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Abstract: Mulberry (Morus alba L.) is an economically important plant for the silk industry and has
the possibility of contributing immensely to Chinese pharmacopeia because of its health benefits.
Domesticated silkworms feed only on mulberry leaves, meaning that the worms’ survival depends
on the mulberry tree. Mulberry production is threatened by climate change and global warming.
However, the regulatory mechanisms of mulberry responses to heat are poorly understood. We
performed transcriptome analysis of high-temperature-stressed (42 ◦C) M. alba seedlings using
RNA-Seq technologies. A total of 703 differentially expressed genes (DEGs) were discovered from
18,989 unigenes. Among these, 356 were up-regulated, and 347 were down-regulated. KEGG analysis
revealed that most DEGs were enriched in valine, leucine and isoleucine degradation, and in starch
and sucrose metabolism, alpha-linolenic acid metabolism, carotenoid biosynthesis and galactose
metabolism, among others. In addition, TFs such as the NAC, HSF, IAA1, MYB, AP2, GATA, WRKY,
HLH and TCP families were actively involved in response to high temperatures. Moreover, we
used RT-qPCR to confirm the expression changes of eight genes under heat stress observed in the
RNA-Seq analysis. This study provides M. alba transcriptome profiles under heat stress and provides
theoretical bases to researchers for better understanding mulberry heat response mechanisms and
breeding heat-tolerant mulberry plants.
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1. Introduction

The mulberry (Morus alba) plant is a very significant crop, especially for the sericulture
industry. The leaves of mulberry are crucial for feeding silkworm insects; therefore, silk-
worm growth depends on the quantity and quality of the leaves [1]. Mulberry survives in
various conditions (50◦ N and 50◦ S latitudes) [2]. However, over the years, temperatures
(cold and heat) have been a major setback for the sericulture industry because they appear
to inhibit the growth of the mulberry tree [2].

Temperature stress causes damaging consequences on cell division, which leads to
a detrimental effect on growth and development [3]. Most plants are susceptible to tem-
perature changes during the flowering phase, affecting pollen quality and productivity [4].
Genes, including those (P5CS2: delta-1-pyrroline-5-carboxylate synthase 2, PETC: photosyn-
thetic electron transport chain, HSP90.1: 90-kDa heat shock protein, TOC1: two-component
response regulator-like APRR1 and J8: DnaJ-J8) associated with high temperatures (heat
stress) have been reported [5]
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Mulberry seedlings experience drastic morphological changes when exposed to a
prolonged period of high temperature and drought stress [6]. Such morphological changes
include thin leaves and leaf color slowly switching from a natural green to light green and
then to a yellow color. In addition, heat stress affects metabolic and cellular processes and
morphological changes [7]. For instance, heat stress can decrease enzyme activities, trigger
protein kinases, and cause the overexpression of some chaperones, such as HSP [7]. Some
genes change their expression patterns when exposed to heat stress [8]. This pattern shift is
a vital stage in initiating the transfer of mechanisms that can enable the plant to moderate
or manage external stress to avert catastrophe [8].

Global temperatures are anticipated to increase substantially by 2 ◦C or more by
the end of the century [9]. Owing to this prediction, a deeper understanding of how
plants (mulberry) control external stress is vital for plant sustainability. Research has
been conducted on model plants to define the transcriptomic changes of heat stress in
recent years, subsequently improving those model plants [5]. M. alba is an economically
important crop for the sericulture industry, but no research has been conducted to reveal
the transcriptomic changes of mulberry under heat or high-temperature stress, making the
breeding of heat-tolerant mulberry difficult. Owing to this gap, it becomes necessary to
conduct transcriptome analysis to explore genes that respond to heat and identify novel
genes that might help improve mulberry tolerance to heat stress.

RNA-Sequencing, over the years, has become an accepted tool to explore the tran-
scriptomes of many organisms, from microalgae to plants and animals [10]. RNA-Seq
has been primarily used to identify novel and conserved stress-responsive genes, partic-
ularly those related to biotic stress tolerance [11]. Some economical crop species, such as
rice [12], maize [13] and potatoes [14], have made extensive use of this technology to expose
genes that are responsive to abiotic stresses. Although silkworms’ lives largely depend on
mulberry plant leaves for survival [15], no transcriptome work concerning heat-stressed
mulberry has been conducted. On this account, RNA-Seq was employed to uncover genes
and transcription factors that respond to heat stress in this article.

This article seeks to uncover the gene players that respond to heat stress in M. alba and
lay the foundation for feature research on functional genomics on putative genes in response
to heat stress in M. alba, which can be crucial in the breeding of heat-tolerant mulberry.

2. Materials and Methods

M. alba (Yu-711) used in this study was obtained and raised at the Sericulture Research
Institute of the National Mulberry Gene Bank, Chinese Academy of Agricultural Sciences,
Zhenjiang, Jiangsu Province, China. The material preparation and raising of the mulberry
seedlings followed our previous article [16] with some modifications (supplemented with a
growth medium; the seedlings were watered daily and supplemented with an MS culture
medium solution containing 4.37 g of MS media dissolved in 1000 mL (pH = 7.0) every
three days for 7 days and were then treated with deionized water for 7 days after the leaves
were fully grown). When the new shoots reached 20 cm of growth, the plants were then
grouped randomly according to our previous study [16]. In total, 18 pots were separated
into three groups, with each group consisting of 6 pots. Each group was further subdivided
into 2 pots, each containing two seedlings in a growth pot, serving as a biological replicate
to observe growth performance. After shoot growth, the pots with the most optimal growth
conditions were subjected to both heat stress and control treatment. In order to create the
heat stress treatment, one group consisting of 3 pots as a technical replicate and 2 seedlings
as a biological replicate was subjected to a temperature of 42 ◦C in a growth chamber, and
the other group was exposed to a normal temperature of 25 ◦C. Leaf samples were collected
daily until the fourth day of heat exposure, when the leaves displayed signs of heat stress.
Leaf samples were obtained from both groups and were immediately stored in a –80 ◦C
freezer for further analysis.
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2.1. RNA-Sequencing and Data Analysis

Total RNA was isolated from two replicates of the heat stress treatment (LH) and two
replicates of the control treatment (LRTM) using RNAiso Plus reagent (Takara, Beijing,
China) as directed by the manufacturer. RNA degradation and purity were monitored and
checked on 1% agarose gels and the NanoPhotometer® spectrophotometer, respectively.
Bioanalyzer 2100 systems’ RNA Nano 6000 Assay kit (Agilent Technologies, Califonia,
CA, USA) was used to analyze the RNA integrity. The resultant was mixed in RNase-
free water to prevent any degradation and then used to build a transcriptome sequence
library using the NEBNext Ultra RNA Library Prep Kits for Illumina (NEB, San Diego, CA,
USA) following the manufacturer’s instructions. Illumina Hiseq 2500 (Novogene, Beijing,
China) was employed to sequence the cDNA libraries. To obtain clean reads, Ploy-N or
adapters, as well as low-quality reads, were removed from the raw data. The Q20, Q30 and
GC content of the clean data were determined. The clean data were then aligned to the
Morus notabilis reference genome assembly, ASM41409v2, using HISAT2 v2.0.5 software
with the default settings [17]. The clean read numbers mapped to each gene were counted
using HTSeq v0.6.1 based on the length of the gene and the number of reads mapped
to it. The quantification of gene abundance was achieved by assembling the mapped
reads of each sample using StringTie v1.3.1 [18] in a reference-based approach. For each
transcription region, an FPKM (fragment per kilobase of transcript per million mapped
reads) value was calculated to quantify its expression abundance and variations, using
RSEM [19]. Differential expression analysis for two parameters (heat and normal) was
undertaken using the edgeR software package v3.2.4 [20]. The false discovery rate was
controlled by adjusting the resulting p-values using Benjamini and Hochberg’s method.
Genes were defined as differentially expressed with the criteria of a fold change of FC > 0
and a false discovery rate of FDR < 0.05. Gene Ontology (GO) analysis was carried out
using GOseq software, and the KEGG database was used to analyze the DEG pathways.
The statistical enrichment of differential expression genes in the KEGG pathways was
tested using the KOBAS program.

2.2. DEGs Confirmation Using RT-qPCR

Eight heat-stress-responsive genes were randomly shortlisted from the transcriptome
data based on their expression levels and involvement in the KEGG pathways. The expres-
sion levels of these genes were further accessed via RT-qPCR to validate the transcriptome
data. An Applied Biosystem 7300 Real-Time PCR device was used for the validation,
performed in an optical 96-well plate. The cDNA synthesized from 1 µg of RNA was
diluted 12 fold, and 4 µL of the diluted cDNA was used as a template to perform the RT-
qPCR. Primers were designed (Table S1) from the eight selected sequences to detect their
expression levels via RT-qPCR using SYBR Green RT-PCR (Roche, San Diego, CA, USA).
The reaction system contained SYBR qPCR Mix, cDNA, forward primer, forward primer
and ddH2O with volumes of 10 µL, 4 µL, 1 µL, 1 µL, and 4 µL, respectively, totaling a
reaction volume of 20 µL. Mulberry β-actin (with the primers β-actin-F: 5′-AGC AAC TGG
GAT GAC ATGGAGA-3′ and β-actin-R: 5′-CGA CCA CTG GCG TAA AGG GA-3′) was
used as an internal control gene. All reactions were assayed in three biological replicates.
The thermal cycling parameters for RT-qPCR were 95 ◦C for 60 s, followed by 45 cycles of
95 ◦C for 10 s, 50 ◦C for 10 s and 70 ◦C for 10 s. The relative gene expression levels were
estimated via the 2−∆∆Ct method. Three biological replicates were used. The melting curve
was analyzed to ensure that the amplification was specific.

3. Results
3.1. RNA-Seq-Based Transcriptomic Profiles of Mulberry (M. alba)

High-throughput sequencing generated 237,655,186 million pairs of raw reads from
four libraries (Table 1). An average of 54,664,526 raw reads was recorded for the control
group, and an average of 64,163,067 raw reads accounted for the high-temperature-treated
group. Clean reads of 233,081,342 were obtained after quality trimming. A uniform error
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rate of 0.03 was obtained for each sample read using Trimmomatic software. The GC
content and Q30 for each library were above 42% and 92%, respectively. Almost 68% of the
clean reads were mapped to the reference genome.

Table 1. Summary of quality preprocessing of RNA-Sequencing data.

Sample ID Raw Reads Clean Reads Clean Bases Error Rate Q30 GC%

LRa 57,243,672 56,159,618 8.4 G 0.3 92.67 44.29

LRb 52,085,380 51,122,510 7.67 G 0.3 92.5 44.63

LHa 66,765,656 65,546,612 9.83 G 0.3 92.89 44.65

LHb 61,560,478 60,252,602 9.04 G 0.3 92.84 44.43
LRa + LRb = Control (LRTM). LHa+ LHb = High-temperature group (LH).

3.2. Differential Expressed Genes (DEGs) of Mulberry Responsive to Heat Stress

To know the variations in gene expression between the high-temperature-treated
group (LH) and the control in response to heat stress, DEGs were analyzed based on the
adjusted criteria of p < 0.05 and log2 fold change of >0.0 (Figure 1). The up- and down-
regulated DEGs in LH vs. LRTM are represented by a bar chart (Figure 1A). The volcano
graph illustrates 703 significant differential expression genes. A total of 356 genes were
up-regulated, and 347 genes were down-regulated (Figure 1B). Among the genes that were
significantly up-regulated were aldehyde dehydrogenase family 3 member F1, protein
SIEVE ELEMENT OCCLUSION B, serine/threonine-protein kinase transcript variant X1,
chaperone protein dnaJ 11 2C chloroplastic and uncharacterized LOC21395589; these genes
had p-values of 3.28 × 10−40, 5.51 × 10−26, 8.29 × 10−20, 2.88 × 10−18 and 7.21 × 10−16, re-
spectively. The down-regulated gene with significant p-values included probable aquaporin
PIP1-2, BURP domain protein RD22-like, aspartyl protease family protein 22C transcript
variant X2 and protein EXORDIUM-like 2. Interestingly, principal component (PC) analysis
showed a clear separation of transcriptomes of the two treatment groups, recording a
61.96% variation (Figure 1C), indicating that high temperatures significantly changed the
transcriptome of M. alba. Moreover, a cluster heatmap was used to reveal the expression
pattern of the DEGs in the two groups (Figure 1D).

3.3. GO and KEGG Classification of the DEGs

GO and KEGG enrichment analyses were carried out to further characterize the
functions of the DEGs. Based on a p-value of p < 0.05 and biological significance, 95 of the
up-regulated DEGs were assigned to 3 main GO categories and 30 GO terms (Figure 2).
These DEGs were more implicated in the biological process category and the molecular
function category (Table S2). Among these were the disaccharide metabolic process, cellular
carbohydrate metabolic process, tetrapyrrole binding, iron ion binding, etc. (Figure 2A,B).
Furthermore, 215 down-regulated DEGs were significantly enriched in 3 GO categories,
and also involving 30 GO terms (Figure 2C,D). The GO terms that were enriched with
these genes included the cellular carbohydrate metabolic process, carbohydrate metabolic
process, cell wall, cell periphery, hydrolase activity acting on glycosyl bonds, hydrolase
activity, hydrolyzing O-glycosyl compounds and copper ion binding (Figure 2A). The top
30 enrichments revealed that several of the DEGs were significantly enriched in the GO
terms of the cell wall, cell periphery, etc. (Figure 2D).
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Figure 1. (A) Graph depicting the up-regulation and down-regulation of mulberry DEGs in response
to heat stress. (B) Volcano plot detailing significant gene patterns. Up-regulated genes are shown by
red dots, and down-regulated genes are shown by green dots. (C) Principal component (PC) analysis.
(D) Cluster heatmap analysis of the DEGs.



Curr. Issues Mol. Biol. 2023, 45 4156

Curr. Issues Mol. Biol. 2023, 3, FOR PEER REVIEW  6 
 

 

genes included the cellular carbohydrate metabolic process, carbohydrate metabolic pro-

cess, cell wall, cell periphery, hydrolase activity acting on glycosyl bonds, hydrolase ac-

tivity, hydrolyzing O-glycosyl compounds and copper ion binding (Figure 2A). The top 

30 enrichments revealed that several of the DEGs were significantly enriched in the GO 

terms of the cell wall, cell periphery, etc. (Figure 2D). 

 

Curr. Issues Mol. Biol. 2023, 3, FOR PEER REVIEW  7 
 

 

 

 

Figure 2. Cont.



Curr. Issues Mol. Biol. 2023, 45 4157

Curr. Issues Mol. Biol. 2023, 3, FOR PEER REVIEW  7 
 

 

 

 

Curr. Issues Mol. Biol. 2023, 3, FOR PEER REVIEW  8 
 

 

 

Figure 2. Visualization of GO enrichment terms related to heat response: (A) Up-regulated DEGs 

enriched in GO term classifications. (B) GO terms based on enrichment factor in up-regulated genes. 

(C) GO term classification enriched with down-regulated DEGs. (D) GO terms based on enrichment 

factor in down-regulated genes. BP: biological process, CC: cellular component, MF: molecular func-

tion. 

Furthermore, analysis of the top 20 of the KEGG enrichment analysis (screening for 

pathway entries with several differential genes greater than two, sorted by −log10 p-value 

for each entry) showed that DEGs were significantly enriched in valine, leucine and iso-

leucine degradation (pop00280), and in starch and sucrose metabolism (pop00500), alpha-

linolenic acid metabolism (pop00592), carotenoid biosynthesis (pop00906), galactose me-

tabolism (pop00052) and others (Figure 3). Significant down-regulated enriched metabolic 

pathway  included  starch  and  sucrose metabolism  (pop00500),  carotenoid biosynthesis 

(pop00906), cyanoamino acid metabolism (pop00460), purine metabolism (pop00230) and 

pentose and glucuronate interconversions (pop00040). 
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factor in down-regulated genes. BP: biological process, CC: cellular component, MF: molecular function.
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Furthermore, analysis of the top 20 of the KEGG enrichment analysis (screening
for pathway entries with several differential genes greater than two, sorted by −log10
p-value for each entry) showed that DEGs were significantly enriched in valine, leucine
and isoleucine degradation (pop00280), and in starch and sucrose metabolism (pop00500),
alpha-linolenic acid metabolism (pop00592), carotenoid biosynthesis (pop00906), galac-
tose metabolism (pop00052) and others (Figure 3). Significant down-regulated enriched
metabolic pathway included starch and sucrose metabolism (pop00500), carotenoid biosyn-
thesis (pop00906), cyanoamino acid metabolism (pop00460), purine metabolism (pop00230)
and pentose and glucuronate interconversions (pop00040).
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Figure 3. KEGG-enriched DEGs in Morus alba at 4 days of heat stress: (A) Up-regulated KEGG terms.
(B) Down-regulated KEGG terms.

3.4. Heat-Responsive Transcription Factors

Twenty-nine genes that encode ten (10) different TF families were identified in this
study. Among these genes, 21 were up-regulated, and 8 genes were down-regulated. The
most enriched TF family was DnaJ, with seven genes encoding it. It is significant to note
that all seven genes encoding the Dnaj family of TFs were up-regulated. All five (5) genes
that encode the AP2 family of TFs were up-regulated. Four of the seven (7) genes that
encode MYBs were up-regulated. HLH, WRKY, HSF, Bzip, GATA and TCP TFs were also
identified (Table 2).

Table 2. Heat-responsive transcription factors identified during the analysis.

TF Family Gene ID Up/Down

Dnaj 21394896, 21401054, 21395794, 21393813, 21398174, 21405132, 112091504 Up

AP2 21407265, 21406253, 21398364, 21392224, 21387978 Up

MYB 21406818, 112092520, 21399045, 21394542
21394127, 21398688, 112093121

Up
Down

HLH 21404443, 21404618,
21402833

Up
Down

NAC 21389501
21397328

Up
Down

Bzip 112092685 Up

WRKY 21404214 Up
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3.5. Validation of DEGs Using Real-Time RT-PCR

To authenticate the RNA-Seq data, eight DEGs associated with heat stress (proba-
ble polygalacturonase, chaperone pro dnaJ 11, heat shock protein 83, heat shock protein
peroxisomal, cysteine-rich and transmembrane domain-containing protein WIH1, heavy
metal-associated isoprenylated plant protein 7-like, subtilisin-like protease SBT4 and alde-
hyde dehydrogenase family 3 member F1) were chosen for analysis with qRT-PCR (Figure 4).
The expression of probable polygalacturonase, heat shock protein 83 and cysteine-rich
and transmembrane domain-containing protein WIH1 were significantly up-regulated
in response to heat, and heavy metal-associated isoprenylated plant protein 7-like was
significantly down-regulated in response to heat. The RT-qPCR findings confirmed that the
gene expression profiles matched the transcriptomic data.
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Figure 4. Relative gene expression profile of the eight selected genes in relation to heat stress using
RT-qPCR. β-actin served as a reference gene, and the statistical method 2−(∆∆CT) was applied to obtain
the relative quantification. Data represent the average from three biological replicates. A1 = probable
polygalacturonase, A2 = chaperone pro dnaJ 11, A3 = heat shock protein 83, A4 = heat shock protein
peroxisomal, B1 = cysteine-rich and transmembrane domain-containing protein WIH1, B2 = aldehyde
dehydrogenase family 3 members, B3 = subtilisin-like protease SBT4, B4= heavy metal-associated
isoprenylated plant protein 7-like.

4. Discussion

Temperature stress causes damaging consequences in cell division, leading to a detri-
mental effect on growth and development [21]. Mulberry seedlings experience drastic
morphological changes when exposed to a prolonged period of high temperature, which
leads to the shedding of leaves. To increase mulberry’s heat tolerance, it is essential to inves-
tigate the genes and transcription factors that respond to heat stress to better comprehend
how the plant responds and adapts to heat. However, no findings have been made on the
transcriptomic profile of mulberry concerning heat stress. This study examines the effect of
heat stress on the mulberry transcriptome using Illumina HiSeq_2000. Furthermore, the
FPKM value was calculated to quantify its expression abundance and variations, using
RSEM [19]. RSEM (RNA-Seq by Expectation Maximization) is reliable and can be used in
analyzing RNA-Seq data even with fewer replicates. The limitation to using RSEM is that,
if the reference genome is not available, the user must supply the RSEM in a fasta file for
the transcript sequence.
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4.1. Transcriptomic Changes in M. alba under High Temperature

Some significant DEGs were revealed through the Gene Ontology (GO) analysis.
The most significant biological process (BP) term of the gene ontology was involved
in the cellular carbohydrate metabolic process. Moreover, 16 genes were involved in
the cellular carbohydrate metabolism process. Eight were up-regulated, and eight were
down-regulated. Alpha trehalose-phosphate synthase was the most abundant among the
eight up-regulated genes, and xyloglucan endotransglucosylase was abundant among
the down-regulated genes. Xyloglucan endotransglucosylase has been implicated in cell
division and growth expansion. Many researchers have isolated and characterized its role
in response to stress. For instance, Van Sandt et al. (2007) isolated XTH enzymes from
Allium cepa and realized that XTH gene expression is correlated with cell expansion [22].
XTH can also remodel the cell wall of Arabidopsis in cell division and promote growth
in response to stress [23]. Lurlaro et al. (2016) discovered that all XTH expression in
thermosensitive wheat is down-regulated, which is consistent with our findings [24]. A
contradictory transcriptome report showed that genes encoding proteins from the XTH
family in Brassica rapa, L. are up-regulated in response to heat stress [25]. According to
these results, plant responses to stress are perhaps dependent on the species, plant age,
organ and timing and intensity of the stress. In a more recent report, the exposure of wheat
to high temperatures for 15 days up-regulated the relative expression levels of XTH1, XTH2
and XTH5 using RT-qPCR analysis [26]

Trehalose (α-glucopyranosyl-α-d-glucopyranoside) is found in most organisms, in-
cluding plants, bacteria, fungi and invertebrates. It comprises two glucose molecules and
is produced rapidly in response to various cellular stresses. Trehalose is implicated in
protecting yeast cells by increasing their resistance to internal and external stresses. The
disaccharide appears to increase resistance to heat [27]. Trehalose is also known to prevent
or inhibit denatured proteins from aggregation, allowing the reactivation of molecular
chaperones such as HSFs. The up-regulation of genes encoding this enzyme could suggests
that, in the presence of heat stress, M. alba responds by elevating the enzyme to prevent the
aggregation of denatured proteins caused by the heat to activate other heat shock proteins.
Several studies have reported the overexpression of trehalose-activated genes in response
to abiotic stress, leading to an increase in trehalose and proline content [28,29].

The up-regulated genes involved in the hydrolase activity under the molecular func-
tion (MF) category of the gene ontology are alkaline/neutral invertase (A/N-INV), beta-D-
xylosidase and polygalacturonase. Developing literature has highlighted the prospective
role of A/N-INVs in plant development and its response to environmental stimuli and
abiotic stress in various plant species, such as Arabidopsis thaliana [30] and Oryza sativa [31].
For example, the regulation of cellular hexose concentration by A. thaliana AtCYT-INV1 is
essential for plant growth and osmotic stress inhibition. The PtrA/NINV gene from the
trifoliate orange is a stress-responsive gene because its expression is triggered by multiple
stresses, such as cold and salt stress [32]. A/N-INV up-regulation in our findings suggests
that it may play a vital role in stress tolerance under heat stress. A study on tobacco under
abiotic stress (cold) revealed that genes involved in A/N-INV metabolism are significantly
up-regulated [33], indicating the significant role of gene expression in this study.

Polygalacturonase belongs to one of the most prominent hydrolase families. Polygalac-
turonase (PG) is a crucial enzyme that participates in numerous plant growth and devel-
opmental processes, including flower development, fruit ripening and senescence [34,35].
Polygalacturonase (PG) is implicated in pectin degradation during fruit ripening, organ
aging and plant stress responses [36]. Upon the treatment of rice plants with cold, salt and
drought conditions, OsBURP16 (family ofPG1β) is up-regulated [36]. Furthermore, an opti-
mum temperature of 40 ◦C or higher for polygalacturonase stability has been reported [37].
Our results, together with the previous reports about polygalacturonase activity concerning
high temperatures, suggest that it plays a role in heat stress tolerance. Future research will
be conducted to confirm the enzyme’s activity concerning heat stress in M. alba.
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4.2. Heat Stress Response in Mulberry Induced Up-Regulated Genes Related to Valine, Leucine and
Isoleucine Degradation

Our study revealed that 12 genes participated in the valine, leucine and isoleucine
degradation pathway. They included alanine–glyoxylate aminotransferase (LOC21404820),
2-oxoisovalerate dehydrogenase subunit alpha (LOC21403577), methylcrotonoyl-CoA
carboxylase beta chain (LOC21410135), 2-oxoisovalerate dehydrogenase subunit beta 1
(LOC21388555), aldehyde dehydrogenase family 3 (LOC21398387), probable 3-hydroxybutyrate
dehydrogenase (LOC21408668), branched-chain amino acid aminotransferase 1 (LOC21390509),
isovaleryl-CoA dehydrogenase (LOC21397545), methylcrotonoyl-CoA carboxylase subunit
alpha (LOC21385626), probable enoyl-CoA hydratase 1 (LOC21392597), aldehyde dehydro-
genase family 3 (LOC21396538) and alanine–glyoxylate aminotransferase (LOC21404820).
In plants, the catabolism of amino acids is extremely important in metabolic stress (e.g., when
there are limited carbohydrates during prolonged darkness or any other stress). In these
circumstances, amino acids are often used as substitutes for respiration. Total oxidation in
the mitochondria of BCAA leucine, isoleucine (Ile) and valine (Val) effectively facilitates the
formation of ATP by oxidative phosphorylation. The catabolism of amino acids is particu-
larly important in terms of germination (conversion of storage proteins into carbohydrates),
senescence (recycling of energy-rich compounds) and stress reactions [38]. Drought and
salt stress significantly cause the synthesis of specific amino acids [39]. Those amino acids
are rapidly depleted upon the release of stress. Aminotransferases are involved in multiple
metabolic pathways, including the metabolism of amino acids, assimilation of nitrogen, glu-
coneogenesis, responses to a variety of biotic/abiotic stresses and other pathways [40,41].
ß-Alanine is a known plant osmoprotectant. Putative 3-hydroxybutyrate dehydrogenase,
AtHDH1 (At4g20930), is involved in Val and Ile degradation [42]. In our study, most genes
that encode enzymes that are involved in the valine, leucine and isoleucine degradation
pathways were up-regulated in response to heat stress (Figure 5). This indicates that the
valine, leucine and isoleucine degradation pathways play a significant role in the heat
stress response in mulberry (M. alba). Under heat stress treatment, amino acids such as
proline are up-regulated, whereas lysine, tyrosine and aspartic acid are down-regulated in
the amino acid metabolism, when Apium graveolens is exposed to heat stress [43].

4.3. TFs Responsive to High Temperature

Transcription factors play a role in many biological processes, including hormone
signaling, organ formation, metabolism and responses to biotic and abiotic stresses. In
the presence of external stresses, TFs cause a relay of signaling in plants that directly or
indirectly regulate target genes to respond to the stress. Our findings reveal that a sizable
number of transcriptional factors responded to heat stress, confirming that TFs are indeed
crucial for triggering stress-responsive genes to either adapt to or reduce the effect of
the stress. Notably, many researchers have adequately explained the significance of TFs
involved in heat stress to activate or repress the transcription of heat stress (HS)-inducible
genes [44]. TFs such as the DnaJ, NAC, HSF, MYB, AP2, GATA, WRKY, bHLH and TCP
families were primarily identified as mulberry responded to high temperatures.

DnaJ proteins are ubiquitous in all plant species and are essential molecular chaperones.
They are also involved in signal transduction and cellular protein homeostasis and are
tolerant to abiotic stresses. AtDjA2 and AtDjA3, two DnaJ protein gene homologs, have
improved heat resistance in Arabidopsis [45]. The chaperone protein DNAJ11 is a member of
the heat shock protein (Hsp 40) family. Under stress conditions, plants use the majority of
Hsps in the peroxisomal matrix to avoid the accumulation of partly denatured proteins [46].
Heat shock proteins protect against biotic and abiotic stresses. Besides this, Hsps increase
membrane stability and neutralize reactive oxygen species by alternating the activities
of antioxidant enzymes [47]. HSFs regulate plant resistance to anoxia, heat, osmotic and
oxidative stresses [48]. In Arabidopsis plants, the expression of a thermosensitive male
sterile (TMS1) DnaJ protein confers thermotolerance to pollen tubes [49]. Significantly, the
expression of AtDjB1 improves thermotolerance in Arabidopsis by shielding cells against
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heat-induced stress injury [50]. In our study, the expression profile of the DnaJ family
suggests that the 42 ◦C heat stress induced downstream genes to curb the external heat
stress. A more recent article revealed that the transcriptome profile of Aegilops speltoides
under heat stress induces higher expression levels of TFs, including several Hsps [51].
Sohrabi and colleagues revealed that several TFs, including AP2/ERF and bHLH, are
up-regulated when lentils are exposed to heat stress [5].
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Figure 5. KEGG map showing DEGs in the valine, leucine and isoleucine degradation pathways of
M. alba under heat stress. A red color represents up-regulated genes, and deeper red colors indicate
the up-regulation of expression levels. The codes in the rectangular boxes represent the IDs of the
enzymes that the genes encode.

AP2/ERFs react to multiple hormones and environmental stresses [52]. AP2/ERF
significantly impacts plant growth and responds well to cold, heat, salt and droughts [53].
AP2/ERF reacts to heat-responsive genes; for instance, the overexpression of the ERTI gene
from Arabidopsis improves its tolerance to heat, drought and salt stresses [54]. All the genes
that encode AP2 in this study were up-regulated [5], suggesting that heat stress induces
AP2 transcription factors to activate downstream genes to respond to the stress.

Data from diverse plant species show that MYB family members partake in plant
responses to temperature stresses (cold and heat). A transcriptome study of MYB genes and
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their expression in Arabidopsis and Oryza sativa suggested the tentative role of most MYB
domain proteins in response to abiotic stress [55]. Most of our study’s MYB genes were
up-regulated; however, a significant number of its members were also down-regulated,
which agrees with a study reporting on A. speltoides, which reported that several TFs,
including HSF, WRKY, MYB, AP2, bZIP and bHLH, exhibi both up- and down-regulation
patterns under heat stress [43]. The reason for the down and up-regulation needs to be
further investigated. NAC is a large family of transcription factors involved in plant
developmental processes and responds well to abiotic stresses. ABA is mostly induced by
NAC29 and NAC72, which subsequently respond and mitigate stress [56]. NAC 72 targets
(PUB19, ATHB13 and BAM1) are noted to participate in diverse abiotic stress responses in
Arabidopsis [57]. Therefore, NAC72 identified in this study could be a significant regulator
of ABA signaling to control heat stress in mulberry.

WRKYs have various plant activities; they promote plant growth and development,
synthesize secondary metabolites and respond to biotic and abiotic stress by regulating
numerous genes [58]. The constitutive overexpression of AtWRKY25 and AtWRKY26
improves heat stress resistance in Arabidopsis [59]. Apart from the above discussed TFs,
GATA, HSF, transcription factor 8, MADS-box transcription factor 23, Zn Finger, BHLH
and TCFs were also discovered, implying that many TFs are activated as transcriptional
regulators to trigger downstream target genes in response to high stress.

Under stress conditions, plants use the majority of Hsps in the peroxisomal matrix
to avoid the accumulation of partly denatured proteins [46]. Aldehyde dehydrogenases
(ALDH) are a group of enzymes involved in plant metabolism and help in aldehyde home-
ostasis to remove toxic aldehydes. ALDH enzymes, in their enzymatic reactions, generate
NADPH and NADH and thus help in the balancing of redox equivalents. They are involved
in stress adaptations to biotic and abiotic environments and regulate aldehyde homeosta-
sis under stress conditions. For instance, ALDH3I1 and ALDH7B4 from Arabidopsis are
strongly induced by heat stress [60].

Validated DEGs down-regulated in RT-qPCR analysis include heavy metal-associated
isoprenylated plant protein 7-like and subtilisin-like protease SBT4. HIPPs (heavy metal-
associated isoprenylated plant proteins) are metallochaperones that contain a metal-binding
domain (HMA) and C–terminal isoprenylation [61]. Most HIPPs have one or two HMA do-
mains and an isoprenylation motif and regulate genes to respond to cold and droughts [62].
Subtilisin-like proteases (subtilases) are serine proteases in plants that perform a specific
function in plant development and signaling cascades [63]. Proteolysis is important for
the normal functioning of multicellular organisms and performs critical functions in a
number of processes, such as growth, physiology, defense responses, responses to stress
and adaptations to changing environments [63].

4.4. Validation of the RNA-Seq Results by qRT-PCR

To determine the reliability of the DEGs obtained in this study, eight DEGs linked to
abiotic stress were chosen, and their expression levels were evaluated using RT-qPCR. The
findings of RT-qPCR revealed that the expression patterns of the majority of these DEGs
confirm the data obtained from the Illumina sequencing analysis. (Figure 4). However,
the results for cysteine-rich and transmembrane domain-containing protein WIH1 did not
match those from RNA-Seq. The up-regulated DEGs that twere validated through RT-qPCR
analysis were polygalacturonase, chaperone pro dnaJ 11, heat shock protein 83, heat shock
protein peroxisomal, aldehyde dehydrogenases and cysteine-rich and transmembrane
domain-containing protein WIH1.

The findings of RT-qPCR revealed that the expression of most of these DEGs is similar
to that obtained from the Illumina sequencing analysis. The transcriptome result is a true
profile of heat-stressed mulberry.
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5. Conclusions

We discovered an extensive transcriptome profile of heat-stressed mulberry using
RNA-Seq technology (Novogene, Beijing, China). Overall, 703 DEGs (356 up-regulated and
347 down-regulated) were found under this standard (corrected p-value < 0.05, log2fold
change >0.0) in mulberry. Several genes were identified related to valine, leucine and
isoleucine degradation, and to starch and sucrose metabolism, alpha-linolenic acid metabolism
and plant hormone signal transduction under high temperatures. In addition, TFs such
as AP2/ERF, WRKY, HSF, bHLH, NAC, MYB, TCP and others were also implicated in
abiotic (heat) stresses. We suggest that a functional study should be conducted on mulberry
xyloglucan endotransglucosylase/hydrolase, alpha, alpha trehalose-phosphate synthase,
alkaline/neutral invertase D, beta-D-xylosidase and polygalacturonase to ascertain their
functional activities with respect to heat stress. Moreover, the valine, leucine and isoleucine
degradation pathways play a vital role in mulberry heat responses. Future research should
focus on these pathways to reveal their tentative roles. The results of this analysis provide
a theoretical basis and can be used to make valuable comparisons in future research on the
heat tolerance of mulberry plants and other plant species.
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