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Iga Dziechciowska 1, Małgorzata Dąbrowska 1, Anna Mizielska 1, Natalia Pyra 1, Natalia Lisiak 1,
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Abstract: Breast cancer is one of the most commonly diagnosed cancer types worldwide. Regarding
molecular characteristics and classification, it is a heterogeneous disease, which makes it more
challenging to diagnose. As is commonly known, early detection plays a pivotal role in decreasing
mortality and providing a better prognosis for all patients. Different treatment strategies can be
adjusted based on tumor progression and molecular characteristics, including personalized therapies.
However, dealing with resistance to drugs and recurrence is a challenge. The therapeutic options are
limited and can still lead to poor clinical outcomes. This review aims to shed light on the current
perspective on the role of miRNAs in breast cancer diagnostics, characteristics, and prognosis. We
discuss the potential role of selected non-coding RNAs most commonly associated with breast cancer.
These include miR-21, miR-106a, miR-155, miR-141, let-7c, miR-335, miR-126, miR-199a, miR-101,
and miR-9, which are perceived as potential biomarkers in breast cancer prognosis, diagnostics, and
treatment response monitoring. As miRNAs differ in expression levels in different types of cancer,
they may provide novel cancer therapy strategies. However, some limitations regarding dynamic
alterations, tissue-specific profiles, and detection methods must also be raised.
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1. Introduction

Breast cancer (BC) is the most commonly diagnosed cancer worldwide [1,2]. This
disease constitutes approximately 11.7% of total cancer cases. It has recently overtaken
lung cancer, which is assessed at 11.4%. Consequently, breast carcinoma is the leading
cause of death among females and the fifth among both sexes (although rare in males) [3–5].
Non-invasive breast cancer ductal and lobular carcinomas in situ represent 15% of total
breast malignancies. The first type develops in milk ducts, whereas the latter originates in
breast lobules. However, in both cases, cells can transform and become invasive [6].

Without a doubt, breast malignancy is heterogeneous, which makes it more challenging
to diagnose. The entities of neoplasms differ regarding how they were triggered, how
they respond to therapy, and the outcome. According to the World Health Organization
(WHO), there are at least 18 histological types of breast carcinoma. There is a significant
difference between histological and molecular classification. Luminal, HER2-enriched
(human epidermal growth factor receptor 2), basal-like, and normal breast-like are identified
as four molecular subtypes. The luminal is further divided into subgroups: luminal A and
luminal B [7]. The molecular taxonomy involves profiling of gene expression, evaluated at

Curr. Issues Mol. Biol. 2023, 45, 9500–9525. https://doi.org/10.3390/cimb45120595 https://www.mdpi.com/journal/cimb

https://doi.org/10.3390/cimb45120595
https://doi.org/10.3390/cimb45120595
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cimb
https://www.mdpi.com
https://orcid.org/0000-0003-1278-3789
https://orcid.org/0000-0003-1730-0176
https://doi.org/10.3390/cimb45120595
https://www.mdpi.com/journal/cimb
https://www.mdpi.com/article/10.3390/cimb45120595?type=check_update&version=2


Curr. Issues Mol. Biol. 2023, 45 9501

the mRNA levels, which provides a high sensitivity of detection. Early detection plays a
crucial role in decreasing mortality and providing a better prognosis for patients.

Breast malignancy has numerous risk factors such as sex, age, having children, age
at first birth, family history, genetic background, taking birth control pills, alcohol con-
sumption, smoking, etc. [4,8]. The prognosis and treatment of breast carcinoma depends,
among other things, on tumor-node-metastasis staging. The other crucial factors are
lymphovascular spread, age and menopausal status of the patient, histological grade,
hormone receptor status, and overexpression of ERBB2/HER2 (erythroblastic oncogene
B2/HER2) [9]. Altogether, dealing with unequivocal diagnostics, metastasis, resistance
to drugs, and recurrence are the burdens of breast cancer treatment that result in severe
limitations in therapy efficacy. That is why developing novel diagnostics and treatment
strategies is so valid. It seems that an epigenetics assessment covering micro-ribonucleic
acid (miRNA) profiling might significantly contribute to better patient outcomes as it refers
to many pathways involving oncogenes or tumor suppressor genes [10–12].

2. Breast Cancer Treatment Strategies Based on Molecular Characteristics

Early cancer diagnosis increases treatment options and patients’ survival. Available diag-
nostic strategies are based on medical imaging and biomarker analysis. In 20 to 30% of invasive
breast cancer cases, the overexpression or amplification of HER2 is observed [13–15]. Dimeriza-
tion of the receptor initiates various signaling pathways, leading to cell proliferation and
tumorigenesis. This is why HER2-positive cells are more aggressive than HER2-negative
breast cancer cells [16]. There are some known upregulated miRNAs in HER2+ breast
cancer patients, e.g., miR-4728 or miR-146a-5p, and also there are miRNAs which are
HER2 cell signaling inhibitors, like miR-33b, miR-491-5p, miR-634, and miR-637 [17–20].
Furthermore, miR-342-5p and miR-744 are significantly downregulated in HER2-positive
breast tumors as compared to HER2-negative tumors, and higher expression of miR-342-5p
is associated with better survival in both HER2-positive and HER2-negative breast cancer
patients [17].

Targeted therapy for HER2-positive breast cancer uses monoclonal antibodies such
as trastuzumab (known as Herceptin), pertuzumab, and margetuximab [16]. They bind
HER2 protein, attenuate proliferation signaling, and decrease cancer growth. This protein
is a kinase that can also be blocked with drugs such as lapatinib or neratinib, which are
kinase inhibitors [16]. Alternatively, another strategy can be involved that is based on an
antibody–drug conjugate (ADC) [16]. One of the examples is ado-trastuzumab emtansine
(Kadcyla), a combination of Herceptin and the chemotherapeutic drug emtansine [16]. It is
used to treat early-stage breast cancer after surgery or in advanced stage after chemotherapy.
The FDA also approved Enhertu (a HER2-directed antibody and topoisomerase inhibitor
conjugate) that works for patients with an inoperable or metastasized tumor [16]. Another
strategy is based on targeting hormone receptors (in estrogen-positive cancers). Cancer
can also be targeted with drugs such as CDK4/6 inhibitors (palbociclib, ribociclib, and
abemaciclib) that enable the slowing down of cancer development. The drugs block cyclin-
dependent kinases (CDKs) and stop cells from dividing [18]. Similarly, some well-known
mTOR inhibitors (e.g., sirolimus, everolimus, and temsirolimus) attenuate the malignancy
potential of cancer cells [19]. Another signaling pathway effectively blocked in cancer is the
PI3K pathway (found to control the proliferation and survival of breast cancer that results
in tumor growth inhibition) [16].

However, one of the most critical pathways in cancer development is associated
with BRCA genes (BRCA 1 and BRCA 2), which are related to DNA repair and cell cycle
control [20]. The human BRCA1 mRNA 3′UTR region is predicted to bind 20–100 miRNAs,
whereas some of these, e.g., miR-146a, miR-146b-5p, miR-182, miR-16, miR-17, miR-15a, and
miR-638, were shown to regulate BRCA1 expression [21]. BRCA1 epigenetically represses
miR-155, and overexpression of miR-155 accelerates tumor cell line growth in vitro [22].
Moreover, there are also miRNAs such as miR-155, miR-148, miR-152, miR-205, miR-99b,
and miR-146a, which are targeted by BRCA1 [21]. BRCA1 was shown to be associated with
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the expressions of both precursor and mature forms of let-7a-1, miR-16-1, miR-145, and
miR-34a [23].

The risk of developing breast (or ovarian) cancer in carriers of mutations in these tumor
suppressor genes is significantly higher than in non-carriers. Precisely, in the general pop-
ulation, about 13% of women will eventually develop breast cancer [24], while 55–72% of
women who inherit a harmful BRCA1 variant and 45–69% of women who inherit a harmful
BRCA2 variant will develop breast cancer by 70–80 years of age [25–27]. Noteworthy, the
risk depends on several factors, some of which have not been fully characterized. Another
protein associated with the DNA repair pathway is PARP (poly (ADP-ribose) polymerase),
which can be targeted with olaparib and talazoparib [16,20]. However, these strategies
are not efficient enough in diagnostics (mutation detection) or therapy. Thus, providing
novel diagnostic and therapeutic targets is still highly important, and miRNA could be a
promising area.

3. miRNAs—The Mechanism of Action

miRNAs are defined as endogenous, 21–25 nucleotide single-stranded RNAs (ssRNAs)
that are produced from hairpin-shaped precursors [25]. These molecules are involved in
processes crucial for development and general metabolism. The role of these non-coding
RNAs covers cell proliferation, differentiation, apoptosis, and tumorigenesis [26]. As
shown in Drosophila melanogaster, miRNAs controlled cell death, proliferation, and Notch
signaling [27–29]. In mice, they were shown to contribute to T-cell development and in-
nate immunity [30–32]. In humans, miRNAs were shown to participate in the regulation
of granulocyte maturation [33], development and function of the immune system [34],
adipocyte differentiation [35], antiviral defense [36], gene downregulation in colon adeno-
carcinoma [37] and upregulation in B-cell lymphoma [38,39], and many other functions.
Recent studies have shown the pivotal role of specific miRNAs in the development, pro-
gression, and cancer response to treatment [40–42]. It was also suggested that miRNAs
could function as breast cancer biomarkers due to their aberrant expression [7].

The miRNA-related mechanism of gene expression modulation is related to the post-
transcriptional effect, possibly due to the base pair complementarity with mRNA molecules.
The gene silencing process can be conducted with mRNA cleavage or inhibition of transcript
translation [43]. Predominantly, miRNAs bind to the sequence at the 3′ UTR of their
target mRNAs, but binding to other mRNA regions such as the 5′ UTR and the coding
sequence was also revealed [43]. Significantly, miRNA binding to 3′ UTR and coding
regions contributes to gene expression silencing, while binding the promoter region results
in transcription induction [43]. miRNA does not usually show complete complementarity
to the 3′ UTR, which enables the targeting of many of genes, some of which may be involved
in carcinogenesis [44]. The miRNA genes are situated directly at or near mutation-prone
sites of chromosomes. Thus, DNA damage influences the expression of tumor suppressors
and miRNAs. The variety of miRNA expression that regulates cancer-related genes make
miRNAs a new class of oncogenes and tumor suppressor genes [26].

The miRNA mechanism of action and transcription starts in the nucleus, from miRNA
genes. Formation of pri-miRNA is operated by RNA polymerase II (Pol II), Drosha and
Pasha cofactor, into 60- to 110-nucleotide pre-miRNA hairpins. It is exported to the cy-
tosol, where it is cleaved by the RNase activity of Dicer into a transient, 22-nucleotide
miRNA/miRNA duplex intermediate. The duplex loads onto components in the RNA-
induced silencing complex (RISC) and separates. Further, the miRNA-RISC complex leads
to double-stranded helix formation by complementing the antisense strand with the mRNA
sequence target. If mRNA is bound with complete complementarity, it encounters endonu-
cleolytic cleavage (Figure 1). Partial complementarity leads to translational repression,
probably by forming a bulge sequence in the middle of the helix [45].
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Figure 1. The transcription and mechanism of miRNA action (according to [45], created in BioRen-
der.com). The microRNA gene is operated by RNA polymerase II (Pol II) into primary microRNA 
(pri-miRNA), which is prepared into pre-miRNA hairpins by Drosha and Pasha (RNase III enzyme 
and its cofactor). Then, the pri-miRNA is exported by Exportin-5 from the nucleus to the cytoplasm, 
where Dicer cleaves it by the ribonuclease (RNase) activity into a transient miRNA/miRNA duplex 
intermediate. The duplex loads onto components in the RNA-induced silencing complex (RISC), 
separate, and leads to double-stranded helix formation by complementing the antisense strand with 
the mRNA sequence target. mRNA could bind with complete complementarity, which leads to en-
donucleolytic cleavage, or just with partial complementarity, which drives translational repression, 
probably by a bulge sequence formation. 

4. The Potential of miRNAs in Current Cancer Diagnostics and Therapy 
By targeting numerous transcripts, miRNAs affect pathways, leading to different 

phenotypic status [46]. Over the years, abnormal levels of various miRNAs have been re-
ported in many cancers, including breast cancer. There is a strong belief that miRNA ex-
pression profiles could become predictive and prognostic biomarkers, similar to protein-
coding gene expression assessment. The levels of individual miRNAs differ between 
breast cancer stages, which could also be used in future diagnostics. Depending on the 
type of cells, the same miRNAs can show oncogenic or tumor suppressor properties [47–
49]. 

As reported, miRNAs interact with cell signaling pathways and affect breast cancer 
metastasis and progression. They can regulate TGF-β (miR-106b, miR-200 family, miR-
106b; the effects are mainly mediated by the downregulation of SMAD), Wnt/β-catenin 
(miR-4469 is a main inducer of the pathway in breast cancer cells while miR-34a is the 
main repressor), NF-κB (directly targeted by miR-29a, which controls proliferation, cell 
cycle, and apoptosis, but also controlled by miR-1246, miR-449a, or miR-200b), 
PI3K/Akt/mTOR (miR-21 is the main inducer of the pathway), Notch (miR-34a plays a 
critical function in sustaining breast cancer stem cells), and ERK/MAPK (controlled by 
miR-543, miR-200c, or miR-148a/152) pathways [50]. Significantly, the latter can contribute 
to many pathways related to the differentiation and migration of breast cancer cells. Var-
ious studies showed a correlation between individual miRNAs and ERK/MAPK and the 
ability of miRNAs to downregulate or upregulate this pathway [50]. For example, miR-
543 was shown to impair tumor growth and proliferation in breast cancer cell lines (MCF-
7, MDA-MB-231, MDA-MB-453, HCC-1937) by inhibiting ERK2 activity [51]. Noteworthy, 

Figure 1. The transcription and mechanism of miRNA action (according to [45], created in BioRen-
der.com). The microRNA gene is operated by RNA polymerase II (Pol II) into primary microRNA
(pri-miRNA), which is prepared into pre-miRNA hairpins by Drosha and Pasha (RNase III enzyme
and its cofactor). Then, the pri-miRNA is exported by Exportin-5 from the nucleus to the cytoplasm,
where Dicer cleaves it by the ribonuclease (RNase) activity into a transient miRNA/miRNA duplex
intermediate. The duplex loads onto components in the RNA-induced silencing complex (RISC),
separate, and leads to double-stranded helix formation by complementing the antisense strand with
the mRNA sequence target. mRNA could bind with complete complementarity, which leads to
endonucleolytic cleavage, or just with partial complementarity, which drives translational repression,
probably by a bulge sequence formation.

4. The Potential of miRNAs in Current Cancer Diagnostics and Therapy

By targeting numerous transcripts, miRNAs affect pathways, leading to different
phenotypic status [46]. Over the years, abnormal levels of various miRNAs have been
reported in many cancers, including breast cancer. There is a strong belief that miRNA
expression profiles could become predictive and prognostic biomarkers, similar to protein-
coding gene expression assessment. The levels of individual miRNAs differ between breast
cancer stages, which could also be used in future diagnostics. Depending on the type of
cells, the same miRNAs can show oncogenic or tumor suppressor properties [47–49].

As reported, miRNAs interact with cell signaling pathways and affect breast cancer
metastasis and progression. They can regulate TGF-β (miR-106b, miR-200 family, miR-
106b; the effects are mainly mediated by the downregulation of SMAD), Wnt/β-catenin
(miR-4469 is a main inducer of the pathway in breast cancer cells while miR-34a is the main
repressor), NF-κB (directly targeted by miR-29a, which controls proliferation, cell cycle,
and apoptosis, but also controlled by miR-1246, miR-449a, or miR-200b), PI3K/Akt/mTOR
(miR-21 is the main inducer of the pathway), Notch (miR-34a plays a critical function in
sustaining breast cancer stem cells), and ERK/MAPK (controlled by miR-543, miR-200c, or
miR-148a/152) pathways [50]. Significantly, the latter can contribute to many pathways
related to the differentiation and migration of breast cancer cells. Various studies showed a



Curr. Issues Mol. Biol. 2023, 45 9504

correlation between individual miRNAs and ERK/MAPK and the ability of miRNAs to
downregulate or upregulate this pathway [50]. For example, miR-543 was shown to impair
tumor growth and proliferation in breast cancer cell lines (MCF-7, MDA-MB-231, MDA-
MB-453, HCC-1937) by inhibiting ERK2 activity [51]. Noteworthy, abnormal activation of
receptor tyrosine kinases (RTKs, one of the mediators in the ERK/MAPK pathway) results
in the progression of various cancers. This pathway (also known as the Ras-Raf-MEK-ERK
pathway) conveys extracellular information to the DNA in the nucleus and takes part in
cell proliferation and differentiation control [51,52]. The pathway can be initiated with
growth factors, cytokines, or hormones. They bind to the two subunits of a RTK, followed
by the dimer formation. RTK binds to adaptor proteins, which attract guanine–nucleotide
exchange factors (GEFs). These factors displace GDP from RAF proteins and allow GTP
to bind, which causes RAS activation. Then, further protein kinases, RAF, and MEK are
activated. The final enzyme MAPK (ERK) is translocated to the nucleus and activates
transcription factors [51–53]. RTK are transmembrane proteins that mediate cell-to-cell
communication. The aberrant activation of RTKs is found as a cancer progression factor [52].
Thus, they are used as therapeutic targets. Unfortunately, tyrosine kinase inhibitors have
multiple side effects, including diarrhea, nausea, vomiting, oral ulceration, headache, and
dizziness [54]. In addition, the drug-resistance cases of tyrosine kinase inhibitors (TKI) are
already known [54]. Therefore, the use of RTK inhibitors has become limited. Thus, novel,
more specific strategies, e.g., miRNA-based strategies, are expected.

5. microRNA Profiling

miRNAs were shown to modulate the chemosensitivity of cancer cells to therapeutic
agents, but this relationship is still unclear. Due to the diagnostic potential in breast
cancer, miRNA profiling has become of interest in many studies. However, first, high-
efficacy isolation must be provided. miRNA isolation can be performed from various
biological samples such as cells in culture, tissue, blood plasma, serum, and other body
fluids. miRNAs are more stable than mRNAs in blood plasma and serum, contributing to
their potential use in gene regulation research. There are some challenges in selecting a
method for miRNA profiling. microRNAs represent a small part of the total RNA fraction
and can differ by a single nucleotide, which makes them more challenging to identify and
distinguish. Thus, it is crucial to select the appropriate microRNA profiling method. Each
method has its advantages, disadvantages, and limitations. They differ in the required
amount of RNA, sensitivity, specificity, and costs.

One established method is real-time quantitative reverse transcription PCR (qRT-PCR),
based on the reverse transcription of miRNA to cDNA and polymerase chain reaction
(SybrGreen- or probe-labeled systems). Another method, microarray, relies on the hy-
bridization of the labeled miRNA using capture probes, but this method cannot be used
to determine absolute quantification. Another hybridization-based method is Nanostring
nCounter, but one of the most modern methods is based on next-generation sequencing that
allows the distinguishing of different miRNAs with very high accuracy [55–58]. Eventually,
based on the collected literature data, several upregulated or downregulated miRNAs can
be listed in breast cancer (Table 1). We consider them as potential cancer biomarkers that
can become useful in medical diagnostics.
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Table 1. The list of critical miRNAs associated with breast cancer (according to [48], modified) reported as good diagnostic or therapeutic candidates. The candidates
were selected based on the latest reports indicating the role of miRNA in breast cancer. Consequently, a broad analysis of selected miRNA targets suggested some
good candidate markers based on the global data at TargetScanHuman 8.0 [59].

miRNA Regulation in Breast
Cancer Cells

Source and
Detection Method Target Target Effects/Action Metabolic Consequences

miR-21 Upregulated Serum, qRT-PCR [60]

PTEN [44,58]

Downregulation of PTEN
expression [44,58,61]

Drug resistance to doxorubicin in
HER2- BC cells [61]

* miR-21 inhibition induces PTEN
expression [62]

* Restored trastuzumab sensitivity
in the resistant BC xenografts

in vivo [62]

PTEN/Akt [63] Downregulation of PTEN expression
and Akt activation [63]

Induction of EMT and gemcitabine
resistance [63]

PI3K/Akt, MEK/ERK [58] Activation PI3K/Akt and MEK/ERK
signaling pathways [58] Development of MDR [58]

TPM1, TGF-β [64] Repression of expression TPM1 [65,66]
Increased BC cells proliferation,

migration, invasion, survival, and
EMT [64]

Mesenchymal cell markers
(N-cadherin, Vimentin, α-SMA) [67]

Activation of mesenchymal cell
markers [67]

Re-expression of miR-21 is
responsible for migration and

invasion by activating the EMT
process in MCF7 cells [67]Epithelial cell marker (E-cadherin) [67] Inhibition of epithelial cell marker [67]

miR-106a Upregulated Serum, qRT-PCR [68] Bcl-2,ABCG2, BAX, P53, RUNX3 [69]

Upregulation of Bcl-2 protein and
multidrug transporter ABCG2.

Downregulation of BAX protein and
genes products: P53, RUNX3 [69]

Promotes BC cells proliferation and
invasion [69]

* Inhibition of miR-106a
downregulates the expression of Bcl-2,
ABCG2 and upregulates the BAX, P53,

RUNX3 expression [69]
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Table 1. Cont.

miRNA Regulation in Breast
Cancer Cells

Source and
Detection Method Target Target Effects/Action Metabolic Consequences

miR-106a Upregulated Serum, qRT-PCR [68]

RAF-1 [68]
Decreases RAF-1 levels and RAF-1 is a

part of MAPK/ERK signaling
pathway [68]

Possibly induces proliferation and
decreases apoptosis in BC cells

through regulation of the
MAPK/ERK signaling pathway,

which controls gene
expression [68]

ZBTB4 [70–72]
Negative regulation of ZBTB4 gene,

which functions as a tumor suppressor
gene [70–72]

* Restoration of ZBTB4 suppress
Sp1, Sp3, Sp4 expression resulting

in inhibition of BC cells
proliferation, invasion [70–72]

miR-155 Upregulated Serum, qRT-PCR [73]

TERF1 [74]

Reduction in the shelterin component
TRF1 expression. TRF1 regulates

telomere length and suppresses DNA
breakage [74]

Antagonization of telomere
integrity in BC cells and increased

genomic instability [74]

SOCS1 [75]
Repression of SOCS1 (negative

feedback regulator of JAK/STAT
signaling) [75]

Constitutive activation of STAT3 in
BC cells, promotion of cell
proliferation and colony

formation [75]

C/EBPβ [76,77] Loss of CCAAT-enhancer binding
protein beta (C/EBPβ) [76,77]

Modification of TGF-β response;
from growth inhibition to EMT,
invasion, and metastasis in BC.

Promotion of BC
progression [76,77]

mir-141 Downregulated Tissue, qRT-PCR,
Microarray [78]

ANP32E [78]

Regulation of ANP32E (positive
regulator of tumor growth and

metastasis) [78,79]

ANP32E induces tumorigenesis of
BC by upregulating E2F1 and

promoting the G1/S transition [79]

** Overexpression of miR-141
downregulated ANP32E

expression [78]

** Inhibition of BC cells
proliferation, migration, and

invasion [78]



Curr. Issues Mol. Biol. 2023, 45 9507

Table 1. Cont.

miRNA Regulation in Breast
Cancer Cells

Source and
Detection Method Target Target Effects/Action Metabolic Consequences

mir-141 Downregulated Tissue, qRT-PCR,
Microarray [78]

SIP1 [80] Regulation of EMT [80]
EMT plays a crucial role in early
tumor metastasis and SIP1 is a

promoter of cancer progression [80]

let-7c Downregulated Serum, qRT-PCR [81]

ERCC6 [82] Upregulation of ERCC6 [82]
Intensified cancer growth ability

and lower rate of apoptosis; DNA
damage accumulation [82]

BCL2, BAX [83]
** Overexpression of let-7c decreases

level of Bcl-2 and increases the level of
BAX, TP53, PTEN [83]

** Promotion of apoptotic cell
death, suppression of cancer

progression [83]

ERα and Wnt signaling [84]
** Overexpression of let-7c inhibits
estrogen induction in ERα and Wnt

signaling [84]

** Inhibition of BCSCs self-renew
and suppresses tumor

formation [84]

miR-335 Downregulated Serum, qRT-PCR [85] BRCA1 [86,87]

Downregulation of BRCA1 [86]
Accelerated tumor growth,

genomic instability, BC
progression [86]

** Overexpression of miR-335
upregulates the level of BRCA1 [86,87]

** Decreased cell viability and
increased apoptosis [86,87]

miR-126 Downregulated Tissue, qRT-PCR [88]

VEGFA [88], PIK3R2 [89]
Inactivation of the

PIK3R2/PI3K/Akt/mTOR signaling
pathway [89]

Vasculogenesis, angiogenesis
resulting in tumor growth [88]

Resistance to trastuzumab [89] in
SKBR3 and BT747 cell lines

ADAM9 [90] ** Upregulation of miR-126 is silencing
ADAM9 gene [90]

** Inhibition of BC cells invasion
and metastasis [90]

miR-199a Downregulated Tissue, qRT-PCR [91] PAK4/MEK/ERK signaling
pathway [92]

Regulation of PAK4/MEK/ERK
signaling pathway [92]

PAK4 activates the ERK pathway,
and MEK/ERK pathway plays a

part in PAK4-induced cell growth
regulation [92]

** MiR-199a/b-3p downregulates
PAK4 expression and

PAK4/MEK/ERK signaling
pathway [92]

** Suppression of BC cells
migration and invasion [92]
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Table 1. Cont.

miRNA Regulation in Breast
Cancer Cells

Source and
Detection Method Target Target Effects/Action Metabolic Consequences

miR-101 Downregulated Tissue, qRT-PCR [93] COX-2/MMP1 signaling pathway [94]

Upregulation of COX-2/MMP1
signaling pathway [94]

Promotes transmigration of
metastatic BC cells through the

brain endothelium [94]
** Restoring miR-101-3p in BC cells

reduces COX-2/MMP1 expression [94]
** Reduction in transmigratory

ability [94]

miR-9 Upregulated Cell culture, qRT-PCR [95]

FOXO1 [96] Downregulation of FOXO1
expression [96]

Promotion of proliferation,
migration, and invasion

of BC cells [96]

STARD13 [97] Repression of STARD13 [97]

Upon stimulation of PDGFRβ
signaling, miR-9 could promote the

formation of vascular-like
structures of TNBC [97]

E-cadherin [96,98] E-cadherin downregulation [98,99]
Increased tumor angiogenesis [99]

Primes BC cells to EMT and
invasion [98]

* refers to report showing effects of miR inhibition. ** refers to report showing effects of miR activation.
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5.1. miR-21

In 2019, a study investigating miR-21 levels in the plasma of breast cancer patients
and breast cancer cell lines was published. The study included 127 healthy patients
(controls), 82 patients with benign breast tumors, and 252 with breast cancer. The levels of
miR-21 were found to be different between these groups—the lowest miR-21 levels were
found in healthy controls, while an increase in miR-21 levels was observed in patients
with breast cancer. miR-21 levels were also compared between patients with different
stages of the disease. Plasma miR-21 levels of breast cancer patients were correlated
with the tumor, node, and metastasis (TNM) stage. In particular, an increase in miR-21
level was observed in the T3 stage, meaning the tumor is bigger than 5 cm. Then, the
breast cancer cell lines Hs578T and MDA-MB-231 were transfected with a miR-21 inhibitor.
After 14 days, it was found that colony formation ability was reduced in transfected
cells compared with the controls. Transwell and wound healing tests were performed
using the same cell lines to assess the ability of the cells to migrate. The tests confirmed
that the miR-21 inhibitor reduced cell migration capacity. These results showed that
inhibition of miR-21 could reduce metastasis and breast cancer proliferation. This means
that therapies with miR-21 inhibitors might constitute a promising strategy for breast
cancer patients [100,101]. miR-21 was also shown to play a crucial role in regulating drug
resistance in breast cancer, and its overexpression was correlated with the development of
multidrug resistance (MDR) [58]. Specifically, the research investigating the association of
miR-21 expression with drug resistance in breast cancer indicated that miR-21 modulated
the resistance of breast cancer cells to doxorubicin [58]. The study used a breast cancer cell
line (MCF-7) and a doxorubicin-resistant breast cancer cell line (MCF-7/ADR). As reported,
miR-21 expression was increased in MCF-7/ADR cells relative to MCF-7 cells. Importantly,
one of the targets for miR-21 is the tumor suppressor gene PTEN, and in this study, PTEN
expression was downregulated in MCF-7/ADR cells. This study suggested that miR-21
overexpression was associated with doxorubicin resistance to breast cancer and mediated
by targeting phosphatase and tensin homolog (PTEN) [58,61]. Similarly, other research
showed that miR-21 targeted insulin-like growth factor binding protein 3 (IGFBP3), which
can be associated with brain metastases of BC cells. miR-21 was shown to cause an increase
in cancer cell proliferation, migration, and the epithelial-to-mesenchymal transition (EMT)
mediated by targeting TPM1, PCD4, and TGF-beta1 [64]. Knockdown of this particular
miRNA was reported to induce cell apoptosis and inhibit proliferation and invasion of
EMT [64].

5.2. miR-106a

It was reported that miR-106a was overexpressed in breast cancer tissue compared with
normal tissue and was correlated with enhanced breast cancer cell proliferation. It was also
associated with the downregulation of P53, BAX, and RUNX3 and the upregulation of Bcl-2
and ABCG2, which promote breast cancer cell proliferation. In addition, it was reported
that upregulation of miR-106a decreased cell sensitivity to cisplatin [69]. The study in the
mouse model also showed that miR-106a overexpression affected drug chemosensitivity.
MDA-MB-231 and MCF-7 cell lines were treated with miR-106a inhibitor and miR-106a
mimic. The mice were used to make a transplanted tumor model, and then the cisplatin
treatment was added. The inhibition of tumor growth was observed when the inhibitor was
applied, suggesting an association between miR106a and tumor sensitivity to cisplatin [102].
Altogether, it was reported that miR-106a could contribute to enhanced cell proliferation
due to lowered sensitivity to chemotherapeutic agents [69,102]. Another study revealed a
possible correlation between miR-106a levels and breast cancer cell proliferation mediated
by RAF-1, activating the MAPK/ERK signaling pathway [68].

5.3. miR-155

miR-155 is an oncogenic miRNA involved in breast cancer growth regulation and is up-
regulated in breast cancer specimens. It was shown to contribute to telomere destabilization
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due to targeting TRF1 (shelterin component) [74] in MCF-7, SK-BR-3, and MDA-MB-468
cells. miR-155 overexpression was reported to reduce the expression of TRF1, leading
to increased chromosome instability. Interestingly, reducing miR-155 levels showed an
opposite effect [73,74,103,104].

5.4. miR-141

It was reported that the levels of miR-141 were decreased in breast cancer cells relative
to surrounding tissues (qPCR) [78]. Additionally, the miR-141 level was correlated with
the tumor stage. As demonstrated, overexpression of this miRNA was associated with
decreased cell proliferation and enhanced apoptosis. Moreover, wound healing, assays,
showed that miR-141 overexpression was accompanied by the inhibition of MDA-MB-231
cell migration. More detailed analysis revealed that one of the miR-141 targets, acidic
nuclear phosphoprotein 32 family member E (ANP32E), was manifested by a significantly
decreased level of ANP32E both at mRNA and protein levels in the miR-141 mimics
transfected group [78]. Consequently, experiments with specific vshRNAs revealed that
ANP32E knockdown inhibited MDA-MB-231 cell proliferation [78]. The relationship be-
tween ANP32E and triple-negative breast cancer was studied and it was demonstrated that
ANP32E promotes tumor proliferation and the G1/S transition [79].

Another study demonstrated that miR-141-3p overexpression was correlated with
aggressive breast carcinoma cases. The miRNA expression was compared between differ-
ent breast tissues (malignant and benign), and significantly high miR-141-3p expression
was demonstrated in grade III breast cancer compared to grade II [105]. These results
suggested that miR-141-3p could discriminate malignant from benign breast tissues and,
even more, could distinguish TNBC (triple-negative breast cancer) from other molecular
subtypes of breast cancer. Altogether, miR-141-3p expression was correlated with shorter
overall patient survival [105]. Additionally, assessment of the combination of miR-141-3p,
miR-181b1-5p, and miR-23b-3p was suggested as a useful approach in cancer molecular
subtypes identification.

5.5. Let-7c miRNA

The let-7 family of microRNAs are known to act as tumor suppressors [81]. Specifically,
the let-7c level in the breast cancer patients’ serum and tissues was lower than in the controls.
The association between let-7c expression levels and ER/PR status was investigated, but
no significant difference was detected [81]. Interestingly, the upregulation of let-7c in
premenopausal patients compared with postmenopausal patients was shown [81]. Another
study suggested that ERCC6 (this gene encodes a DNA-binding protein that is important
in transcription-coupled excision repair [106]) was also a target for let-7c-5p that led to the
downregulation of the encoded protein in MCF-7 cells [82].

Interestingly, the ERCC6 mRNA was unaltered, suggesting transcription degradation
instead of mRNA degradation. Another study showed the downregulation of let-7c-5p in
breast cancer tissues. Furthermore, it was found that let-7c-5p overexpression could inhibit
breast cancer cell proliferation [82].

5.6. miR-335

miR-335 coding sequence is located on the chromosome 7q32.2 locus and controlled by
DNA methylation and was reported to act as an oncogene showing both tumor promoter
and suppressor effects depending on the tumor stage and type. BC surpasses tumor
invasion and metastasis by downregulating several signal pathways. It also affects the
tumor environment and drug sensitivity [85]. Studies show that the overexpression of miR-
335 affects cell proliferation, viability, and apoptosis by being a crucial factor in the BRCA1
regulatory network [86]. Interestingly, BRCA1/2 increases the transcription levels of miR-
335, which leads to increased cell plasticity and growth [107]. In addition, BRCA1 and
EGFR/HER2 can inhibit mRNA maturation, enhancing cell survival and invasiveness [107].
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New evidence reports that the downregulation miR-335 in BC suppresses cell metasta-
sis and migration by targeting transcription factor SOX4 and extracellular matrix compo-
nent tenascin C [108].

The hepatocyte growth factor (HGF)/c-Met pathway contributes to tumor invasion
and metastasis and is an essential factor in the progression and prognosis of BC pa-
tients [108]. C-Met, being an oncogene, can bind HGF, which induces autophosphorylation
of tyrosine residues in c-Met [108]. Studies conducted by Gao et al. in 2014 showed that the
forced overexpression of miR-335 revokes HGF-stimulated c-Met phosphorylation and, in
consequence, cell migration due to reducing c-Met expression [108]. The same studies indi-
cated that 5-AZA-CdR treatment (DNA methyltransferase inhibitor) significantly increased
miR-335 expression, which later influences the HGF/c-Met pathway, and, simultaneously,
the level of miR-335 that can play a significant role in breast cancer diagnosis and prognosis
and novel strategies for BC therapy [107–109]. Research carried out on MDA-MB-231 cells
showed that the overexpression of miR-335 could increase the sensitivity of triple-negative
breast cancer (BC with negative immunohistochemical results of estrogen receptor, proges-
terone receptor, and proto-oncogene HER-2) to cisplatin and doxorubicin, which improved
the efficacy of chemotherapy [87]. The mechanism involved in increased cell sensitivity
still needs to be investigated. It may play an essential role in breast cancer treatment.

5.7. miR-126

miR-126, located in the EGFL7 region (a natural negative regulator of vascular elasto-
genesis), is exclusively expressed in endothelial cells and regulates angiogenic signaling
and vascular integrity [88]. Furthermore, it reduces the proliferation and metastasis of
tumors by targeting vascular endothelial growth factor (VEGF), which positively regulates
vasculogenesis and angiogenesis [88]. It was reported that the expression of miR-126 is
downregulated in breast cancer, whereas the VEGF signaling pathway is activated in these
cells, which leads to the acceleration of the growth of the tumor [88].

Studies conducted on breast cancer cells MCF7 treated with miR-126 lipofectamine
showed evident downregulation of VEGF-A, which is consistent with other studies and
shows a negative correlation between upregulation of the VEGF-A expression level and
downregulation of the miR-126 expression level. It leads to the conclusion that miR-126
acts as a tumor-suppressive gene and that VEGF-A may be a promising target in breast
cancer therapy [110]. One of the drugs used to treat BC is trastuzumab, a monoclonal
antibody targeting HER2 receptors, leading to reduced BC cell division, migration, and
differentiation [89]. In a study performed by Fu et al., 2020, trastuzumab-resistant SK-
BR-3 (SKBR3/TR) cells transfected with miR-126 mimic showed attenuated resistance to
trastuzumab while the parental line SK-BR-3 transfected with miR-126 inhibitor showed
increased trastuzumab resistance [89]. The same study found that miR-126 directly targets
PIK3R2 and is partially involved in the inactivation of the PIK3R2/PI3K/Akt/mTOR sig-
naling pathway responsible for mediated trastuzumab resistance in BC [89]. In conclusion,
the overexpression of miR-126 in cells resistant to trastuzumab with inhibition of PIK3R2
and the downstream PIK3R2/PI3K/Akt/mTOR signaling pathway causes a decreased
drug resistance [89].

Research conducted by The Affiliated Tumor Hospital of Zhengzhou University
showed a correlation between the expression of miR-126 and the regulation of critical
metastatic molecule ADAM9 (ADAM metallopeptidase domain 9, a component of cell–cell
junctions). Overexpression of this miRNA inhibited breast cancer cell invasion by silencing
ADAM9 [90].

Clinical evidence shows that due to increased or decreased expression of specific genes
in breast cancer tissue, miR-126 can be used as a biomarker to predict and diagnose breast
cancer and therapy response [111].
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5.8. miR-199a

Recent studies show that overexpression of miR-199a-3p suppresses proliferation,
multidrug resistance, migration, and invasion, and it might suppress metastasis progression
in breast cancer cells [92]. It also leads to inhibition of PAK4 expression, which has been
connected to tumorigenesis and increased cell survival, which is believed to interfere with
an aggressive breast cancer phenotype. Targeting the PAK4/MEK/ERK pathway can
repress breast cancer progression by inducing G1 phase arrest [92].

Triple-negative breast cancer, accounting for 10–15% of BC, is plagued by significant
drug resistance [112]. Studies indicate that in this type of BC, the level of miR-199a-3p is
downregulated. It was found that this particular miRNA targets mTOR, which regulates
cell proliferation, autophagy, and apoptosis and plays an essential role in cancer cell
metabolism [19,112]. Overexpression of miR-199a-3p targets c-Met and mTOR, affecting
increased sensitivity to doxorubicin and also leading to G1 phase arrest, resulting in
reduced invasion and increased doxorubicin-induced apoptosis in BC cells [112]. The study
on MDA-MB-231 cells indicated that miR-199a-3p could downregulate mitochondrial
transcription factor A (TFAM) by promoting the sensitivity of BC cells to chemotherapy
resistance [91]. In turn, inhibition of TFAM expression could attenuate cisplatin resistance
in breast cancer cells and induce apoptotic and proliferative effects [113]. A study regarding
the cardiotoxicity of doxorubicin showed that upon doxorubicin exposure, the level of
miR-199a expression was upregulated [112]. Considering these findings, miR-199a-3p
might be an excellent prognostic and predictive biomarker in breast cancer [114].

5.9. miR-101

miR-101 is acknowledged to be a tumor suppressor, and its expression is downregu-
lated in BC [115]. It affects cancer-related processes: proliferation, apoptosis, angiogenesis,
drug resistance, invasion, and metastasis. It targets proteasome maturation protein (POMP),
stathmin (Stmn1), and DNA (cytosine-5)-methyltransferase 3A (DNMT3A), which suppress
the proliferation of BC cells by decreasing the expression levels of Jak2, EYA1, and SOX2
and by reducing levels of VHL, which negatively regulates hypoxia-inducible factor 1-alpha
(HIF1alpha), leading to the apoptosis of cancer cells [115]. It was also reported that its high
levels in TNBC increase chemotherapeutic sensitivity to paclitaxel by decreasing the level
of MCL-1 expression [115].

Brain metastasis is a late event in breast cancer patients. It is a cascade in which
metastatic cells detach from the tumor and travel through the bloodstream or lymphatics
to arrest into the capillary bed and attach to the brain endothelium, passing through the
blood–brain barrier and colonizing the brain [94]. Studies show that overexpression of
miR-101-3p reduces the migration of BC cells through the brain endothelium by restraining
the COX-2/MMP1 signaling pathway [94].

The experiments conducted in SK-BR-3 and MCF-7 cells showed significant upregula-
tion of an oncogene EZH2, which promotes carcinogenesis and is related to poor prognosis
and aggressiveness of breast cancer. Studies have shown that simultaneous induction of
miR-101 and treatment with Syn-cal14.1a, a synthetic peptide acquired from Californiconus
californicus, suppresses EZH2-induced breast cancer cell migration, invasion, and prolifer-
ation and promotes apoptosis of BC cells [116]. Additionally, studies reported that miR-101
played a critical role in the pathological grade in TNM classification in BC cells, making it a
promising biomarker [115]. When the miR-101-5p-associated pathways in breast cancer
were assessed using RNA-seq, a particular group of genes, HMGB3, ESRP1, GINS1, TPD52,
SRPK1, VANGL1, and MAGOHB, were suggested to be associated with a poor prognosis
of BC [93].

5.10. miR-9

Recent studies have shown the promoting role of miR-9 in breast cancer develop-
ment [98]. Its upregulation is associated with high malignancy invasive epithelial-to-
mesenchymal transition, which enables cells to gain the ability of self-renewal and have
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the characteristics of stem cells, promoting the production of cancer stem cells (CSCs)
which generate an invasive phenotype leading to poor outcome, high tumor stage and
histologic grade, poor overall survival, and distant metastasis-free survival [98]. Low
miR-9 expression was associated with improved overall survival, smaller tumors, earlier
stage, and ER-positive cancers due to the enrichment of estrogen response genes [117].
Furthermore, miR-9 is highly expressed in HER2+ and triple-negative breast cancer and
tumors displaying CD44+/CD24- phenotype and E-cadherin loss [98]. Because of the
significant engagement of miR-9 in CSCs metabolism, which is considered the origin of
tumorigenesis, drug resistance, and development, this miRNA seems a good predictor
marker of cancer metastasis and chemoresistance [98]. Studies show that the upregulated
expression of miR-9 is induced by MYC and MYCN, which leads to angiogenesis through
activation of beta-catenin signaling and elevating the expression of VEGF. It also leads
to increased EMT invasiveness and motility by targeting FOXO1 and STRD13, which are
also associated with vascular sprouting and promoting tumor metastasis [98]. Another
research conducted by Wang et al. indicated that lncTUG1 (taurine-upregulated gene 1)
could modulate the susceptibility of BC cells to doxorubicin by regulating the expression of
eIF5A2 (eukaryotic translation initiation factor 5A-2) via interacting with miR-9, indicating
a novel potential pathway that could be targeted to overcome doxorubicin resistance in
BC [95]. Interestingly, NGS results show that miR-9 directly targets HMGA2, EGR1, and
IGFBP3, which are closely related to the invasion and metastasis of breast cancer [64].

6. miRNA as a Therapy Target

Most miRNAs are found inside the cell but also migrate in body fluids such as blood,
urine, saliva, or breast milk. Thus, these short RNA particles are considered diagnostic and
therapeutic markers, especially in cancer, neurology, or cardiology [118]. It is noteworthy
that miRNA dysregulation is common in many cancer cases as they can act as both tumor
suppressors or oncogenes.

miRNA as a therapy target is gaining extensive attention due to its various effects
on cancer development. For example, supplementation of miRNA mimics (miR-15a) in
prostate cancer cell lines induced apoptosis and blocked cell proliferation [119]. Another
study showed that miR-99a reduced breast cancer cell proliferation, invasion, and migration
in vitro and in vivo [120]. Numerous studies showed that targeting miRNA with its antag-
onists might lead to tumor suppression and efficient, personalized cancer therapy [121,122].
Significantly, miRNA-targeted therapy may influence a single gene and whole cellular
pathways, which can be particularly beneficial [123]. Specifically, the latest approach in
miRNA therapeutics is mainly based on two strategies, i.e., the inhibition of oncogenic
miRNAs and, hence, the restoration of the expression of tumor-suppressing genes that
they target, or restoring the expression of tumor-suppressing miRNAs and consequently
inhibiting the oncogenes that they target. Downregulation of tumor miRNA suppressors
leads to the overexpression of their target oncogenes. To restore the expression of tumor-
suppressing miRNAs, promising areas are the mimic miRNAs. They are small, chemically
modified (2′-O’methoxy) double-stranded RNA molecules that mimic the endogenous
mature miRNA molecules [121,124].

Because oncogenic miRNAs are usually upregulated in tumors, their suppression
enables tumor suppressors to be active and inhibit tumorigenesis or its progression [121].
For that reason, a few therapeutic strategies based on oncomiR inhibition were created, and
one of them is AMOs (anti-mRNA oligonucleotides). AMOs are single-stranded oligonu-
cleotides (17–22 nt long) that prevent mature miRNA interaction with the target gene by
complementary binding. As a result, the AMO-miRNA duplex will be cleaved by RNAse-
H [121]. By complementary binding with the target mRNA, they exert transcriptional
downregulation. Another therapeutic strategy based on oncomiR inhibition is miRNA
sponges, which are competitive inhibitors with multiple binding sites for an endogenous
miRNA and prevent the interaction between the miRNA and its target mRNA. There is also
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a strategy based on inhibiting miRNA biogenesis or target interactions via small molecules,
like azobenzene [121].

Due to miRNA’s inability to passively diffuse through cell membranes, there is a
barrier to miRNA clinical implementation and a need for effective and safe delivery sys-
tems development. Nowadays, miRNA delivery systems may be divided into two main
categories: non-viral and viral vectors. Non-viral miRNA vectors are based on organic,
inorganic, and polymer materials, while viral vectors usually use lentiviruses, retroviruses,
or adenoviruses [121]. Other challenges of miRNA therapeutics are associated with its
degradation by nucleases, endosomal entrapment, poor target tissue delivery, innate im-
mune reaction activation, and poor binding affinity for complementary sequences [122].
Despite these difficulties, miRNA clinical implications are highly promising [121,122].

6.1. The Role of miRNA in Breast Cancer Chemoresistance

Numerous factors, including late diagnosis or resistance to therapeutic agents, may
cause therapy failure in cancer therapy. The two basic types of drug resistance, i.e., innate
or acquired, constitute a severe challenge in oncology. Recently, both these mechanisms
were reported to be associated with miRNAs that modulate drug-resistance-related genes
or affect genes related to cell proliferation, cell cycle, DNA damage repair, and apopto-
sis [125]. Hence, the miRNA-based therapeutic approach seems to provide an interesting
and efficient perspective in cancer therapy. Specifically, in breast cancer, several miRNAs
were suggested to play a critical role in therapy response, showing a tumor-type-dependent
effect. miR-200c, miR-155, and miR-218 were shown to mediate the therapeutic effect of
selected drugs, i.e., (i) trastuzumab, (ii) aclitaxel, VP16, doxorubicin, and (iii) cisplatin,
respectively [126]. Another study demonstrated 123 miRNAs that were dysregulated in
vinorelbine (NVB)-resistant breast cancer cell lines (MDA-MB-231/NVB). A total of 31 of
these miRNAs were downregulated, and 92 were upregulated in those cells, suggesting
complex regulation [127]. It was also demonstrated that 17 specific miRNAs were involved
in oncogenic pathways, including TGFβ, mTOR, Wnt, and MAPK. It is noteworthy that
elevated TGFβ signaling and downregulation of miR-200c were also demonstrated in
trastuzumab-resistant breast cancer cells while increased miR-200c or the blockade of TNFβ
signaling increased trastuzumab sensitivity and inhibited invasiveness of breast cancer
cells [128].

Similarly, miR-494 and miR-141 were shown to suppress the progression of breast
cancer by repressing β-catenin expression [129,130]. Recently, Yu et al. reported that the
miR-17/20 cluster increased tamoxifen sensitivity and attenuated doxorubicin resistance in
MCF-7 cells via Akt1 [131]. Another study showed that miR-218, which targets BRCA1,
was downregulated in cisplatin-resistant breast cancer cell lines and, interestingly, the
restoration of miR-218-sensitized MCF-7 breast cancer cells to this drug [132]. Numerous
studies show other miRNAs that are capable of modifying the response of breast cancer cells
to different therapeutic agents, including 5-fluorouracil, trastuzumab, lapatinib, cisplatin,
fulvestrant, tamoxifen, paclitaxel, doxorubicin, and palbociclib. The most commonly
reported BC-related miRNAs (and probably the most critical ones) are presented in Table 1.
Recent data suggest that the function of some miRNAs may be involved in the epithelial–
mesenchymal transition process that mediates multidrug resistance (MDR) phenotype
promotion. A thoroughly revised contribution of miRNAs to individual ABC family
transporters was shown elsewhere [133]. Thus, further screening and miRNA profiling in
cancer tissues is highly required as it may provide in-depth information regarding critical
genes expression regulation. It may be, however, that similarly to wide-genome sequencing
that aims to evaluate the role of individual SNPs in genomic DNA, miRNA profiling will
not be sufficient to evaluate the risk or monitor disease progression and therapy efficacy.
The only possible way seems to be the further assessment of clinical samples that show real
mechanistic networks in vivo. Importantly, some clinical trials are being carried out—more
than 50 refer to miRNA application in breast cancer [134].
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Some translational potential shows the studies that involve a combination of miRNA
modulators with anti-cancer chemotherapeutics (specifically, a combination of antagomiRs
with therapeutic agents). Alternatively, mimics could be applied that reinforce the function
and expression of miRNAs. By affecting the expression of endogenous microRNAs in
tumor cells and consequently leading to the modulation of target pathways, they may affect
chemotherapy efficacy. However, there are still many difficulties to overcome before we
should be able to use miRNAs in the clinical setting, including effective delivery systems,
stability, etc.

6.2. The Role of miRNA in Breast Cancer Stem Cells

Some recent studies revealed that both cancer stem-like properties and drug resis-
tance were associated with EMT. As mentioned above, miRNAs play a pivotal role in
regulating EMT phenotype. As a result, some miRNAs impact cancer stemness and drug
resistance [135], which might show some benefits to clinical treatment. Breast cancer stem
cells (BCSCs) show self-renewal and differentiation capacities that contribute to the aggres-
siveness of metastatic lesions, and all these mechanisms can be controlled by regulatory
miRNAs [136]. As demonstrated, the expression of microRNAs can be deregulated in
BCSCs [137]. Specifically, mir-21, mir-22, mir-29a, and mir-221/222 were shown to increase
tumorigenesis, while miR-34a, miR-628, miRNA-140-5p, and miRNA-4319 were reported
to decrease metastasis in BCSCs [46,76,138]. The specific pathways targeted by miRNAs
are mediated by the key players in cancer development and proliferation, including HIF-1
alpha, PI3K/Akt, and STAT3 signaling, which play critical roles in the prognosis and
survival of BCSCs [136].

6.3. The Role of miRNA in Cancer Cell Cycle Control

Cell cycle dysregulation is a recognized hallmark of cancer, and its aberrant activation
has been related to poor prognosis and drug resistance. Different miRNAs have been
described to target genes involved in cell cycle regulation, leading to drug resistance or
sensitivity. They were reported not only to target specific pathways but also were shown to
be cell cycle step-specific [133].

Several miRNAs have been shown to induce cell cycle arrest due to targeting cyclins.
One of them is miR-34a, which was demonstrated to increase resistance to docetaxel (DTX)
in luminal BC cells, probably through the inhibition of cyclin D1 (CCND1) and B-cell lym-
phoma 2 (Bcl-2), inducing G1 arrest and blocking DTX effectiveness as a consequence [139].
miR-93 has also been linked to cell cycle arrest in the G1/S phase. Moreover, some other
miRNAs have been shown to modulate drug resistance through targeting CDKs. One of
them is miR-29c (targeting directly CDK6), which was downregulated in BC compared to
normal tissues [140]. miR-29c overexpression decreased CDK6 level, inducing cell cycle
arrest and PTX sensitivity.

Additionally, Citron et al. [141] showed that miR-223 expression levels could predict
the effect of CDK4/6 inhibitors and palbociclib (PAB), as well as patients’ prognosis for in-
vasive ductal carcinoma. It was demonstrated that miR-223 was downregulated in luminal
and HER2+ BC subtypes. Its low expression was correlated with cell cycle deregulation,
poor prognosis, PAB resistance, and low survival in BC patients. Significantly, miRNAs
were also shown to affect one of the essential response pathways that are triggered by
cancer drugs, i.e., DNA repair pathways, including ATM [142].

6.4. miRNAs and Cell Death

Sooner or later, applying specific miRNAs in cancer therapy is supposed to pro-
voke cancer cell death. As demonstrated, it can be caused in a particular manner, also
due to miRNA involvement. This makes it again a promising strategy to consider, es-
pecially since the miRNA-target gene interactions show numerous effects that directly
involve cell death modulators. Some examples are miR-125b, which confers resistance
to PTX by suppressing the expression of BAK1 [143], miR-149-5p, which was found to
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be downregulated in PTX-resistant cells and its overexpression demonstrated to increase
BAX expression [144], or miR-663b that confers TAM resistance by indirectly upregulating
BAX [145]. Additional miRNAs modulate drug response by regulating the expression of
Bcl-2 family members [146]. Moreover, miR-203a-3p and miR-203b-3p have been reported
to decrease the antiapoptotic protein Bcl-XL and to be correlated to PTX sensitivity in BC
positively regulated by MYC in cell line models of PTX-responsive BC [147].

Interestingly, miR-100 was found to be downregulated in BC cell lines with acquired
resistance to CIS. In turn, overexpression of miR-100 showed increased sensitivity to CIS
due to modulation of the HCLS1-associated protein X-1(HAX-1), an inhibitor of mitochon-
drial apoptosis that maintains mitochondrial membrane potential in cancer cells [148].
miR-944 inhibitors facilitated CIS-induced loss of mitochondrial membrane potential in
resistant models, resulting in intrinsic apoptosis via targeting Bcl-2 interacting protein
3 (BNIP3) [148].

Similarly, miRNAs control critical mediators of apoptosis [149] and autophagy [150]
at different levels, including PI3K/Akt/mTOR, ATGs, and LC3 [150]. Primary reports
showed some specific miRNAs that affected STAT3 and ATG12 targets [151], while further
studies demonstrated broader roles of autophagy-related microRNAs in cancer cells [152],
showing numerous miRNAs acting at the levels of induction, nucleation, expansion, fu-
sion, degradation, and recycling. With so many miRNA particles and the dynamics of
autophagy, it is difficult to show a specific pattern that would apply to any specific can-
cer type. However, as miRNAs target specific genes, monitoring their expression during
promoting (e.g., rapamycin, everolimus) or inhibiting autophagy (e.g., chloroquine, hy-
droxychloroquine) may reflect metabolic alterations that accompany different stages of
therapy. Thus, we can evaluate the therapy efficacy and indicate molecular targets for
more efficient therapeutic strategies. However, the pool of the genes that effectively affect
pathways associated with autophagy, i.e., energy, growth, starvation response, etc., can be
modulated by over 250 miRNA-target gene interactions in different cellular stress response
mechanisms [151], which may make the whole idea more complex.

7. Tools in miRNA-Based Therapy Adjustment

Modulation of gene expression seems to be one of the best ways to control cell
metabolism against all odds, including mutations or epigenetic factors. Overcoming
these obstacles enables controlling of the phenotype, i.e., metabolism, structure, enzyme
activity, substrate affinity, and protein stability. Altogether, it provides quantity and quality
of cell metabolism that eventually affects the quality and the length of human life. However,
using miRNA or targeting this non-coding RNA requires first identification of specific
interactions as well as tissue-type and personalized profiling. This can be achieved by
RNA-seq or spatial transcriptomics that deliver information on the whole transcriptome.
Another step is to find a pattern—an assessment of association analysis that enables distin-
guishing health and disease. This approach can be obtained using different data systems,
e.g., TargetScanHuman 8.0 [59], that can predict biological targets of miRNAs by searching
for the presence of conserved 8mer, 7mer, and 6mer sites that match the seed region of each
miRNA. The results demonstrate predictions with adjustable high and low conserved sites
ranked based on the predicted efficacy of targeting.

Another option is to use Xena Browser [153] or Gepia2 (http://gepia2.cancer-pku.
cn/#index, accessed on 9 February 2023) [154] to identify any alterations in the levels of
selected miRNAs in different cancer tissues. Similarly, another system, On-coLnc (http:
//www.oncolnc.org/, accessed on 27 September 2023) [155], can link TCGA survival data
to mRNA, miRNA, or lncRNA expression levels. Altogether, we have some sophisticated
and advanced tools that enable prediction and assessment of the miRNA profiles. The main
goal would be to find a characteristic and unique profile of the oligonucleotides that show
significant association with clinical characteristics and patient outcomes.

http://gepia2.cancer-pku.cn/#index
http://gepia2.cancer-pku.cn/#index
http://www.oncolnc.org/
http://www.oncolnc.org/
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8. Conclusions: Challenges in miRNA Modulation Approach

Since miRNAs control the expression of numerous target genes, it is unsurprising that
they play critical roles in regulating cell metabolism. Thus, they have recently become the
primary candidates for markers in cell homeostasis imbalance detection, disease diagnostics,
and prognostics. We still study the miRNA-target gene interactions’ role, mechanism, and
specificity. Importantly, it was demonstrated that these short oligonucleotides showed
significant stability in the extracellular space and were reported to mediate functional
communication between cells. It is mainly associated with their ability to transfer between
cells via extracellular vesicles (EVs) or other cell-free miRNA carriers [156,157]. This, in turn,
raises the question about the tissue specificity of their expression/localization. Another
critical challenge is that miRNAs target multiple genes with different efficacies that may
not show specific effects after target miRNA modulation. The sequence complementarity of
endogenous miRNAs ranges between 20 and 90% [158]. Surprisingly, in specific conditions
(e.g., starvation), some miRNAs can upregulate the expression of target genes or lead
to induction of the immune system and provoke severe adverse effects (e.g., miR-34a
mimic and targeting miR-122 evaluation was discontinued after phase I and phase II,
respectively) [158].

A single miRNA can target many mRNAs, and a single mRNA can be targeted by
many miRNAs (many in this case means at least hundreds), which makes identification of
precise interactions or using a specific miRNA as a target extremely difficult. Theoretically,
using in silico algorithms, we can predict the miRNA–mRNA binding strength. However,
the biological effect will depend on multiple factors, such as the level/stability of selected
miRNA, the level of other miRNAs that target the same mRNA, the level of mRNA/target
gene expression, and the availability of AGO2. Additionally, the complexity level signifi-
cantly increases due to the earlier-mentioned ability of miRNAs to be transferred between
different cells.

However, more questions refer not only to the specificity aspect but also to safety
and side effects issues, formulation and bioavailability problems, and efficacy challenges.
These aspects are also important when miRNAs are combined with certain drugs, which
may lead to some metabolic interactions [159]. However, the issues appear also at the
delivery step. It results from the fact that most miRNA modulators are negatively charged,
which leads to nonspecific binding to blood proteins and decreases urinary clearance [160].
On the other hand, oligonucleotides that lack a charge weakly bind to plasma proteins
and exhibit a rapid clearance either due to metabolism in the blood or excretion via urine,
leading to a lower tissue uptake [160,161]. Although numerous clinical trials using miRNAs
are being carried out, they have yet to show efficient solutions for the above-mentioned
reasons. From the diagnostic perspective, miRNAs also show some limitations mainly
associated with the overlapping activities and effects of selected miRNAs, which show
limited specificity in diagnosing a specific cancer type [162]. Thus, we should instead
focus on profiling miRNA levels and creating some diagnostic panels that could be used to
improve the classification system and therapy planning.

Significantly, novel, personalized, and precise medicine is based on the identification
of specific biomarkers but also on robust and versatile analytical technologies that improve
patient outcomes [162]. The group of methods capable of identifying miRNAs and meeting
the high sensitivity criteria includes quantitative reverse transcriptase PCR, digital PCR,
microarray, or next-generation sequencing modified to miRNA-seq. All these methods
have some limitations (including technical, standardization, reference controls, etc.) that
were thoroughly discussed elsewhere [163]. Altogether, miRNA biosynthesis control and
extracellular trafficking pathways constitute a challenging aspect of miRNA-based thera-
peutic or diagnostic strategies, significantly since they can be affected by environmental
and uncontrollable factors (such as smoking, diet, circadian cycles, etc.) [164].
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ABCG2 adenosine triphosphate binding cassette subfamily G member 2
ADAM9 disintegrin and metalloproteinase domain-containing protein 9
ADC antibody-drug conjugate
Akt protein kinase B
AMOs anti-messenger ribonucleic acid oligonucleotides
ANP32E acidic nuclear phosphoprotein 32 family member E
ATG12 autophagy-related gene 12
ATM ataxia telangiectasia mutated kinase
BAK1 Bcl-2 homologous antagonist killer 1
BAX Bcl-2 associated X protein, apoptosis regulator
BC breast cancer
Bcl-2 B-cell lymphoma 2
BCSCs breast cancer stem cells
BNIP3 BCL2 interacting protein 3
BRCA1/2 breast cancer gene 1/2
CCND1 cyclin D1
CDKs cyclin-dependent kinases
cDNA complementary deoxyribonucleic acid
CIS cisplatin
COX-2 cyclooxygenase 2
CSCs cancer stem cells
Dicer endoribonuclease Dicer
DNA deoxyribonucleic acid
DNMT3A deoxyribonucleic acid methyltransferase 3 alpha
DOX doxorubicin
DTX docetaxel
c-Met mesenchymal-epithelial transition factor
EGFL7 epidermal growth factor-like protein 7
EMT epithelial-to-mesenchymal transition
ER estrogen receptor
ERBB2 erythroblastic oncogene B2
ERCC6 deoxyribonucleic acid excision repair protein
ERKs extracellular signal-regulated kinases
FDA Food and Drug Administration
FOXO1 forkhead box protein O1
GDP guanosine diphosphate
GEFs guanine–nucleotide exchange factors
GTP guanosine triphosphate
HAX-1 HCLS1-associated protein X-1
HER2 human epidermal growth factor receptor 2
HGF hepatocyte growth factor
IGFBP3 insulin-like growth factor binding protein 3
JAK/STAT janus kinase/signal transducer and activator of transcription
MAPKs mitogen-activated protein kinases
MDR multidrug resistance
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MMP1 matrix metallopeptidase 1
mRNA messenger ribonucleic acid
miRNA micro-ribonucleic acid
mTOR mammalian target of rapamycin
NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells
NVB vinorelbine
P53 tumor protein p53
PAB palbociclib
PARP poly (ADP-ribose) polymerase
PAK4 serine/threonine-protein kinase
PDCD4 programmed cell death protein 4
PI3K phosphoinositide 3-kinase
PIK3R2 phosphoinositide 3-kinase regulatory subunit 2
Pol II ribonucleic acid polymerase II
POMP proteasome maturation protein
PR progesterone receptor
pri-miRNA primary micro-ribonucleic acid
pre-miRNA precursor micro-ribonucleic acid
PTEN phosphatase and tensin homolog
PTX paclitaxel
RAF rapidly accelerated fibrosarcoma
RISC ribonucleic acid-induced silencing complex
RNA ribonucleic acid
RNase ribonuclease
RTKs receptor tyrosine kinases
RUNX3 runt-related transcription factor 3
ssRNAs single-stranded ribonucleic acids
STAT3 signal transducer and activator of transcription 3
TFAM transcription factor A, mitochondrial
TGF-β transforming growth factor-beta
TKI tyrosine kinase inhibitors
TNM tumor: node, metastasis
TPM1 tropomyosin 1
VEGF vascular endothelial growth factor
WHO World Health Organization
RT-qPCR quantitative reverse transcription polymerase chain reaction
3′UTR three prime untranslated region
5′UTR five prime untranslated region
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