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Abstract: Ficus simplicissima Lour. is an Asian species of fig tree in the family Moraceae. The
chloroplast (cp) genome of F. simplicissima m3 was sequenced using the Pacbio sequel platform. The
F. simplicissima cpDNA has a size of 160,321 bp in length, of which GC content accounts for 36.13%.
The cp genome of F. simplicissima consists of a single large copy (LSC) with a size of 91,346 bp, a
single small copy (SSC) with a size of 20,131 bp, and a pair of inverted repeats with a size of 24,421
to 24,423 bp. The cp genome of F. simplicissima has 127 genes, including 85 protein-coding genes,
eight rRNA genes, and 34 tRNA genes; 92 simple sequence repeats and 39 long repeats were detected
in the cpDNA of F. simplicissim. A comparative cp genome analysis among six species in the Ficus
genus indicated that the genome structure and gene content were highly conserved. The non-coding
regions show more differentiation than the coding regions, and the LSC and SSC regions show more
differences than the inverted repeat regions. Phylogenetic analysis supported that F. simplicissima m3
had a close relationship with F. hirta. The complete cp genome of F. simplicissima was proposed as a
chloroplast DNA barcoding for genus-level in the Moraceae family and the psbA-trnH gene region for
species-level identification.
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1. Introduction

The chloroplast (cp) genome is circular and relatively conserved among plants in terms
of size, structure, and gene content [1]. The cp genome generally comprises two copies of
inverted regions that divide the genome into a large single-copy region (LSC) and a small
single-copy region (SSC). The cp genome provides genes participating in photosynthesis,
transcription, and translation. In addition, its non-coding intergenic spacer regions are
highly conserved and can be used for phylogenetics, population genetics, and species
identification [2]. Earlier research used partial cp sequences for plant barcoding [3], but they
are only universal for some plant taxa and have limitations at lower taxonomic levels [4,5].
Therefore, the whole cp genome is informative and extensive for plant barcoding [6,7]. With
the advance of next-generation sequencing, whole chloroplast genome acquisition is now
simpler and faster than ever. Coverage of four cp junctions between the inverted repeat (IR)
and single-copy regions is performed by a third–generation sequencer, the PacBio system
with Single Molecule Real-Time (SMRT) technology [8].

Ficus simplicissima Lour. is a species of fig tree in the Ficus genus. This genus contains
about 1000 species of trees, shrubs, and vines and is distinct with a unique fruit structure
known as syconium [9]. The species is found predominantly native to East Asian tropical
regions. In folk medicine, F. simplicissima was used to treat pneumonia, vitiligo, diarrhea,
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tonsillitis, cough, and rheumatic pain and promote lactation [10]. Moreover, combining
modified Radix Fici Simplicissimae with Western medicines was considered a potential
treatment for SARS-CoV-2 patients [11].

Although the Ficus genus has different applications, its phylogenetic relationship is
controversial. The Ficus classification system was based on morphological characteristics,
and analysis of ribosomal DNA was reported by Corner (1965) and Huang et al. (2022).
The information on the cp genomes of Ficus can be used in species identification and
phylogenetic analysis of Ficus species [12,13]. However, the cp genome of F. simplicissima
Lour. needed more because there were only raw reads of the cp genome of F. simplicissima
Lour. at the China National GenBank [13].

The purpose of this study was to sequence and annotate the cp genome of F. sim-
plicissima Lour m3; cp genome analysis, evaluate diversity and molecular evolutionary
analysis of Ficus genus in the Moraceae family, search for cpDNA markers as potential
DNA barcodes for Ficus species identification.

2. Materials and Methods
2.1. Plant Material, DNA Extraction, and cp Genome Sequencing

Ficus simplicissima Lour. m3 seeds were collected in the Thai Nguyen province (Hung
Son township, Dai Tu district), then cultured on Murashige and Skoog medium. Regen-
eration of plants in vitro and plants grown in pots and in experimental gardens. Ficus
simplicissima samples were identified by comparative morphology by the Department of
Botany, Thai Nguyen University of Education, Vietnam (Figure 1). Fresh leaves from
plantlets were harvested for genomic DNA extraction using the DNeasy® Plant Mini Kit.
Absorption spectroscopy analysis on a Shimadzu Biospec Nano instrument at wavelengths
A260 and A230 assessed DNA sample purity.
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Figure 1. Sample image of Ficus simplicissima Lour. m3 regenerated from seeds collected in the Thai
Nguyen province (Hung Son township, Dai Tu district). (a) Plants regenerated in vitro from seeds
grown in the experimental garden and (b) grown in pots, they are kept at the Department of Biology,
Thai Nguyen University of Education; (c,d) fruit of F. simplicissima.

The concentration of DNA was determined using a Qubit 3 Fluorometer and Qubit
HS DNA reagents. The integrity of the gDNA is assessed by 0.8% agarose gel electrophore-
sis. Besides, the total genomic DNA was used for library preparation using SMRTbell
Express Template Prep Kit 2.0 (Pacific Biosciences, Menlo Park, CA, USA) following the
manufacturer’s protocol (Pacific Biosciences). SMRTbell libraries were loaded on one chip
and sequenced on a Pacbio SEQUEL system at the Key Laboratory for Gene Technology,
Institute of Biotechnology (Hanoi, Vietnam).

2.2. Genome Assembly and Annotation

The cp genome sequences were determined via pbmm2 (https://github.com/Pacific
Biosciences/pbmm2, accessed on 20 August 2022) by mapping to Ficus hirta cp genomes
(NC_051532.1) as the reference. Afterward, the CANU program [14] was used to assemble
the cp genome. The assembled genome was annotated and analyzed using the GeSeq

https://github.com/PacificBiosciences/pbmm2
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tool [15]. The tRNAscan-SE ve has confirmed the tRNA genes with default parameters.
1.21 software [16]. A circular genome map was created by the OrganellarGenomeDRAW
tool (OGDRAW) ver. 1.3.1 [17]. Two methods searched Repeat sequences. MISA-web [18]
was used to detect microsatellites with the following setting: 10 repeat units for mono-,
five repeat units for di, four repeat units for tri-, and three repeat units for tetra-, penta-,
and hexanucleotide SSRs. Dispersed repeats (including forward, reverse, complement, and
palindromic repeats) were identified by REPuter [19] with a minimum repetition size of
20 times, hamming distance = 3, and sequence identities ≥90%.

2.3. Genome Comparison

For comparative analysis, five Ficus cp genomes were obtained from NCBI, and their
accession numbers are as follows: Ficus concinna (MZ128521), Ficus formosana (NC_059898),
Ficus pandurata var. angustifolia (NC_063593), Ficus sarmentosa voucher ZZ063 (NC_061976),
Ficus hirta (NC_051532). The cp DNA nucleotide sequences of the six Ficus species, in-
cluding the genome of F. simplicissima m3, have been linked with the MAFFT server and
visualized by mVISTA software (Shuffle-LAGAN mode) [20] and used the F. simplicissima
m3 genome to compare with genome five remaining species. Large single-copy (LSC),
small single-copy (SSC), and inverted repeat (IR) regions among the Ficus species were
visualized as the junction sites of chloroplast genomes and compared using the IRscope
online program. Codon usage trends, Pi values, and nucleotide sequence polymorphisms
among six Ficus species were determined by calculating the pi sliding window analysis
between cp DNAs in DnaSP ver. 6.12.03 [21]. We chose a window size of 600 bp with a step
size of 200 bp for sequence divergence analysis.

2.4. Phylogenetic Identification

The sequences of psbA-trnH and complete cp genome were downloaded from the Gen-
Bank of NCBI to illustrate phylogenetic relationship and position. The MAFFT server [22]
was applied to align these sequences and maximum likelihood trees with 1000 bootstrap
replicates were constructed by FastTree version 2.1.11 [23]. Subsequently, FigTree (version
1.4.4) [24] was employed to visualize phylogenetic trees.

3. Results
3.1. Chloroplast Genome Features of Ficus Simplicissima m3

In total, 51,578 reads and 3.7 Gb raw data sequences of the whole genome were
generated from F. simplicissima m3. After trimming and selecting reads, the F. simplicissima
m3 cp genome with a size 160,321 bp was assembled. The Ficus plastome possessed the
classic quadripartite structure (Figure 2), containing one LSC region (68,977 bp), one SSC
region (20,131 bp) and two inverted repeat (IR) regions (24,421 and 24,423 bp). The overall
GC content was 35.9 (%) (Table 1). The cp genome of F. simplicissima m3 contains 127 genes,
including 85 protein-coding genes, 8 rRNA genes, 34 tRNA genes. Of these, 18 genes were
duplicated in the IR region and 21 genes contain introns. Additionally, 11 protein-coding
genes (rps16, petB, petD, atpF, ndhA, ndhB (× 2), rpoC1, rpl16 and rpl2 (× 2)) and six RNA
genes (rrn23 (×2), trnI-GAU (× 2) and trnA-UGC (× 2)) contained only one intron, while
two protein-coding genes (clpP and ycf3) had two introns (Supplementary File S1 Table S1).
The complete chloroplast genome of the F. simplicissima was submitted to GenBank in
November 2022 and was granted the code BankIt2647431 Ficus_simplicissima_m3 OP928145
on 5 December 2022, and is waiting for the accession number (Supplementary File S2).
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Figure 2. Circular map of the chloroplast genome of F. simplicissima m3. Genes located outside of the
circle are transcribed counter-clockwise, while genes shown inside are transcribed clockwise. The
darker gray in the inner circle indicates GC content, and the lighter gray corresponds to AT content.
Genes marked with the sign ‘*’ are the gene with intron.

Table 1. Summary of the chloroplast genome of Ficus simplicissima m3 species.

Genome Size (bp) 160,321

LSC size (bp) 91,346
SSC size (bp) 20,131
IR size (bp) 24,423

GC content (%) 35.9
No. of genes 127
No. of PCGs 85
No. of tRNA 34
No. of rRNA 8

3.2. Codon Usage

The chloroplast genome of F. simplicissima was analyzed for its codon usage frequency
based on the nucleotide sequence of protein-coding genes and on relative synonymous
codon usage (RSCU). The relative frequency of synonymous codons of the F. simplicissima
m3 cp coding sequence was estimated. The results indicate that protein-coding genes
were encoded by 54,960 codons and the four most common codons were UUU (pheny-
lalanine), AAA (lysine), AAU (asparagine), and AUU (Isoleucine), corresponding to 2393
(4.35%), 2287 (4.16%), 1967 (3.57%), and 1830 (3.32%) codons, respectively. In terms of the
prevalence of translated amino acids, leucine (5719) and isoleucine (4569) were the two
most frequently used amino acids, while the least abundant was tryptophan (692 codons,
approximately 1.25%). Thirty codons were used more frequently than other synonymous
codons (RSCU > 1) and thirty-two codons were considered as relatively less used codons
(RSCU < 1). Furthermore, AUG and UGG (methionine and tryptophan) showed no bias
(RSCU = 1).
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3.3. Repeat Sequence Analysis

Simple sequence repeats (SSRs) are tandemly repeated DNA sequences consisting
of short, tandemly repeated di-, tri-, tetra-or penta-nucleotide motifs [25]. A total of
92 SSRs were identified in the F. simplicissima m3 cp genome. Among them, there were
49 mononucleotide repeats, 22 dinucleotide repeats, 5 trinucleotide repeats, 10 tetranu-
cleotide repeats, 4 pentanucleotide, and 2 hexanucleotides. In addition, all the mononu-
cleotide repeats belonged to A/T and were the highest (Figure 3).
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Additionally, the long complex repetitive sequences were explored, containing forward
repeats, reverse repeats, palindromic repeats and complement repeats in the F. simplicis-
sima m3 chloroplast genome. We identified 11 forward, 1 reverse, 1 complement, and
26 palindromic repeats (Supplementary File S1 Figure S1).

3.4. Phylogenetic Analysis

To examine the phylogenetic relationships within the Ficus genus and Moraceae family,
ML analysis was constructed based on the similarity of chloroplast sequences and the psbA-
trnH intergenic region. As illustrated in the complete cp genome (Figure 4a), species are
divided into groups on the phylogenetic tree with high bootstrap values (86.20–100%). The
studied F. simplicissima m3 and F. hirta (Accession number in GenBank: NC_051532.1) were
located in one group with 100% support. The branch support value (86.2%) for F. pumila
(NC_058617.1) and this group was lower than the other branch support values. F. benjamina
(NC_053836.1) and F. lyrata (NC_053838.1) formed a well-supported monophyletic group.

The phylogenetic tree inferred from the psbA-trnH data displayed six distinct groups
with strong support, with the support values ranging from 89.3 to 100% (Figure 4b). Group
I contained two species of outgroup Morus alba (voucher A. chaveerach 976.1, (Accession
number in GenBank: MF405185.1 and voucher A. chaveerach 977.1, MF405186.1). The se-
lected species belonging to the Ficus genus generated the five remaining groups. Almost
all individuals in the same species fell into the same clade, except five F. hirta voucher.
Group II included two vouchers of F. variolosa species (JQ774218.1 and JQ774174.1) with
100% bootstrap value. Three F. simplicissima species constituted group III, in which F. sim-
plicissima voucher HSNU2014113 (KX055795.1) and F. simplicisima voucher HSNU2014119
(KX055795.1) formed one clade (bootstrap value = 92.2%) resolved as sister to the studied
F. simplicissima m3 (bootstrap value = 89.3%). Five F. hirta species split into three sepa-
rate groups. Group IV comprised two clades, one clade encompassed F. hirta voucher
HSNU2013079 (KX055770.1) and F. hirta voucher HSNU2013080 (KX055773.1) with boot-
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strap value = 100, the rest were sister to F. hirta voucher HSNU2013229 (KX055778.1) with
92.5% branch support value. Three selected F. simplicissima species were the most closely
related to three F. hirta species (KX0055774.1; KX055773.1; KX055778) in group V with a 94%
bootstrap value.
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Figure 4. Phylogenetic relationships among Moraceae family based on complete cp genome (a) and
psbA-trnH intergenic region (b).

3.5. Comparative Genomic Analysis

The junction sites in these cp genomes were relatively conserved. The length of IR
ranged from 24,421 to 25,898 bp. Most of these species had a length of the LSC region of
approximately 88,500 bp. By contrast, F. simplicissima m3 exhibited a larger LSC region of
91,346 bp (Figure 5) and the large single-copy (LSC) region of chloroplast DNA is highly
efficient in species identification [26].

The rps19 gene is located in the junction region between LSC and IRb (JLB), while the
rpl2 gene covered this location in F. simplicissima m3. The trnH gene was shifted from JLA
from 50 to 63 bp, except for F. simplicissima m3. The ycf1 gene was found to have crossed the
junction located in JSA and JSB, while it was absent in the JSB of F. hirta and F. sarmentosa.
The ndhF gene covered the IRB-SSC region with a similarity size of 2261 bp. However, the
ndhF gene was not observed in this region of F. concinna (Figure 5).
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Figure 5. Contiguous positions between LSC, SSC, and IR regions of six Ficus cp genomes.

The F. simplicissima m3 cp genome was used as a reference to analyze the cp genome
identity of the six Ficus species (Figure 6). The non-coding regions were supposed to
be more divergent than the coding regions. A considerable number of variations were
found including ycf1, rpoC2, rpoC1, ycf2, ndhF, rps16—trnQ-UUG, trnS-UGA—trnG-GCC,
trnT-UGU—trnF-GAA, petN—psbM, trnT-GGU—psbD, rpl32—trnL-UAG in the intergenic
spacer regions.
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Nucleotide diversity in LSC and SSC regions was significantly higher than that in the
IR regions (Figure 6). The Pi value among six Ficus species ranged from 0 to 0.01701, with
an average of 0.00306. The results showed that six highly variable regions were detected
consisting of rps16—trnQ-UUG, trnC-GCA, rps14—psaB, clpB—psbB, trnL—ccsA—ndhD,
rrn23S (Figure 6). Among divergent regions, five belonged to the LSC and SSC regions,
only one was located in the IRa region.

4. Discussion

The gene content and genomic organization of the Ficus cp genomes were highly
conserved, and no rearrangement had been found. The F. simplicissima m3 cp genome was
160,321 bp in length and had a typical quadripartite structure including an SSC, and an
LSC as well as a pair of IRs. The studied cp genome sequence showed a bias toward a
higher A/T ratio in composition. The GC content of the IR regions was higher than that of
the non-coding intergenic regions because of the presence of rRNA genes [27]. In addition,
the number of predicted genes was smaller (127) than that (131) which were previously
reported in the F. simplicissima [13], F. concinna [28], and Broussonetia species [29] genomes
with 15 intron-containing genes. Several genes are known to possess structural intron
variation, such as atpF, rpoC2, rpl12, rps12, and rps16 [2,30]. The cp genome loses and gains
introns during evolution, which plays a significant role in regulating gene expression via
the alternative splicing or the stabilization of the transcript [31]. In the F. simplicissima m3
plastome, both clpP and ycf3 genes contained double introns, while 11 other protein-coding
genes, six rrRNA genes and five tRNA genes contain one intron.

In this study, the use of codons in the nucleotide sequence of protein-coding genes
of the chloroplast genome of F. simplicissima tends to be specific codons used more fre-
quently than other synonymous codons. This result was consistent with previous related
reports [32–36]. The level of use of codons varies between individuals within species and
between species of the genus. RSCU is often used to reflect codon bias. In the chloroplast
genome of Z. officinale, most of the preferred synonymous codons (RSCU > 1) possess A-
or U-ending codons, except for trnL-CAA, which UUG encodes. Codons ending with A
and/or U accounted for 71.2%, resulting in the bias for A/T bases [33]. However, most
codons with an RSCU > 1 of the chloroplast genome of Litsea contained either an A- or
G-terminal. By contrast, RSCU values for codons that ended with a C-terminal, such as
CGC (Arg), UGC (Cys), CAC (His), and AGC (Ser), were relatively low [32,34].

Repeated sequences are involved in stabilizing and rearranging sequences in the
cp genome. Repeated sequences can be used to construct molecular markers for plant
identification and molecular evolutionary genetic analysis [37–39]. In the F. simplicissima m3
plastid, the majority of SSRs were found in the intergenic spacer regions rather than in the
coding regions. They primarily consisted of AT subunits, which were similar to those in the
cp genomes of angiosperms has been reported in previous works [40,41]. Besides, mono-
and tri- nucleotide SSRs were more prevalent than any other type of SSRs in the studied F.
simplicissima m3 species. It was reported that large and complex repeats also involved the
sequence rearrangement and the evolution of cp genomes [42,43]. The REPuter analysis
resulted in 39 dispersed repeats distributed mainly in the intergenic spacer and intron
sequences of the F. simplicissima m3 plastome. This number was much higher than that of
the recently published F. simplicissima cp genome [13]; however, the repeat type content
performed similarly to the prevalent palindromic and forward repeats.

The IR regions’ size of the F. simplicissima Lour m3 was 24.4 kb, which was consistent
with the data observed in most angiosperm cp genomes (20–28 kb) [44]. In most land
plants, the cp genome commonly displays some significant variations, such as gene loss,
sequence inversion, and expansion/contraction of the IR regions, which lead to length
differences among cp genomes [45–47]. The sizes of the Ficus cp genomes differed with
some remarkable variations in the junction regions. According to the Irscope result, there
was a significant IR contraction in the F. simplicissima m3 plastome, which was a decrease in
size from about 25.8 kb to 24.4 kb. The boundaries between the SSC and the IRs were similar
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among the Ficus species. Besides, the junctions between LSC and IRs of Ficus plastomes
were commonly located within the rps19 gene (Figure 5). However, there were several cp
genomes reported that the rps19 gene does not extend into the IR region [48,49]. The studied
cp genome witnessed an absence of this gene in the JLA region, which might be the cause of
IR contraction. On the other hand, a difference of two bp in length between IRa (24,421 bp)
and IRb (24,423 bp) was predicted. The cp genome annotation tools differed notably in
the number of sequences identified, in which the IR regions differed in length [50]. The
ndhF gene extended over the JSB and overlapped with the ycf1 gene in half of the compared
genomes, which had also been observed in some published cp genomes [13,51].

This study demonstrates that the variability of the ycf1, rpoC2, rpoC1, ycf2, and ndhF
gene regions of F. simplicissima species is higher than that of the five compared species.
Therefore, these gene regions can be used to elucidate the phylogenetic relationships within
the Ficus genus. The Ycf1, ycf2, rpoC2, and ndhF gene regions have been confirmed to be
the most disparate regions in the Ficus cp genome of the Moraceae family [52]. For the
Asteraceae family, the two gene regions rpoC1 and ycf1 were also found to be the most
distinct of the cp genomes of this family [53].

In the Ficus cp genomes, the sequence regions located on the genes trnL-ccsA-ndhD,
trnC-GCA, and rrn23S, along with three intergenic spacer regions including rps16-trnQ,
rps14-psaB and clpP-psbB, were highly variable regions and trnL-ccsA-ndhD sequence regions
had the highest nucleotide diversity value (>0.015). Thus, these regions could be potential
DNA barcodes for species identification.

Chloroplast genome data play an important role in species definitions due to the
application of organelle-based “barcodes” to reveal the phylogenetic relationships among
species [40]. The Moraceae family is known to have about 1100 species of 40 genera and
they are distributed mainly in tropical and subtropical regions [54]. Currently, the study
of Moraceae’s molecular evolutionary and phylogenetic analysis is limited, especially the
species of the Ficus genus. Recently, Huang et al. (2022) evaluated the cp genomes of ten
species in the Ficus genus. The results showed that Morus and Ficus had a close relationship
compared to other genera of the Moraceae family with high bootstrap values [13,55]. In
this study, the phylogenetic relationships by ML analyses were constructed based on
two approaches, the complete cp genome sequence and the psbA-trnH intergenic spacer
region. The two phylogenetic trees had congruent topologies (Figure 4). The outgroups,
Chaetachme, Broussonetia, and Morus, clustered into monophyletic clades and were sisters
to Ficus. Our study has made it clear that the complete cp genome of F. simplicissima can
support genus-level identification in the Moraceae family.

At the species level, in Figure 4, Ficus were divided into two subgroups and the
voucher in the same species clustered together to a certain degree. F. simplicissima and F.
hirta diverged, indicating the genetic divergence between these two species and others,
followed by F. variolosa. The sister relationships of the subgroups in the Ficus genus are
consistent with previous reports [13]. According to Burgess et al. (2011), up to 97% accurate
identification of Canadian temperate plant samples was possible based on five gene regions
rbcL, matK, rpoC1, psbA-trnH, and atpF-atpH [56]. Research by Newmaster et al. (2008)
showed that using matK and psbA-trnH data could identify more than 94% of species in the
Myristicaceae family [57]. The study’s results using the psbA-trnH marker to identify the
above plant objects are the basis for us to choose psbA-trnH for phylogenetic analysis of
Ficus species. These findings supported the Berg classification system [58]. Thus, the psbA-
trnH gene region sequence of the cp genome may be a potential candidate for chloroplast
DNA barcoding for species-level identification in the Ficus genus. These recommendations
contribute to species and genera identification based on cpDNA molecular markers and
morphological support methods and help to further illustrate a monophyletic group within
the Moraceae family.
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5. Conclusions

In this study, the complete cp genomes of F. simplicissima were sequenced using
the Pacbio sequel platform and compared with five other species of the Ficus genus in
the Moraceae family. The cp genome of F. simplicissima m3 with a size of 160,321 bp
contains 127 genes, including 85 protein-coding genes, eight rRNA genes, and 34 tRNA
genes. Of these, 18 genes were duplicated in the IR region, and 21 contained introns. The
molecular evolutionary genetics analysis results based on the complete cp genome and
psbA-trnH intergenic region established the phylogenetic tree. The genetic relationship of
F. simplicissima to other species in the Moraceae family was determined. The complete cp
genome of F. simplicissima can support genus-level identification in the Moraceae family and
the psbA-trnH gene region of the cp genome may be a potential candidate for chloroplast
DNA barcoding for species-level identification in the Ficus genus.

Supplementary Materials: The following supporting information can be downloaded at: https:
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Ficus simplicissima m3.
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