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Abstract: Low-temperature stress during the germination stage is an important abiotic stress that
affects the growth and development of northern spring maize and seriously restricts maize yield and
quality. Although some quantitative trait locis (QTLs) related to low-temperature tolerance in maize
have been detected, only a few can be commonly detected, and the QTL intervals are large, indicating
that low-temperature tolerance is a complex trait that requires more in-depth research. In this study,
296 excellent inbred lines from domestic and foreign origins (America and Europe) were used as the
study materials, and a low-coverage resequencing method was employed for genome sequencing.
Five phenotypic traits related to low-temperature tolerance were used to assess the genetic diversity of
maize through a genome-wide association study (GWAS). A total of 14 SNPs significantly associated
with low-temperature tolerance were detected (−log10(P) > 4), and an SNP consistently linked to
low-temperature tolerance in the field and indoors during germination was utilized as a marker. This
SNP, 14,070, was located on chromosome 5 at position 2,205,723, which explained 4.84–9.68% of the
phenotypic variation. The aim of this study was to enrich the genetic theory of low-temperature
tolerance in maize and provide support for the innovation of low-temperature tolerance resources
and the breeding of new varieties.
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1. Introduction

The northern spring corn area is an important corn production area and commercial
grain base in China, located at the northern end of China’s golden corn belt. However,
due to the special geographical location and environmental conditions, low temperatures
in spring are an important source of non-biotic stress that affects the seedling quality in
this area, which seriously restricts the yield and quality of the corn produced. The low-
temperature tolerance of maize belongs to a quantitative trait controlled by multiple genes.
In recent years, with the development of molecular biology, scholars have carried out
quantitative trait locis (QTL) analyses on its low-temperature tolerance, locating maize’s
low-temperature tolerance on chromosomes 1–10. One QTL was located in an interval
on chromosome 6, which was associated with three low-temperature tolerance traits and
could explain 18.1–32.8% of the phenotypic variation [1]; twenty-six QTLs, associated with
seed vigor, were detected under low temperatures during maize’s germination stage on
chromosomes 2, 3, 5, and 9, alongside five meta-QTLs [2]. In the 176 IBM Syn10 doubled-
haploid population from the B73 × Mo17 cross, there were thirteen QTLs associated with

Curr. Issues Mol. Biol. 2023, 45, 9634–9655. https://doi.org/10.3390/cimb45120602 https://www.mdpi.com/journal/cimb

https://doi.org/10.3390/cimb45120602
https://doi.org/10.3390/cimb45120602
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cimb
https://www.mdpi.com
https://doi.org/10.3390/cimb45120602
https://www.mdpi.com/journal/cimb
https://www.mdpi.com/article/10.3390/cimb45120602?type=check_update&version=1


Curr. Issues Mol. Biol. 2023, 45 9635

a low-temperature germination ability, three B73 upregulated genes, and five Mo17 up-
regulated genes found by combining the RNA-Seq technology and QTL analysis [3]. A
recombinant inbred line population (IBM Syn4 RIL) from a B73 and Mo17 cross was used
to identify QTLs and investigate the genetic architecture under low-temperature conditions
at a young seedling stage: two QTLs (bin 1.02 and bin 5.05) with a high additive impact
were detected, which were associated with cold tolerance [4]. A total of 406 recombinant
inbred lines from a multi-parent, advanced-generation, intercross population were used
and, as a result, many cold tolerance-related traits were recorded: the 858 SNPs were found
that were significantly associated with all traits, which indicated that most QTLs are related
to chlorophyll and Fv/Fm; the authors also located most of the QTLs in specific regions,
particularly bin 10.04 [5]. An F2 population was constructed from the cross of IB030 and
Mo17 to map QTLs associated with cold tolerance via QTL-seq and transcriptomic integra-
tive analyses, and two positively regulated genes (ZmbZIP113 and ZmTSAH1) that control
the low-temperature germination ability were identified [6]. Scholars performed QTL map-
ping on an IBM (intermated B73 × Mo17) Syn10 doubled-haploid (DH) population, and
twenty-eight QTLs that significantly correlated with low-temperature germination were
detected, and these QTLs explained 5.4–13.34% of the phenotypic variation. In addition,
six QTL clusters were produced by fourteen overlapping QTLs on every chromosome,
except for chromosomes 8 and 10 [7]. The identification of molecular marker loci associated
with QTLs or genes can contribute to the study of the cold-tolerance mechanism of maize
and could be further used for breeding cold-tolerant inbred lines or hybrids. The QTLs
controlling low-temperature tolerance during the germination stage are distributed on
chromosomes 1–10, and there are few QTLs that have been consistently identified using
different methods and materials, with large intervals. At the same time, there is more than
one main QTL interval, so it is necessary to continue to mine consistent, main QTLs and
identify candidate genes.

In recent years, the construction of reference genomes, such as B73, MO17, W22,
PH207, and CML247, has enabled the widespread application of high-throughput single-
nucleotide sequence markers, greatly improving the accuracy and depth of maize’s whole
genome sequencing and marker development. Relying on the progress of whole-genome
sequencing technology and the development of whole-genome association analysis models
and methods, and due to the higher level of genetic diversity in the mapping populations,
GWAS has been used to analyze the variations of maize seedling and germination traits
under low-temperature conditions. This is because GWAS offers increased mapping
resolution and accuracy. A total of 338 cross experiments showed that some QTLs for
four seedling cold-tolerance traits were detected using GWAS; thirty-two significant loci
and thirty-six candidate genes related to stress tolerance were identified, suggesting that
heterosis may be related to maize’s cold tolerance [8]. To identify and analyze cold-tolerance
traits in 306 dent inbred lines and 206 European flint inbred lines from temperate regions,
indirect cold-tolerance traits such as days from sowing to germination, relative chlorophyll
content, and quantum yield of photosystem II were studied. Using the GWAS technology,
49,585 SNPs were used for genotyping, and associations between SNPs and cold-tolerance
genes were located in both types. A total of 275 significant associated markers were found,
and some candidate genes were consistent with current studies and previous reports [9].
A GWAS of 125 maize inbred lines was studied using 10 low-temperature tolerance traits
during the seedling stage and the germination stage; finally, 43 SNPs were identified
as being associated with low-temperature tolerance [10]. A study conducted a GWAS
on 375 inbred lines grown outdoors and in an artificial climate chamber and identified
19 markers associated with low-temperature tolerance. These markers explained 5.7% to
52.5% of the phenotypic variation in the chlorophyll fluorescence parameters during the
seedling stage. The candidate genes identified near the markers were related to ethylene
signaling, brassinosteroid, and lignin synthesis [11]. A study employed two cold-tolerant
inbred lines, 220 and P9-10, and two susceptible lines, Y1518 and PH4CV, to generate three
F2:3 populations to detect QTLs associated with the low-temperature germination ability
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of seeds. Forty-three QTLs were detected, explaining 0.62% to 39.44% of the phenotypic
variation. Among them, 17 QTLs explained more than 10% of the phenotypic variation,
with 16 inheriting the favorable alleles from the tolerant lines. After constructing a linkage
map, three meta-QTLs were identified, including at least two initial QTLs from different
populations. mQTL1-1 includes seven initial QTLs for germination and seedling traits,
with three explaining more than 30% of the phenotypic variation [12]. GWAS was used to
conduct a germination test on 282 inbred lines and 17 loci associated with cold tolerance
were identified [13]. GWAS and QTL mapping were performed on two populations; a
total of four associated SNPs and twelve QTLs related to cold tolerance were identified,
and the results showed that the Zm00001d002729 gene was a potential factor, with its
overexpression being able to improve the cold tolerance of crops [14]. Using GWAS, a
total of 30 SNPs were identified that were related to low-temperature tolerance during
seed germination, and fourteen candidate genes were found to be directly related to these
SNPs; in a further study of the linkage between these candidate genes and low-temperature
tolerance, ten differentially expressed genes were identified via RNA-seq analysis [15].
Fifteen significant SNPs related to seed germination were identified via GWAS under cold
stress in 300 inbred lines; among them, three genomic loci were repeatedly associated
with multiple traits. In further candidate gene association analysis, Zm00001d010458,
Zm00001d050021, Zm00001d010454, and Zm00001d010459 were identified as cold-tolerance
germination-related candidate genes [16]. A total of 187 significant SNPs were identified
via GWAS in 836 maize inbred lines, and there were 159 QTLs for emergence and traits
related to early growth [17]. Many of the QTL and GWAS analyses have been widely
used to express large variations in cold tolerance of maize, and these cited results open
up new possibilities for improving cold tolerance and understanding the molecular and
genetic mechanism of cold tolerance in maize. In addition, QTL mapping and GWAS can
be applied as resources for conducting marker-assisted selection of cold-tolerant varieties,
and we can use genomic selection technology to predict cold-tolerant varieties in large
maize populations [18].

In this study, a population of 296 excellent inbred lines of maize from China and
abroad was used as the study material, and their genotypes were analyzed via genome
resequencing. The germination stage was then subjected to low-temperature tolerance
identification in the field and laboratory, and indicators such as germination rate and
germination index were detected. The TASSEL 5.0 method was used for GWAS to identify
associated SNPs, aiming to provide theoretical support and material resources for the gene
mining and breeding of low-temperature tolerance in maize.

2. Materials and Methods
2.1. Plant Materials

We selected 296 representative inbred lines of maize (Zea maize L.) from both domestic
and international sources, including 232 domestic lines, 36 US lines, and 28 European lines
(see Appendix A). The seeds were provided by the maize research institute of Heilongjiang
Academy of Agricultural Sciences, and the seed germination rate was above 95%.

2.2. Identification of Low-Temperature Tolerance during Germination in the Field

The experiment was conducted in the period of 2017–2019 at the experimental field
of Heilongjiang Academy of Agricultural Sciences. The soil in the field was calcic soil,
which is neutral, flat, and uniform. The experiment was conducted in two stages. In the
first stage, seeds were sown as soon as the soil temperature at 5–10 cm depth reached and
remained above 5 ◦C, while in the second stage, seeds were sown when the soil temperature
at 5–10 cm depth remained stable at or above 10 ◦C. After sowing, timely irrigation was
carried out. A randomized block design with two rows, each 5 m in length, with 20 cm
between plants and 65 cm between rows, was employed with single-seed sowing, and
three replicates were used. Daily records of soil temperature, maximum and minimum
temperatures in the field, and daily average temperature were noted during the experiment.



Curr. Issues Mol. Biol. 2023, 45 9637

Natural low-temperature treatment was applied to the seeded plots, and the number of
seedlings that germinated was recorded accurately every day. After the cessation of seedling
germination, the field seedling germination rate was calculated, and the relative seedling
germination rate and relative seedling germination index were determined as follows:

germination rate (%) = (number of germination seeds/total number of seeds) × 100

relative germination rate (%) = (germination rate of early sowing treatment/
germination rate of appropriate sowing treatment) × 100

germination index = ∑Gt/Dt (Gt represents the number of germination seeds at
time t, and Dt represents the corresponding days)

relative germination index (%) = (germination index of early sowing treatment/
germination index of appropriate sowing treatment) × 100

2.3. Identification of Low-Temperature Tolerance during Germination in the Laboratory

Fifty plump seeds of each inbred line were selected, surface-sterilized with 0.5%
sodium hypochlorite solution for 5 min, and then rinsed three times with sterile water. The
sterilized seeds were transferred onto a culture dish lined with filter paper and covered
with 3 cm thick vermiculite that was kept moist; these seeds were then allowed to germinate
in a low-temperature incubator under dark conditions. Two low-temperature treatment
stages were set up; the first included germination at 5 ◦C for 7 days, followed by 15 ◦C for
7 days and then 25 ◦C for another 7 days, whereas the control was germinated at 25 ◦C for
21 days. The germination of seedlings with germ breaking through the vermiculite was
defined as germination, and the number of emerged seedlings was recorded daily. The
experiment was carried out in three replicates. The germination rate was calculated, and
the relative germination rate and relative germination index were determined to be 2.2.

2.4. Phenotypic Analysis

Data organization and analysis were performed using Microsoft Office Excel 2016 and
R version 3.6.2 [19]. Basic statistical quantities were calculated using Microsoft Office Excel.
ANOVA was performed using the aov function in the R language with a random blocking
model [20]. Correlation analysis was conducted using the cor function in the R language.

2.5. Analysis of Genotype
2.5.1. Analysis of SNPs

The modified CTAB method [21] was used to extract the genomic DNA of 296 maize in-
bred lines, DNA quality was detected using a NanoDrop 2000 spectrophotometer (Thermo
Fisher Scientific Inc., Kanagawa, Japan) and 0.80% agarose gel electrophoresis, and quali-
fied DNA samples were used for SNP typing. In this study, the genotype of the association
analysis population was analyzed by means of genotyping by sequencing (GBS). A combi-
nation of MseI, NlaIII, and EcoRI endonucleases was used to cleave the genomic DNA of
the maize inbred lines, ligate the linker, construct the library, and sequence. After obtaining
the original resequencing results, mutation detection was carried out using GATK (Genome
Analysis Toolkit). Clean reads were compared to the reference sequence RefGen_v4 B73
using Bowtie2, and the resulting sam file was labeled, sorted, and removed through Picard
to obtain a bam file for GATK. The indel around the bam file was re-aligned using GATK,
and then SNP/INDEL analysis was performed using GATK’s HaplotyeCaller command.
After merging all obtained vcf files, the SNP genotype data of the 296 maize inbred lines
were finally obtained.

2.5.2. Analysis of Population Structure

Population structure analysis was performed using the LEA software package v3.3.2
in R [22]. First, the TASSEL 5.0 software [23] was used to remove SNP markers with rare
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allele frequencies (minor allele frequencies, MAFs) of less than 0.05, and the remaining
SNP markers were exported in the ped format. The ped files were converted to geno- and
lfmm-formatted genotyping data using the ped2geno and ped2lfmm functions of the LEA
software package v3.3.2. Then, the snmf function of the software package was used to
calculate the population structure. The number of subpopulations was set from 1 to 10, and
each subpopulation was repeated 10 times. The cross-entropy criterion for subpopulation
allocation was calculated using the cross-validation method built into the snmf function,
and the appropriate number of subpopulations was selected based on this criterion. The
Q-matrix was determined based on the maximum genetic similarity of each inbred line.

2.5.3. Analysis of LD

In the analysis of linkage disequilibrium (LD), the TASSEL 5.0 software [23] was first
used to remove SNP markers with a minor allele frequency (MAF) of less than 0.05, and the
markers were divided into 10 categories according to the 10 chromosomes and arranged
based on their physical position from smallest to largest using B73 RefGen_v4 as a reference.
Then, a sliding window approach was used to calculate the LD between these SNP markers,
with each window consisting of 100 SNPs and sliding by 1 SNP at a time. The LD between
markers was measured using r2 [24]. After obtaining the LD between pairs of SNP markers,
an LD decay plot was generated as a function of the physical distance between the markers.

2.6. Analysis of Genome-Wide Association

Genome-wide association analysis was mainly performed using TASSEL 5.0 [23].
Based on the analysis of 296 maize inbred lines, high-quality SNP markers were selected
for subsequent analysis by removing SNP markers with minor allele frequencies of less
than 0.05 using the TASSEL software [23]. The kinship matrix was calculated using the
TASSEL software to estimate the relatedness among the 296 maize inbred lines. The first
10 principal components were calculated using the TASSEL software’s PCA function as
population structure parameters. The low-temperature tolerance indices of the 296 domestic
and foreign elite maize inbred lines were used, together with SNP genotypes, population
structures, and relatedness, to perform genome-wide association analysis using a mixed
linear model in the TASSEL software. False positives resulting from multiple comparisons
in the genome-wide association analysis results were controlled using the Benjamini and
Hochberg method for controlling the false discovery rate, and the false discovery rate was
set to 0.10 [25].

3. Results
3.1. Phenotypic Analysis of Low-Temperature Tolerance during Germination in the Field

A variance analysis was performed based on the relative germination index and field
relative germination rate of 296 maize inbred lines (Table 1). The results show that there
were highly significant differences in genotype, environment, and the interaction between
genotype and environment for the relative germination index, with all results reaching a
significance level of 0.001. For the field germination rate, there were also highly significant
differences in genotype and environment, and both reached a significance level of 0.001.
Overall, the relative germination index and field germination rate indicate significant
differences in low-temperature tolerance among different maize inbred lines.

The phenotypic analysis results of relative germination rate and relative germination
index of the 296 inbred lines under natural field conditions are shown in Table 2. The
minimum, maximum, and average values of the field average germination rate for the
inbred lines are 28.00%, 100.00%, and 66.62%, respectively. The number of inbred lines
that fall on the right side of the mean is higher than those on the left side of the mean. In
comparison, the relative seedling germination index in 2017 was similar to that in 2018,
which was 86.80% and 83.15%, respectively. Overall, the distribution of the field-averaged
relative seedling germination rate, the 2017 relative seedling germination index, and the
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2018 relative seedling germination index vary widely, and the low-temperature tolerance
variation in the inbred lines is relatively high, with a generally normal distribution.

Table 1. The ANOVA analysis of traits related to low-temperature tolerance in the field from
germination to the seedling stage.

Traits Source of
Variation

Degrees of
Freedom Sum of Squares Mean Squares F-Value p-Value

error 565 72,604 129 - -
Relative germination index Genotype 292 191,859 657 87.98 <2 × 10−10 ***

Environment 1 4243 4243 568.15 <2 × 10−10 ***
Block 1 4 4 0.52 0.47

Genotype ×
environment 281 195,408 695 93.12 <2 × 10−10 ***

Error 574 4287 7 - -
Relative germination rate Genotype 293 113,856 389 1.01 0.47

Environment 1 12,858 12,858 33.33 <2 × 10−8 ***
Error 285 109,946 386 - -

Note: ‘***’ indicates significance at the 0.001 level.

Table 2. The low-temperature tolerance phenotype statistics from germination to the seedling stage.

Traits Number Min. Max. Mean Median SD Kurtosis Skewness

Relative germination rate 293 28.00 100.00 66.62 67.00 14.10 −0.39 −0.25
Relative germination index in 2017 291 20.69 100.00 86.80 92.68 16.65 2.78 −1.66
Relative germination index in 2018 284 4.08 100.00 83.15 89.70 20.02 0.85 −1.17

Under suitable sowing and early sowing conditions, the average seedling germination
rate of the 296 inbred lines was 86.87% and 62.48%, respectively. Low-temperature stress
significantly reduced the germination rate of each inbred line. There were significant
differences among the 296 inbred lines in their relative germination index, which could
reduce genotypic differences among the inbred lines and better reflect the differences in
their cold tolerance.

3.2. Phenotypic Analysis of Low-Temperature Tolerance during Germination in the Laboratory

The results of the variance analysis of indoor relative germination rate are shown in
Table 3. The differences between genotypes, environments, and the interaction between
genotype and environment were highly significant, reaching a significance level of 0.001.
The differences between genotypes and blocks were also highly significant, reaching a sig-
nificance level of 0.001. Overall, the indoor germination rate indicates significant differences
in cold tolerance among different inbred lines.

Table 3. The ANOVA analysis of traits related to low-temperature tolerance in the laboratory during
the germination stage.

Traits Source of Variation Degrees of
Freedom Sum of Squares Mean Squares F-Value p-Value

Relative
germination rate

Genotype 287 478,817 1668 12.98 <2 × 10−10 ***
Environment 1 70,893 70,893 551.68 <2 × 10−10 ***

Block 1 2 2 0.012 0.91
Genotype × environment 280 98,028 350 2.72 <2 × 10−10 ***

Error 565 72,604 129 - -

Note: ‘***’ indicates significance at the 0.001 level.

The phenotypic analysis results of the indoor relative germination rate of the in-
bred lines are shown in Table 4. From the table, it can be seen that the average relative
germination rates in 2018 and 2019 were 79.51% and 84.60%, respectively. Overall, the
distribution range of the indoor relative germination rates in 2018 and 2019 was relatively
large, indicating a high variation in cold tolerance among different inbred lines.
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Table 4. The low-temperature tolerance phenotype statistics during the germination stage.

Traits Number Min Max Mean Median SD Kurtosis Skewness

Relative germination index in 2018 281 0.00 100.00 79.51 76.00 25.25 0.09 −0.10
Relative germination index in 2019 288 0.00 100.00 84.60 92.00 20.09 4.68 −2.12

3.3. Correlation Analysis of Low-Temperature Tolerance during Germination between Field
and Indoor

The correlation analysis showed that the indoor relative germination rate in 2018 was
significantly correlated with the indoor relative germination rate in 2019 and the relative
germination rate in the field, with correlation coefficients of 0.67 and 0.18, respectively, and
both reached a significant level of 0.001 (Table 5). The indoor relative germination rate
in 2019 was significantly correlated with the relative germination rate in the field, with
a correlation coefficient of 0.20, which reached a significant level of 0.001. The relative
germination rate in the field was significantly correlated with the field relative germination
indices in 2017 and 2018, with correlation coefficients of 0.50 and 0.49, respectively, and
both reached a significant level of 0.001. Among the significantly correlated indicators,
the correlation coefficient between the indoor relative germination rate in 2018 and that in
2019 was the highest, reaching 0.67, while the correlation coefficient between the indoor
relative germination rate in 2018 and the relative germination rate in the field was the
lowest, at 0.18.

Table 5. The correlation analysis of low-temperature tolerance during the germination stage.

Traits

Correlation Coefficient

Indoor Relative
Germination Rate

(2018)

Indoor Relative
Germination Rate

(2019)

Field Relative
Germination

Rate

Field Relative
Germination
Index (2017)

Field Relative
Germination
Index (2018)

Indoor relative germination
rate (2018) 1 0.67 *** 0.18 *** 0.07 0.02

Indoor relative germination
rate (2019) 0.67 *** 1 0.20 *** 0.02 0.11

Field-relative germination rate 0.18 *** 0.20 *** 1 0.50 *** 0.49 ***

Field-relative germination
index (2017) 0.07 0.02 0.50 *** 1 −0.06

Field-relative germination
index (2018) 0.02 0.11 0.49 *** −0.06 1

Note: ‘***’ indicates significance at the 0.001 level.

3.4. Analysis of Genotype
3.4.1. Analysis of SNPs

A total of 24,042 high-quality SNP markers were identified across the entire maize
genome (Table 6). The identified SNPs were distributed relatively evenly across the ten
chromosomes, with the highest number found on chromosome 1 (3687 SNPs), followed
by chromosome 2 (3217 SNPs). The lowest number of SNPs was found on chromosome
10 (2976 SNPs). Of the 24,042 SNPs identified, 98% had a minor allele frequency greater
than 0.05, and 36% had a minor allele frequency greater than 0.1. Additionally, SNPs
with different minor allele frequencies were distributed relatively evenly across the ten
chromosomes.
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Table 6. The allele frequency characteristics of SNP markers.

Chr. SNP
Minor Allele Frequency (MAF)

>0.05 Percent (%) >0.1 Percent (%) >0.2 Percent (%)

1 3687 3599 98 1383 38 115 3
2 3217 3159 98 1174 36 89 3
3 2896 2833 98 930 32 91 3
4 2882 2802 97 947 33 95 3
5 2384 2334 98 838 35 94 4
6 1898 1868 98 715 38 90 5
7 1577 1532 97 580 37 57 4
8 1848 1793 97 635 34 62 3
9 2294 2264 99 854 37 111 5
10 1359 1313 97 529 39 36 3

Total 24,042 23,497 98 8585 36 840 3

3.4.2. Analysis of Population Structure

We used the snmf function with a cross-validation technique to calculate and select
the appropriate number of subpopulations based on the standard, and we classified the
individuals based on their maximum genetic similarity (Q-matrix). When the number of
subpopulations is set from 1 to 10, the cross-entropy criterion for assigning subpopulations
gradually decreases, but no obvious turning point is observed (Figure 1). When the number
of subpopulations is varied, the clustering of the inbred lines is clearly distinguished
(Figure 2). When the number of subpopulations is set to five, the 296 excellent inbred lines
are divided into five subpopulations. Subpopulations A, B, C, D, and E include 21, 22, 178,
10, and 65 inbred lines, respectively.
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3.4.3. Analysis of LD

Using 23,497 SNP markers with an MAF greater than 0.05 for LD analysis, the LD
r2 between these SNP markers basically decreases with an increase in genetic distance
between the markers, and all values are distributed between 0.000 and 1.000 (Table 7,
Figure 3). The average value of LD between the SNP markers on chromosome 9 is the
highest, at 0.122, while the average value on chromosome 7 is the lowest, at 0.052 (Table 7).

Table 7. LD and LD attenuation of maize chromosomes.

Chr. LD Decay
(r2 < 0.2)

LD Decay
(r2 < 0.1) Min Max Mean Median SD Kurtosis Skewness

1 120 410 0.000 1.000 0.062 0.008 0.152 13.871 3.605
2 320 1000 0.000 1.000 0.088 0.009 0.201 6.198 2.69
3 130 620 0.000 1.000 0.067 0.007 0.169 10.411 3.264
4 100 500 0.000 1.000 0.061 0.008 0.152 13.999 3.648
5 270 990 0.000 1.000 0.082 0.008 0.187 7.887 2.903
6 85 350 0.000 1.000 0.064 0.008 0.16 11.833 3.435
7 90 440 0.000 1.000 0.052 0.008 0.141 17.75 4.069
8 220 820 0.000 1.000 0.068 0.008 0.169 11.335 3.378
9 340 1990 0.000 1.000 0.122 0.011 0.24 2.903 2.069

10 70 340 0.000 1.000 0.07 0.01 0.165 11.326 3.351

Note: chr.1 to chr.10 represent chromosome 1 to chromosome 10 in maize, respectively.
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3.5. Analysis of Genome-Wide Association
3.5.1. Genome-Wide Association Analysis of Low-Temperature Tolerance in the Field

Using the MLM model in the TASSEL software at a significance threshold of p < 1 ×
10−4, seven SNP markers associated with low-temperature tolerance were detected based
on the average relative germination rate and the relative germination indices in the field
in 2017 and 2018. These markers are located on chromosomes 5, 6, 7, and 10, and their
phenotypic contributions range from 5.03% to 9.68% (Table 8, Figure 4). Among them, five
significantly associated SNP markers were identified based on the relative germination
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index in 2018, including marker.17002, marker.17003, marker.17009, and marker.17105
located on chromosome 6 and marker.19874 located on chromosome 7, which explained
6.55%, 6.55%, 5.86%, 8.46%, and 7.30% of the phenotypic variation, respectively. No
associated SNP loci were identified for the year 2017, which might be due to the lack of
effective low-temperature stress between early sowing and sowing at the optimum time in
that year.

Table 8. SNPs of maize with significant correlation with low-temperature tolerance.

Traits Marker Chr. Physical
Position −Lg (p) Contribution

(%)

Field-relative germination rate marker.14070 5 2,205,723 6.86 9.68
Relative germination index (2018) marker.17002 6 64,236,775 4.56 6.55
Relative germination index (2018) marker.17003 6 64,236,781 4.56 6.55
Relative germination index (2018) marker.17009 6 64,298,566 4.15 5.86
Relative germination index (2018) marker.17105 6 72,142,751 5.69 8.46
Relative germination index (2018) marker.19874 7 180,326,388 5.01 7.30
Field-relative germination rate marker.536 10 63,529,769 4.06 5.03

Note: The physical position of SNP markers was determined in reference to B73 RefGen-v4.
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3.5.2. Genome-Wide Association Analysis of Low-Temperature Tolerance in the Laboratory

Using the relative germination rate in the laboratory during the germination stage
as the indicator, a total of 14 SNP loci associated with low-temperature tolerance during
germination were detected; these SNP markers are located on chromosomes 1, 3, 4, 5, and
10, explaining 4.84% to 9.68% of the phenotypic variance. Among them, six significantly
associated SNP markers were identified using the relative germination rate in 2018 (Table 9,
Figure 5), and eight significantly associated SNP markers were identified using the relative
germination rate in 2019 (Table 9, Figure 6).
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Table 9. SNPs of maize with significant correlations with low-temperature tolerance.

Traits Marker Chr. Physical
Position −Lg (p) Contribution

(%)

Relative germination rate (2019) marker.1723 1 31,809,859 5.01 6.54
Relative germination rate (2018) marker.1724 1 31,809,902 4.07 5.46
Relative germination rate (2019) marker.1726 1 31,897,277 4.18 5.31
Relative germination rate (2019) marker.1729 1 31,954,983 4.95 6.41
Relative germination rate (2018) marker.8339 3 6,292,001 4.16 5.61
Relative germination rate (2019) marker.8339 3 6,292,001 5.42 7.12
Relative germination rate (2018) marker.8340 3 6,292,053 5.01 6.87
Relative germination rate (2019) marker.8340 3 6,292,053 4.87 6.34
Relative germination rate (2019) marker.12816 4 140,575,088 4.54 5.87
Relative germination rate (2018) marker.14070 5 2,205,723 5.17 6.26
Relative germination rate (2018) marker.190 10 22,696,941 4.13 5.56
Relative germination rate (2019) marker.753 10 90,874,322 4.75 6.17
Relative germination rate (2019) marker.14070 5 2,205,723 4.00 4.84
Relative germination rate (2018) marker.843 10 100,622,715 4.52 6.10

Note: The physical position of SNP markers was determined in reference to B73 RefGen-v4.
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3.5.3. Consistency Analysis of SNP Markers Associated with Low-Temperature Tolerance

Eight significantly associated SNP markers were identified using the indoor relative
germination rate in 2019, mainly distributed on chromosomes 1, 3, 4, and 10. When using
the indoor relative germination rate in 2018 and the field relative germination index in
2018, five significantly associated SNP markers were identified for each. No significantly
associated SNP markers were identified based on the germination index in 2017. Overall,
significantly associated SNP markers were distributed on chromosomes 1, 3, 4, 5, 6, 7,
and 10, with most markers on chromosome 1 (up to nine), and no significantly associated
SNP markers were found on chromosomes 2, 8, and 9. The −Lg(p) values of significantly
associated SNP markers ranged from 4.00 to 6.86, with an average of 4.65. The phenotypic
variation explained by a single SNP marker ranged from 4.84% to 9.68%, with an average
of 6.13%.
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Significantly associated SNP markers also showed clustered distribution. Using the in-
door relative germination rates in 2018 and 2019, four significantly associated SNP markers
(marker.1723, marker.1724, marker.1726, and marker.1729) were identified in the interval
of 31,809,859–31,954,983 on chromosome 1, with an average distance of 36.28 Kb between
markers. Using the indoor relative germination rates in 2018 and 2019, a significantly
associated SNP marker (marker.8339) was identified on chromosome 3 at position 6,292,001,
explaining up to 5.61% of the phenotypic variation. Using the indoor relative germination
rate in 2018 and the field relative germination rate in 2019, a significantly associated SNP
marker (marker.8340) was identified on chromosome 3 at position 6,292,053, explaining
up to 6.87% of the phenotypic variation. Using the indoor relative germination rate in
2019 and the field relative germination rate in 2019, a significantly associated SNP marker
(marker.14070) was identified on chromosome 5 at position 2,205,723, explaining up to
9.68% of the phenotypic variation.

4. Discussion

In recent years, with the rapid development of sequencing technology and statistical
algorithms, GWAS has become one of the most effective methods for identifying genetic
variants associated with important agronomic traits in crops [26–29]. Compared to the
traditional linkage analysis, GWAS can use natural populations as materials directly; it can
detect more QTLs than traditional QTL mapping by using biparental populations because
it uses a larger number of molecular markers and datasets from hundreds of maize inbred
lines, which have a rich allelic diversity [30,31]. Moreover, GWAS can analyze multiple
phenotypic traits in multiple environments and across multiple time points at the same time.
Its high-throughput sequencing and high precision have greatly improved the efficiency of
crop breeding [32,33]. Currently, GWAS has greatly advanced genetic research on maize
functional genomics [34]; many agronomic traits such as flowering time, leaf angle, leaf
size, and disease resistance have been identified in maize. For example, using 368 maize
inbred lines and approximately 1 million SNPs, a GWAS analysis successfully detected
74 loci associated with seed oil content and fatty acid composition in maize [35,36]. The
US-NAM population was used to detect maize flowering time variants, and a total of 90
flowering time regions were identified in the whole genome via GWAS; among them, one
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third of regions were associated with the environmental sensitivity of maize flowering
time [37]. In another study, 513 inbred lines were used to identify 678 SNPs associated
with 17 agronomic traits via GWAS, such as plant height, seed morphology, and flowering
time; the results found that 54.3% of these SNPs were associated with at least two or more
agronomic traits [38]. A total of 217 inbred lines were genotyped using the GBS technology,
and 39 SNPs were identified to be significantly associated with fumonisin resistance in
maize kernels based on GWAS analysis [39]. A panel of 143 elite lines were genotyped by
using the MaizeSNP50 chip, combined with GWAS and transcriptome analysis; the results
showed that 15 common quantitative trait nucleotides were associated with maize white
spot, and SYN10137-PZA00131.14 was identified as a key genetic region for improving
resistance to MWS; in this region, three candidate genes were identified [40].

Maize can grow in cool-temperate climates but is often exposed to cold temperatures
in spring, which can affect seedling growth. Currently, although studies have shown
that the growth and development of maize plants are closely related to low temperatures,
the genetics of low-temperature tolerance in maize is not well understood. For example,
low-temperature stress can increase the expression of related genes, resulting in the accu-
mulation of folate in maize plants [41]. Cold stress can result in a series of physiological
responses, such as the expression of osmotic stress-related genes, accumulation of ROS, ac-
tivities of antioxidant enzymes, and levels of plant hormones and MDA production [42–45];
thus, plants need to stabilize cell membranes and biologically active proteins in order to
survive under low-temperature conditions. However, low-temperature tolerance in maize
is a complex trait because the identification and evaluation of low-temperature tolerance
traits are complex and have not been standardized. Classic quantitative genetics studies
have shown that low-temperature tolerance is controlled by multiple genes and is easily
affected by environmental conditions. Quantitative genetic analyses of cold tolerance have
shown that genotype, additive effects, growth stage, heterosis, and reciprocal and environ-
mental factors are all involved in the expression of cold tolerance in maize [46]. Six maize
lines were used to evaluate the expression of CAT, APX, SOD, and other genes; the results
showed that there was heterosis for germination under cold stress, and non-additive genes
were more important [47]. The studies cited above show that the genetics mechanisms of
low-temperature tolerance in maize are very complicated.

Maize has rich genetic variability, a fast LD decay rate, and abundant information on
SNP loci, so maize is an ideal model crop for GWAS analysis [48]. In this study, we used
GWAS to identify the genetic loci associated with five traits related to low-temperature
tolerance during germination. We identified 30 markers significantly associated with
low-temperature tolerance, which were located on chromosomes 1, 2, 3, 4, 5, 6, 7, and
10. Two markers (marker.17002 and marker.17009) significantly associated with the rel-
ative germination index in the field in 2018 were located in bin 2.05. This interval has
been mapped to several traits under different temperature conditions, including SPAD
values [49], antioxidant activity under cold treatment, chlorophyll b, chlorophyll a + b, and
Fv/Fm under different temperatures and sowing times [50]. Marker.7569, significantly
associated with the relative germination index in the field in 2018, was located in bin 2.06
and was involved in the photosynthetic traits of the third leaf under 15 ◦C conditions,
including CO2 assimilation rate and ΦPSII [1]. Marker.19874, located in bin 2.08, was
associated with hundred-grain weight under 14 ◦C/10 ◦C (day/night) conditions [51].
Some of these associated markers are consistent with previous studies on low-temperature
tolerance, although the traits they are associated with may differ, which may be due to
pleiotropy.

Eight significant SNPs related to relative germination rate were detected using the in-
door relative germination rate in 2019, and five significant SNPs related to low-temperature
tolerance were detected using both the indoor relative germination rate in 2018 and the
field relative germination index in 2018. Overall, these significant SNPs related to low-
temperature tolerance were distributed on chromosomes 1, 3, 4, 5, 6, 7, and 10, with most
SNPs distributed on chromosome 1 (nine SNPs). Previous studies have also shown that
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SNPs that are associated with seedling-related traits in maize under cold stress are con-
centrated on chromosomes 1, 2, 3, 5, 6, 8, and 10 [13,52,53]. The above research results
further indicate that the cold tolerance of maize is a polygenic quantitative trait controlled
by multiple genes. Using polygenic aggregation or multiple molecular markers for the
genetic improvement of cold tolerance in maize is an effective strategy. No significant
SNPs related to relative germination index were detected in 2017 using GWAS analysis,
indicating that low-temperature tolerance in maize may be easily affected by environmental
conditions, particularly climate conditions during the growing season. Some scholars have
reported that the gene expression related to cold tolerance was affected by the environment
of maize [54]. Under controlled conditions, the highest number of significant SNPs related
to relative germination rate was detected using the indoor relative germination rate in 2019
(nine SNPs), further demonstrating that controlling low-temperature environmental condi-
tions is important for identifying variations in low-temperature tolerance among different
maize inbred lines. Therefore, future studies on identifying genes for low-temperature
tolerance and improving maize varieties should focus more on phenotypic evaluations
under artificial controlled low-temperature conditions.

Using the indoor relative germination rates in 2018 and 2019, four SNP markers
significantly associated with low-temperature tolerance were identified in the range of
31,809,859–31,954,983 on chromosome 1, with an average distance of 36.28 Kb between
markers. On chromosome 3, two SNP markers significantly associated with low-temperature
tolerance were identified, namely marker.8339 and marker.8340. These markers can be
directly applied or developed into easily detectable molecular markers for use in the marker-
assisted selection for low-temperature tolerance in maize. In addition, some markers
were found to be significantly associated with multiple traits, such as marker.1723 and
marker.1724, which are only 43 bp apart and were associated with both indoor germination
rates in 2018 and 2019. Marker.8339 and marker.8340 were associated with both indoor
relative germination rates in 2018 and 2019, and marker.14070 was associated with both
the field average relative germination rate and the 2019 indoor relative germination rate.
The reason for the same markers being associated with multiple traits may be due to the
strong correlation between traits, and it also indicates that the traits identified in this study
are all effective for low temperature-tolerance identification. Another reason may be due
to the pleiotropy of genes, where genes not only directly control the expression of a trait
through the action of enzymes, but also affect many other traits through the modification
of a particular trait. This requires further investigation into the function of candidate genes
to avoid any negative effects of gene expression on maize breeding.

5. Conclusions

In the present study, GWAS was performed with 296 maize inbred lines, and a total
of 14 SNPs significantly associated with low-temperature tolerance were detected. The
SNP consistently linked to low-temperature tolerance in the field and indoors during
germination was marker.14070, located on chromosome 5 at position 2,205,723, which
explained 4.84–9.68% of the phenotypic variation.
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Appendix A

Table A1. The population distribution characteristics when the number of subgroups is 5.

NO. Name
Ancestry Matrix

Subgroup
A B C D E

1 LX46 0.86 0 0.05 0 0.09 A
2 UH302 0.92 0 0 0.08 0 A
3 LX56 0.57 0.14 0 0 0.29 A
4 LX57 0.59 0.14 0 0 0.27 A
5 LX65 0.52 0.02 0.37 0.05 0.04 A
6 LX76 0.39 0.09 0.32 0 0.2 A
7 LX98 0.9 0.1 0 0 0 A
8 LX99 0.67 0.33 0 0 0 A
9 38P05f 0.77 0 0.07 0 0.16 A
10 38P05m 1 0 0 0 0 A
11 LX113 1 0 0 0 0 A
12 YA1M 0.9 0 0.04 0.03 0.03 A
13 LX147 0.85 0 0.06 0.03 0.06 A
14 LX148 0.88 0 0.05 0.03 0.04 A
15 LX151 0.74 0.09 0 0 0.17 A
16 LX156 0.67 0.33 0 0 0 A
17 LX162 0.37 0 0.37 0.16 0.1 A
18 LX171 0.53 0.03 0.06 0.2 0.18 A
19 UH303 0.91 0 0.05 0.04 0 A
20 LX194 0.45 0.15 0.27 0 0.13 A
21 688F 0.94 0.06 0 0 0 A
22 LX94 0 0.48 0.23 0.01 0.28 B
23 LX115 0.01 0.56 0.02 0 0.41 B
24 xy335f 0 0.97 0.03 0 0 B
25 LX132 0.01 0.44 0.15 0 0.4 B
26 LX137 0.04 0.47 0.11 0 0.38 B
27 LY88M 0 0.78 0.06 0 0.16 B
28 LX164 0 0.65 0.07 0 0.28 B
29 LX166 0 0.68 0 0 0.32 B
30 LX167 0 0.68 0.04 0.02 0.26 B
31 LX168 0 0.54 0.01 0 0.45 B
32 LX169 0 0.61 0.05 0 0.34 B
33 LX172 0.03 0.55 0 0 0.42 B
34 LX180 0 0.88 0.1 0.02 0 B
35 LX186 0 0.89 0.09 0.02 0 B
36 LX205 0 0.51 0.26 0 0.23 B
37 LX206 0.04 0.48 0.24 0.03 0.21 B
38 LY99M 0 1 0 0 0 B
39 MEIXI 0.03 0.43 0.17 0.04 0.33 B
40 101M 0.01 0.53 0 0 0.46 B
41 420F 0 1 0 0 0 B
42 738M 0 1 0 0 0 B
43 820F 0.05 0.55 0.33 0.07 0 B
44 LX1 0.05 0.04 0.49 0.09 0.33 C
45 LX2 0.03 0.05 0.62 0.16 0.14 C
46 LX3 0.01 0.06 0.64 0.2 0.09 C
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Table A1. Cont.

NO. Name
Ancestry Matrix

Subgroup
A B C D E

47 LX4 0 0.13 0.53 0.17 0.17 C
48 LX5 0.02 0.02 0.83 0.13 0 C
49 LX6 0 0.02 0.92 0.04 0.02 C
50 LX8 0.02 0.02 0.59 0.04 0.33 C
51 LX9 0 0 1 0 0 C
52 LX10 0.03 0.03 0.76 0.05 0.13 C
53 LuYuan92 0.02 0.03 0.72 0.08 0.15 C
54 LX12 0.25 0 0.45 0.22 0.08 C
55 LX13 0.02 0.05 0.53 0.05 0.35 C
56 LX14 0.02 0.05 0.59 0.04 0.3 C
57 LX15 0.03 0.09 0.69 0.05 0.14 C
58 LX17 0.02 0.03 0.69 0.04 0.22 C
59 LX18 0.1 0.03 0.44 0.3 0.13 C
60 H261 0 0.02 0.74 0.05 0.19 C
61 LX19 0.05 0.05 0.61 0.05 0.24 C
62 LX20 0 0.01 0.61 0.05 0.33 C
63 LX21 0.19 0.08 0.37 0.07 0.29 C
64 Q319 0.04 0.06 0.71 0.05 0.14 C
65 LX23 0.02 0.05 0.73 0.18 0.02 C
66 LX25 0.1 0.08 0.6 0.07 0.15 C
67 LX95 0 0.05 0.74 0.21 0 C
68 LX27 0 0 0.86 0 0.14 C
69 LX29 0.04 0.04 0.66 0.07 0.19 C
70 LX30 0 0.08 0.56 0.29 0.07 C
71 LX32 0 0 0.88 0.12 0 C
72 LX33 0 0.07 0.57 0.31 0.05 C
73 LX34 0 0.02 0.75 0.16 0.07 C
74 LX35 0.1 0.05 0.45 0.26 0.14 C
75 LX36 0.27 0.01 0.4 0.21 0.11 C
76 LX37 0.04 0.06 0.46 0.28 0.16 C
77 LX38 0 0 0.97 0 0.03 C
78 LX39 0 0 0.82 0.18 0 C
79 LX40 0.03 0 0.71 0 0.26 C
80 LX41 0 0 0.54 0.15 0.31 C
81 LX42 0.01 0.05 0.47 0.03 0.44 C
82 LX43 0 0 0.87 0.13 0 C
83 LX45 0.02 0.03 0.78 0.08 0.09 C
84 B317 0 0.01 0.84 0.08 0.07 C
85 LX48 0.01 0.02 0.77 0.11 0.09 C
86 B144 0.02 0.04 0.47 0.04 0.43 C
87 Si287 0 0 0.84 0.16 0 C
88 7-004 0 0 0.66 0 0.34 C
89 SD190 0.01 0.05 0.78 0.08 0.08 C
90 LX49 0.02 0.03 0.73 0.01 0.21 C
91 LX50 0 0 0.89 0 0.11 C
92 LX52 0.05 0 0.69 0.05 0.21 C
93 LX53 0 0 0.9 0.05 0.05 C
94 LX55 0.01 0.05 0.62 0.16 0.16 C
95 LX59 0.06 0.02 0.72 0.05 0.15 C
96 LX60 0.02 0.04 0.62 0.08 0.24 C
97 LX61 0.03 0.03 0.73 0.12 0.09 C
98 LX62 0 0 0.76 0.24 0 C
99 LX63 0 0.08 0.79 0.1 0.03 C

100 LX64 0 0.01 0.75 0.2 0.04 C
101 LX66 0.23 0 0.42 0.13 0.22 C



Curr. Issues Mol. Biol. 2023, 45 9650

Table A1. Cont.

NO. Name
Ancestry Matrix

Subgroup
A B C D E

102 LX67 0.05 0.07 0.53 0.08 0.27 C
103 LX68 0.02 0.04 0.33 0.29 0.32 C
104 LX69 0.02 0.01 0.55 0.29 0.13 C
105 LX71 0.02 0 0.87 0.04 0.07 C
106 LX74 0 0.21 0.58 0 0.21 C
107 LX75 0.04 0.18 0.41 0.05 0.32 C
108 LX82 0.03 0.01 0.48 0.22 0.26 C
109 LX83 0 0 0.74 0.22 0.04 C
110 LX84 0 0 0.8 0.19 0.01 C
111 LX85 0.03 0.06 0.49 0.02 0.4 C
112 LX86 0 0 0.93 0.07 0 C
113 LX87 0 0 0.95 0.05 0 C
114 LX90 0.02 0.04 0.47 0.06 0.41 C
115 LX92 0 0 0.74 0.26 0 C
116 LX93 0 0 0.66 0.3 0.04 C
117 LX100 0 0 0.53 0.29 0.18 C
118 LX102 0 0.03 0.86 0.09 0.02 C
119 LM33M 0.03 0.05 0.61 0.07 0.24 C
120 LX105 0.05 0 0.88 0.05 0.02 C
121 LX106 0.01 0.1 0.81 0.05 0.03 C
122 LX107 0.06 0 0.89 0.05 0 C
123 LX112 0.07 0.14 0.47 0.09 0.23 C
124 LX114 0.06 0.12 0.4 0.02 0.4 C
125 Huangzao4 0 0 0.86 0.14 0 C
126 Longxi53 0.04 0.04 0.41 0.13 0.38 C
127 706 0.08 0.05 0.71 0.11 0.05 C
128 LX117 0.01 0.01 0.96 0.02 0 C
129 LX118 0.03 0.1 0.72 0.06 0.09 C
130 LX119 0 0.03 0.78 0.14 0.05 C
131 K10 0 0.09 0.47 0.35 0.09 C
132 Chang3 0.02 0.03 0.6 0.13 0.22 C

133 Zhong7490-
92 0.01 0.04 0.76 0.18 0.01 C

134 78599 0.03 0 0.91 0.06 0 C
135 478 0 0 0.89 0 0.11 C
136 He344 0 0.01 0.75 0.18 0.06 C
137 Longkang11 0 0 1 0 0 C
138 MO17 0.04 0.17 0.56 0.03 0.2 C
139 4F1 0 0 1 0 0 C
140 330 0 0 0.9 0.1 0 C
141 5003 0 0 0.98 0.02 0 C
142 B73 0.03 0.01 0.96 0 0 C
143 LX120 0.07 0.03 0.66 0.19 0.05 C
144 LX121 0.02 0.02 0.87 0.07 0.02 C
145 LX122 0 0.04 0.69 0.27 0 C
146 LX123 0.03 0 0.83 0.11 0.03 C
147 LX124 0 0 0.99 0.01 0 C
148 06S021 0 0 0.97 0 0.03 C
149 06S032 0 0 1 0 0 C
150 06S034 0.13 0.01 0.78 0.05 0.03 C
151 06S052 0 0 0.53 0.01 0.46 C
152 06S060 0 0.01 0.84 0 0.15 C
153 06S068 0 0 0.92 0 0.08 C
154 06S075 0 0 0.77 0.14 0.09 C
155 06S095 0 0.04 0.71 0.1 0.15 C
156 R117 0.01 0 0.91 0 0.08 C
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157 FLAF 0.13 0.01 0.48 0.22 0.16 C
158 YAM 0.07 0.08 0.66 0.09 0.1 C
159 LX125 0 0.05 0.81 0.14 0 C
160 Jidan27♂ 0.01 0.01 0.49 0.04 0.45 C
161 LX126 0 0 0.59 0.01 0.4 C
162 LX127 0 0.03 0.75 0.04 0.18 C
163 LX128 0 0.02 0.83 0.13 0.02 C
164 LX129 0 0 0.98 0.02 0 C
165 LX130 0.01 0 0.67 0.01 0.31 C
166 LX131 0.03 0.13 0.61 0.08 0.15 C
167 Zheng58 0.01 0 0.87 0 0.12 C
168 Chang7-2 0 0.01 0.8 0.14 0.05 C
169 HY6M 0.18 0 0.49 0.19 0.14 C
170 HY6F 0.04 0.03 0.77 0.06 0.1 C
171 LX134 0.26 0 0.64 0.08 0.02 C
172 LX140 0 0 0.87 0 0.13 C
173 LX144 0.03 0.09 0.51 0.06 0.31 C
174 Co117-2 0.1 0.04 0.53 0.19 0.14 C
175 Co220 0.09 0.02 0.47 0.3 0.12 C
176 Co228 0.15 0.03 0.4 0.3 0.12 C
177 Co266 0.09 0.04 0.44 0.31 0.12 C
178 Co274 0.07 0.09 0.55 0.15 0.14 C
179 Co285 0.07 0.02 0.51 0.08 0.32 C
180 Co358 0.13 0.02 0.48 0.21 0.16 C
181 Co372 0.07 0.02 0.49 0.27 0.15 C
182 Co373 0.1 0.06 0.47 0.28 0.09 C
183 Co380 0.08 0.03 0.46 0.19 0.24 C
184 LY88F 0 0 0.8 0.1 0.1 C
185 LX149 0 0 0.94 0.06 0 C
186 LX150 0 0 0.81 0.08 0.11 C
187 LX152 0.02 0 0.93 0 0.05 C
188 LX153 0.06 0.02 0.71 0.09 0.12 C
189 LX154 0.01 0 0.87 0.12 0 C
190 LX155 0 0.02 0.83 0.15 0 C
191 H127RE 0.04 0.04 0.64 0.12 0.16 C
192 LX163 0.05 0.07 0.82 0 0.06 C
193 DY1 0 0.01 0.88 0.11 0 C
194 DY10 0.01 0.03 0.53 0 0.43 C
195 DY21 0.07 0.12 0.44 0.03 0.34 C
196 DY53 0.01 0 0.86 0.13 0 C
197 DY71 0.02 0.02 0.8 0.16 0 C
198 DY97 0 0.01 0.63 0 0.36 C
199 DY99 0.03 0.03 0.5 0.22 0.22 C
200 Dy13-17 0.14 0.03 0.46 0.2 0.17 C
201 LX176 0.03 0.02 0.95 0 0 C
202 LX177 0 0.06 0.9 0.04 0 C
203 LX178 0.03 0.06 0.57 0.06 0.28 C
204 LX181 0 0.07 0.59 0.06 0.28 C
205 LX184 0.01 0.03 0.67 0.01 0.28 C
206 LX185 0.04 0.22 0.48 0.04 0.22 C
207 LX188 0.03 0.26 0.37 0.02 0.32 C
208 LX190 0.09 0.17 0.4 0.02 0.32 C
209 LX193 0 0.02 0.95 0.03 0 C
210 LX195 0 0.01 0.91 0.08 0 C
211 LX196 0.07 0.01 0.77 0.03 0.12 C
212 LX197 0 0.01 0.75 0.01 0.23 C
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213 LX198 0 0.01 0.77 0.01 0.21 C
214 LX199 0.02 0 0.76 0 0.22 C
215 LX201 0.04 0.02 0.49 0.02 0.43 C
216 LX202 0.05 0 0.44 0.08 0.43 C
217 LX209 0.13 0.06 0.67 0.08 0.06 C
218 LX210 0.13 0.13 0.54 0.06 0.14 C
219 698F 0.04 0.04 0.68 0.01 0.23 C
220 820M 0.13 0.14 0.37 0.05 0.31 C
221 YA2M 0.27 0.09 0.47 0.06 0.11 C
222 LX26 0 0.03 0.17 0.69 0.11 D
223 UH004 0 0 0 1 0 D
224 FLAM 0 0.04 0.24 0.58 0.14 D
225 YAF 0 0 0 0.97 0.03 D
226 Co374 0.21 0.03 0.2 0.45 0.11 D
227 YA1F 0 0.02 0 0.94 0.04 D
228 LX159 0.36 0 0 0.64 0 D
229 LX160 0.47 0 0 0.53 0 D
230 LX161 0.21 0.1 0.06 0.52 0.11 D
231 UH009 0 0.01 0 0.93 0.06 D
232 Ji871 0 0 0.39 0.1 0.51 E
233 LX11 0.04 0.03 0.42 0.08 0.43 E
234 LX16 0 0.27 0.25 0.02 0.46 E
235 LX22 0 0 0.12 0.03 0.85 E
236 LX24 0 0.22 0 0 0.78 E
237 LX31 0.03 0.03 0.41 0.04 0.49 E
238 LX51 0.01 0 0.36 0.05 0.58 E
239 LX54 0 0 0.21 0 0.79 E
240 LX72 0.34 0.03 0.09 0 0.54 E
241 LX73 0.05 0.26 0.25 0.07 0.37 E
242 LX77 0.16 0.11 0.26 0.03 0.44 E
243 LX78 0.14 0.18 0.06 0 0.62 E
244 LX79 0.15 0.19 0.04 0 0.62 E
245 LX80 0.06 0.11 0.21 0.01 0.61 E
246 LX88 0.19 0.11 0.28 0 0.42 E
247 LX89 0.03 0.02 0.34 0.02 0.59 E
248 LX91 0 0 0.09 0.11 0.8 E
249 LX101 0.06 0.25 0.27 0.04 0.38 E
250 LX104 0 0 0.13 0.01 0.86 E
251 LX108 0 0.1 0 0 0.9 E
252 LX109 0.02 0.17 0.24 0.02 0.55 E
253 LX110 0.13 0.01 0.03 0.04 0.79 E
254 LX111 0.02 0.05 0.33 0.05 0.55 E
255 LX116 0 0.02 0.01 0 0.97 E
256 Lv28 0 0 0 0 1 E
257 LX124 0.38 0.01 0.21 0 0.4 E
258 xy335m 0 0.09 0.02 0 0.89 E
259 LX133 0 0.41 0.16 0.01 0.42 E
260 LX135 0 0.33 0.09 0.01 0.57 E
261 LX136 0 0.43 0.12 0.01 0.44 E
262 LX138 0 0.34 0.23 0.02 0.41 E
263 LX139 0.06 0.23 0.23 0.03 0.45 E
264 LX141 0.02 0.08 0.37 0.06 0.47 E
265 LX142 0 0 0 0 1 E
266 LX143 0 0 0 0 1 E
267 LX145 0 0 0 0.02 0.98 E
268 LX146 0.01 0.02 0.14 0.01 0.82 E
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269 Co371 0.07 0.09 0.28 0.17 0.39 E
270 LX165 0.3 0.04 0.3 0.01 0.35 E
271 LX170 0.02 0.41 0 0 0.57 E
272 DY7 0 0 0 0 1 E
273 DY29 0.01 0 0 0.01 0.98 E
274 DY36 0.05 0.03 0.14 0.02 0.76 E
275 DY49 0 0.12 0.2 0 0.68 E
276 LX173 0 0.07 0.09 0.02 0.82 E
277 LX174 0 0 0 0 1 E
278 LX175 0 0 0.04 0 0.96 E
279 LX179 0 0.09 0.34 0.05 0.52 E
280 LX182 0.42 0.09 0 0.02 0.47 E
281 LX183 0.06 0.1 0.24 0.2 0.4 E
282 LX187 0.01 0.03 0.36 0.07 0.53 E
283 LX191 0.04 0.23 0.27 0.04 0.42 E
284 LX192 0.18 0.26 0.24 0.01 0.31 E
285 LX200 0 0 0.45 0.04 0.51 E
286 LX203 0 0 0 0 1 E
287 LX204 0 0 0 0 1 E
288 LX207 0 0 0 0 1 E
289 LX208 0 0.07 0.18 0.02 0.73 E
290 252M 0.01 0.06 0.21 0.01 0.71 E
291 335MG 0 0.04 0 0 0.96 E
292 688M 0 0.04 0 0 0.96 E
293 XZD276 0 0.1 0 0 0.9 E
294 XZD170 0 0.08 0 0 0.92 E
295 XZD171 0.02 0.13 0.31 0.02 0.52 E
296 YA2F 0 0.33 0 0 0.67 E
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