expressed with the SLC8A1 in PTA but antagonisti-
cally expressed with the SLC8A1 in PTB, while the AP2S1 and PLCB2 are antagonistically
expressed with the SLC8A1 in PTA but synergistically expressed with the SLC8A1 in PTB.

Figure 7 presents the (p < 0.05) statistically significant synergism, antagonism, and
independence of the quantified excretory genes with AVP in all four regions profiled. In
the KEGG-constructed “Vasopressin-regulated water reabsorption” (VASO) pathway, AVP
is directly connected to AVPR2 (arginine vasopressin receptor 2; not quantified in the
experiment) and indirectly connected to GNAS. Using the COR analysis, we found that in
the normal kidney AVP is significantly connected to the CREB3L1, CREB3L4, DYNC1H1,
and RAB5A.
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Figure 6. (p < 0.05) significant synergism, antagonism, and independence among the genes respon-

sible for the Endocrine and other factor-regulated calcium reabsorption . (a) Significant gene expres-

sion correlations in NOR and PTA. (b) Significant gene expression correlations in PTB and CWM. A 

red/blue/yellow square indicates significant synergism/antagonism/independence of the genes la-

beling the intersecting row and column, while a blank square means a lack of statistical significance 

of the expression correlation. 

Of note are again the substantial differences between the PTA and PTB regions, indi-

cating distinct wiring of  the genes  in  the  functional network. For  instance,  there are 7 

genes  (AP2S1, ATP1A2, ATP2B3, CLTCL1, DNM3, ESR1, and PLCB2) whose  significant 

correlations with the sodium/calcium exchanger SLC8A1 are opposite in the two kidney 

nodules, indicating major differences in the gene networking. Thus, the ATP1A2, ATP2B3, 

CLTCL1, DNM3, and ESR1 are synergistically expressed with the SLC8A1 in PTA but an-

tagonistically expressed with the SLC8A1 in PTB, while the AP2S1 and PLCB2 are antag-

onistically  expressed with  the  SLC8A1  in  PTA  but  synergistically  expressed with  the 

SLC8A1 in PTB. 

Figure 7 presents the (p < 0.05) statistically significant synergism, antagonism, and 

independence of the quantified excretory genes with AVP in all four regions profiled. In 

the  KEGG-constructed  “Vasopressin-regulated  water  reabsorption”  (VASO)  pathway, 

AVP is directly connected to AVPR2 (arginine vasopressin receptor 2; not quantified in the 

experiment) and indirectly connected to GNAS. Using the COR analysis, we found that in 

the normal kidney AVP is significantly connected to the CREB3L1, CREB3L4, DYNC1H1, 

and RAB5A. 
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Figure 6. (p < 0.05) significant synergism, antagonism, and independence among the genes responsi-
ble for the Endocrine and other factor-regulated calcium reabsorption. (a) Significant gene expression
correlations in NOR and PTA. (b) Significant gene expression correlations in PTB and CWM. A
red/blue/yellow square indicates significant synergism/antagonism/independence of the genes
labeling the intersecting row and column, while a blank square means a lack of statistical significance
of the expression correlation.
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Figure 7. Statistically significant synergism, antagonism, and independence of excretory genes with 

arginine vasopressin (AVP) in all four profiled regions. (a) Significant expression correlation part-

ners of AVP in NOR. (b) Significant expression correlation partners of AVP in CWM. (c) Significant 

expression correlation partners of AVP in PTA. (d) Significant expression correlation partners of AVP 

in PTB. A continuous red/blue line indicates synergism/antagonism, while a dashed black line indi-

cates  significant  independence. Letters A, C, E, P, and V  indicate  the pathway affiliations of  the 

genes: A = Aldosterone-regulated sodium reabsorption, C = Collecting duct acid secretion, E = En-

docrine and other factor-regulated calcium reabsorption, P = Proximal tubule bicarbonate reclama-

tion , and V = Vasopressin-regulated water reabsorption. Note: only the genes with significant cor-

relations in at least one region were included in the figure. 

The cancer reconfigures the VASO networks, so that in PTA, the AVP is significantly 

connected to the CREB3L3, NSF, PRKACB, and RAB5B. In PTB, the AVP is connected to 

Figure 7. Statistically significant synergism, antagonism, and independence of excretory genes with
arginine vasopressin (AVP) in all four profiled regions. (a) Significant expression correlation partners
of AVP in NOR. (b) Significant expression correlation partners of AVP in CWM. (c) Significant
expression correlation partners of AVP in PTA. (d) Significant expression correlation partners of
AVP in PTB. A continuous red/blue line indicates synergism/antagonism, while a dashed black
line indicates significant independence. Letters A, C, E, P, and V indicate the pathway affiliations
of the genes: A = Aldosterone-regulated sodium reabsorption, C = Collecting duct acid secretion,
E = Endocrine and other factor-regulated calcium reabsorption, P = Proximal tubule bicarbonate
reclamation, and V = Vasopressin-regulated water reabsorption. Note: only the genes with significant
correlations in at least one region were included in the figure.
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The cancer reconfigures the VASO networks, so that in PTA, the AVP is significantly
connected to the CREB3L3, NSF, PRKACB, and RAB5B. In PTB, the AVP is connected to
the CREB3L2, RAB11A, and RAB5B, while in CWM it is connected to no hsa04962 gene.
Remarkably, the hsa04962 genes that also have significant independence with respect to
AVP are: DYNC1H1 in NOR, CREB3 and RAB1A in PTA, ARHGDIB in PTB and ARHGDIA,
DCTN1, and DYNC1H1 in CWM.

4. Discussion

This study continues the analyses from a previous article [40] on four samples collected
from the chest wall metastasis (CWM), two primary tumor regions (PTA and PTB), and
the surrounding normal tissue (NOR) in the right kidney of a man with metastatic ccRCC.
In [40], we analyzed the ccRCC impact on cyclins, cyclin kinases, and the functional
pathways of apoptosis, chemokine and VEGF signaling, oxidative phosphorylation, basal
transcription factors, and RNA polymerase, while here we focused on the five KEGG-
constructed functional pathways of the excretory system.

An important finding of the previous paper [40], reconfirmed in the present study, was
that even equally Fuhrman-graded (3) and closely located cancer nodules from the same
kidney exhibit substantial transcriptomic differences and are under the command of distinct
gene master regulators. Considerably transcriptomic differences between equally graded
cancer nodules were also reported by us in two prostate cancer studies [34,42]. Importantly,
tumor heterogeneity, present even in patient-derived RCC organoids [64], is not limited to
the genes’ mutations [65] or expression levels [66], but encompasses also the control of the
transcripts’ abundances and the way the genes are interconnected in functional pathways.
Tumor heterogeneity and the unrepeatable set of cancer-favoring factors characterizing
each human make the “transcriptomic signature” unreliable (e.g., [67,68]), and even of the
integrated proteogenomic characterization [69] derived from comparing genomic data from
large populations of cancer and healthy people is made unreliable. Instead, it imposes the
normal tissue surrounding the cancer nodule(s) in the tumor as the most trustable reference.

The novel findings on the alterations of the mechanisms controlling the transcript
abundances and the remodeling of the functional pathways were possible by adopting the
Genomic Fabric Paradigm (GFP) and the use of its mathematically advanced algorithms
and software (detailed in [54]). The GFP improves the traditional gene expression analysis
by replacing the arbitrarily introduced (1.5×) cut-off for the absolute fold-change of a
gene to be considered as significantly regulated with a cut-off computed for each gene
in the compared conditions that considers both biological variability and technical noise.
While incorporating an improved version of the traditional analysis, the GFP goes further
by also analyzing the gene expression control and inter-coordination. These additional
characteristics provide as much supplementary information as going from knowing the
height of a mountain to featuring it on a 3D scale model. The independence of the three
types of expression characteristics was illustrated here for the genes involved in the KEGG-
constructed pathway of the “Endocrine and other factor-regulated calcium absorption”.
The independence of the three types of expression characteristics can be proven for any
other gene subset (principle discussed in [53]). For instance, in previously published
cancer genomics papers, we proved the independence of genes involved in: chemokine
signaling [40], apoptosis [55], evading apoptosis [42], and mTOR signaling [34].

The gene networks constructed with the COR analysis do not have the same faults of
universality, unicity, and rigidity as those built with the KEGG and other software. The
COR-determined networks are not universal but instead depend on the race, age, and
other personal characteristics of the patient that modulate his/her gene expression, as we
proved in [34] for two prostate cancer patients and two standard human prostate cancer
cell lines. They are not unique, with cancer nodule(s) and normal tissue exhibiting different
gene wiring, and certainly not rigid, but remodeling during aging, the progression of the
disease, and in response to treatment and other external stimuli. Thus, the Postulate of
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Transcriptomic Stoichiometry (PTS, [44]) also extends Dalton’s Law of Multiple Proportions
from chemistry [45] to gene networks.

This analysis of the expression correlation among the genes of the “Endocrine and
other factor-regulated calcium reabsorption” revealed an interesting partnership with the
estrogen receptor 1 (ESR1), which is a tumor driver and drug-targeting factor in cancer [70],
and regulator of age-related mitochondrial dysfunction and inflammation [71]. Thus,
while its expression synergisms with the ATP2B3 (ATPase, Ca++ transporting, plasma
membrane 3) and KLK2 (kallikrein-related peptidase 2) in NOR are not modified by ccRCC,
the antagonistic expression with the AP2A1 is switched to a synergistic one in all three
cancer nodules. Because the AP2A1 is important in vesicle formation and intracellular
membrane trafficking [72], our result indicates that cancer switched the type of estrogen
influence on the intracellular transport phenomena. Interestingly, the altered expression
of ESR1 was associated with anti-cancer drug resistance, and non-coding events were
identified in the regulatory hotspot of AP2A1 in various metastatic cancers [73].

We found that the excretory genes rank much lower than the GMRs identified for
each region in [40]. Thus, the GNAQ (guanine nucleotide-binding protein (G protein), q
polypeptide), the top gene involved in the “Endocrine and other factor-regulated calcium re-
absorption” in both NOR (GCH(NOR) = 9.46) and CWM (GCH(CWM) = 17.43), is far below the
GMRs of these regions: the DAPK3 (death-associated protein kinase 3, GCH(NOR) = 30.31)
and the ALG13 (UDP-N-acetylglucosaminyltransferase subunit, GCH(CWM) = 82.95). The
IGF1 (insulin-like growth factor 1 (somatomedin C), GCH(PTA) = 13.11) from the pathway
of the “Aldosterone-regulated sodium reabsorption” is far below the TASOR (transcription
activation suppressor, GCH(PTA) = 63.97) in PTA. The ATP1A2 (ATPase, Na+/K+ trans-
porting, alpha 2 polypeptide, GCH(PTB) = 9.95) from the pathway of the “Proximal tubule
bicarbonate reclamation” is below the FAM27C (family with sequence similarity 27, member
C, GCH(PTB) = 57.19) in PTB. The much lower GCH scores mean that although the excretory
pathways were strongly regulated, no excretory gene is an efficient target for gene therapy
against any of the three cancer nodules.

The substantial decrease in the homeostatic control of AP2A1 expression in PTA but not
in PTB and CWM indicates that, although not significantly regulated
(x(PTA→NOR) = 1.22 < 1.57 = CUT(PTA→NOR), x(PTB→NOR) = 1.04 < 1.61 = CUT(PTB→NOR),
x(CWM→NOR) = 1.13 < 1.55 = CUT(CWM→NOR)), the AP2A1 lost its importance for the cell
homeostasis in PTA while keeping it at NOR level in the other nodules. The most interest-
ing case for the expression control analysis was that of ADCY9, a biomarker for glioma [74],
lung [75], and hepatocellular carcinoma [76], as well as colorectal [77], bladder [78], and
pancreatic cancers [79]. The ADCY9 exhibited the largest increase of the homeostatic con-
trol in PTB and the largest decrease in CWM among all profiled excretory genes, while
its control in PTA remained the same as in the normal tissue. These results indicate that
while cancer had no effect on the homeostatic control of the ADCY9 transcript abundance
in one region (PTA) of the tumor, it made the right ADCY9 expression critical in another
region (PTB), and totally irrelevant in the metastasis nodule (CWM). Since the expression
of ADCY9 is normally four times more controlled than the median kidney gene, we predict
that the expression manipulation of ADCY9 will wholly jeopardize the PTB cells, and
have a similar (high) negative effect on both normal and PTA cells, while stimulating the
proliferation of CWM cells. Thus, at least for this patient, targeting ADCY9 could be both
beneficial and harmful.

The increased overall correlation of the ADCY6 and AP2A1 with all other genes from
the “Endocrine and other factor-regulated calcium reabsorption” pathway (Figure 3e) in
PTA, but the decrease in the other two cancer nodules, indicates substantially different
gene networks. Thus, according to Figure 6, in NOR, the AP2A1 has four statistically signif-
icant synergistically (ADCY6, DNM2, FXYD2, PLCB1) and four antagonistically (ATP1A2,
ATP2B3, ESR1, KLK2) expressed partners, while in PTA it has eleven synergistic (ADCY6,
ATP1A2, ATP1A4, ATP2B3, CLTCL1, ESR1, GNAQ, GNAS, KLK2, PRKCB, VDR) and five
antagonistic (ATP2M1, ATP1B3, CLTA, FXYD2) partners (bolded symbols indicate the genes
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that switched the expression correlation type in PTA with respect to NOR). The partnerships
of AP2A1 were partially similar in PTB: it had synergism with ATP2B3, CLTB, CLTCL1,
ESR1, and GNAQ, and antagonism with AP2S1, ATP1B1, ATP1B3, PLCB2, PRKCA, and
SLC8A1 (underlined symbols indicate common partners in PTA and PTB).

Because ADCY6 is a promising target in cancer therapy [80], it is important to know
how it relates to other excretory genes. Thus, in normal tissue (NOR) it is synergistically
expressed with AP2A1 and ATP1B1, and antagonistically expressed with ATP1A2, ATP2B3,
ESR1, and KLK2, as well as independently expressed with CLTB. In PTA, the synergism
with AP2A1 is preserved but that with ATP1B1 is switched to antagonism. PTA adds
synergism with GNAQ, GNAS, and VDR and antagonism with AP2A2 and ATP1B3. The
overall coordination of ADCY6 with other genes from the pathway is diminished in PTB
(synergism with ATP1A3 and antagonism with BDKRB2, CLTA, and PLCB2) and CWM
(synergism with ATP1A4 and KL, and antagonism with ATP1A3 and FXYD2). Therefore,
for this patient, manipulating the expression of ADCY6 would have different effects on his
cancer nodules.

The down-regulation of AQP3 (x = −3.889) was reported recently [81] by performing a
meta-analysis of public datasets from the publicly accessible databases of ONCOMINE [82]
and UALCAN [83]. In the cited study, the authors compared the expressions of all aqua-
porin encoding genes (AQP1/2/3/4/5/6/7/8/9/10/11) in 533 tumor cases with 72 normal
cases, using the uniform fold-change threshold of 1.50× and p-value < 0.01, to decide
whether a gene was significantly regulated. Since no web resource specifies the exact
locations in the kidney from which the samples have been collected, nor whether the
tumors contained more cancer nodules, the authors implicitly assumed homogeneous gene
expressions all over the tumor. In contrast, our results (AQP3 down-regulated in PTA
and CWM but up-regulated in PTB) indicate that ccRCC tumors do not exhibit uniform
but rather heterogeneous gene expressions, and therefore the meta-analyses comparing
cancer cases with healthy cases have little biological relevance beyond the statistics exercise.
Instead, the best reference for cancer nodules is the normal tissue still present in the tumor.

Figure 7 shows distinct statistically significant coordination partners of AVP, the
neuropeptide hormone arginine vasopressin, which is a very important regulator of kidney
salt and water homeostasis [84]. Our analysis detailed also how AVP-dependent water
reabsorption regulates the cAMP signaling pathway [85,86] through expression correlation
with genes shared by the cAMP signaling pathway with the excretory pathways. Thus,
in NOR, AVP is synergistically expressed with ATP1B2, CREB3L1, CREB3L4, and FXYD2,
has no antagonistic partners, and is independently expressed with PIK3CB. In PTA, AVP
is synergistically expressed with ATP1B2 and CREB3L3, antagonistically expressed with
ATP1A1 and PRKACB, and independently expressed with ATP1A4, CREB3, and MAPK1.
In PTB, AVP is synergistically expressed with CREB3L2 and independently expressed with
ATP1A3, while in CWM it is synergistically expressed with ATP1A2 and antagonistically
expressed with PIK3R1. AVP is also involved in the KEGG-constructed pathways of
hsa04270 “Vascular smooth muscle contraction”, and the very important hsa04020 “Calcium
signaling pathway” and hsa04072 “Phospholipase signaling pathway”.

Interestingly, CREB3L4, known for its role in proliferating prostate cancer cells [87],
was significantly down-regulated in all kidney cancer nodules (x(PTA) = −1.40,
x(PTB) =−1.74, x(CWM) =−1.95). Out of 18 regulated excretory genes in PTA and twenty-one
in PTB, only five were similarly regulated (ATP1B2, CREB3L4, DCTN2, PIK3R2, SLC4A4)
and one (AQ3) was oppositely regulated.

Altogether, the differences in gene expression regulation and remodeling of the ex-
cretory pathways among the three cancer nodules indicate that the bio-assays used to
identify the ccRCC presence by the regulation of certain gene biomarkers might not be
always valid. For instance, the CA9 (carbonic anhydrase IX) that should be expressed
only in ccRCC [88,89] was found by us to be expressed not only in the cancer nodules
(AVE(PTA) = 2.11, AVE(PTB) = 0.27, AVE(CWM) = 2.65) but also in the NOR (AVE(NOR) = 2.76).
Moreover, the CA9 exhibited a significant down-regulation in PTB (x(PTB→NOR) = −10.37).
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Nonetheless, adoption of the GFP increases by 3–4 orders of magnitude the computa-
tional effort, thus opening the field of genomics to artificial intelligence applications [90] that
have the power to combine practically unlimited amounts of histo-pathological, imaging
and “omic” information [91].

5. Conclusions

Although based on a single metastatic ccRCC case, our study shows that adding the
analyses of transcriptomic control and expression inter-coordination of the genes provides
a significantly deeper understanding of cancer-related transcriptomic alterations. Going
from traditional unidimensional gene expression analysis to the GFP is like going from
determining only the numbers of electronic items of each type needed to fix a complex
robot, to knowing also how to wire these items and what voltages to apply to each of
them. Thus, the GFP not only incorporates the traditional gene expression analysis but
complements it with a detailed examination of the expression control and gene inter-
coordination, altogether providing a complete characterization of the transcriptome.

The unrepeatable combination of cancer-favoring factors among humans questions
the validity of the cancer biomarkers derived from meta-analyses of large genomic datasets.
The intra-tumor transcriptomic heterogeneity makes the transcriptomic signatures even less
reliable. Therefore, we believe that the personalization of cancer gene therapy should go
beyond the patient to the primary cancer clones present in his/her tumor. The progress of
gene-editing technology will soon allow the industry to produce silencing constructs for all
genes at reasonable prices so that personalized cancer gene therapy will become affordable.
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Appendix A

1. Normalized gene expression levels in the biological replica “k” in condition “c”:

∀c = PTA, PTB, CWM, NOR & k = 1÷ 4 α
(c;k)
i ≡

a(c;k)
i〈

a(c;k)
j

〉
j=1÷N

⇒
〈

α
(c;k)
j

〉
j=1÷N

= 1 (A1)

ai
(c;k) is the sum of the net fluorescences of all microarray spots probing gene “i” in

the biological replica “k” of condition “c”.

2. Relative expression variation:

REV(c)
i (α) ≡ σ

(c)
i

2AVE(c)
i

(√
ri

χ2(β;r) +
√

ri
χ2(1−β;r)

)
× 100% , where :

σ
(c)
i = sdev

(
α
(c;k)
i

)
k=1÷4

, β (usually β= 0 .05) is the probability,

ri is the number of degrees of freedom, ri = nνi − 1

(A2)

and χ2 is the chi-square score with β probability for r degrees of freedom.

3. Transcriptome configuration function:

F(1, 2, . . . , N) = A1

N

∏
i=1

f1(i)︸ ︷︷ ︸
independent

+ A2

N

∏
i>j=1

f2(i, j)︸ ︷︷ ︸
pair−wise

+ A3

N

∏
i>j>k=1

f3(i, j, k)︸ ︷︷ ︸
3−genes clusters

+ . . . + AN fN(1, 2, . . . , N)︸ ︷︷ ︸
all genes cluster

where A1, . . ., AN are the probabilities of each configuration of gene clustering, and f 2,
f 3, . . ., fN are distribution functions symmetrical to the permutation(s) of the genes.
The above expansion satisfies the following conditions:

probability condition :
N
∑

p=1
Ap = 1

norm conditions :∫
F(1, 2, . . . , N)dV = 1 , ∀p = 1÷N →

∫
V

(
N
∏

i1>i2>...>ip=1
fp(i1, i2, . . . , ip)

)
dV = 1

A 3-gene cluster can be approximated with the superposition of three paired genes:

N
∏

i>j>k
f3(i, j, k) '

N
∏

i>j>k
f2(i, j) f2(j, k) f2(k, i)

A 4-gene cluster can be approximated with four 3-gene clusters:

f4(i, j, k, l) = f3(i, j, k) f3(j, k, l) f3(k, l, i) f3(l, i, j)

that can be further approximated with six squared distributions of paired genes:

f4(i, j, k, l) = ( f2(i, j) f2(j, k) f2(k, i))︸ ︷︷ ︸
f3(i,j,k)

× ( f2(j, k) f2(k, l) f2(l, j))︸ ︷︷ ︸
f3(j,k,l)

× ( f2(k, l) f2(l, i) f2(i, k))︸ ︷︷ ︸
f3(k,l,i)

×( f2(i, j) f2(j, l) f2(l, i))︸ ︷︷ ︸
f3(l,i,j)

= f 2
2 (i, j) f 2

2 (j, k) f 2
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2 (l, j) f 2

2 (l, i)
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and so on, giving the recurrence relation:

∀p ≥ 3 & Ip= a set of p genes
fp(Ip) ' ∏

all combinations of p genes
in sets of p− 1 genes

fp−1(Ip−1) ' ∏
i>j∈Ip

f p−2
2 (i, j)

From the normalization condition, it results that:

∀p ≥ 3 ∧ ∀q > r = 1÷ N , ∏
i>j∈Ip

f p−2
2 (i, j) << ∏

i>j∈Ip

f2(i, j)

Therefore, one can neglect the contributions of clusters with more than 2 genes:
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(A3)

4. Pair-wise correlation of gene expression levels:
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5. Gene Commanding Height:
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6. Statistically significant regulation of the expression level:
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7. Weighted Individual (Gene) Regulation:
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8. Weighted Pathway Regulation:

WPR(cancer→NOR)
Γ = Abs

(
WIR(cancer→NOR)

i

)⌋
iεΓ

(A8)



Curr. Issues Mol. Biol. 2023, 45 9495

9. Relative Expression Control:
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10. Regulation of the Expression Control:

∆REC(cancer→NOR)
i ≡ const
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i

, const= calibration constant (A10)

In this study const = 100.

11. Regulation of the Expression Coordination:
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12. Transcriptomic Distance:
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