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Abstract: Extracellular signal-regulated kinase 5 (ERK5), a member of the mitogen-activated protein
kinase (MAPK) family, is involved in key cellular processes. However, overexpression and upreg-
ulation of ERK5 have been reported in various cancers, and ERK5 is associated with almost every
biological characteristic of cancer cells. Accordingly, ERK5 has become a novel target for the develop-
ment of anticancer drugs as inhibition of ERK5 shows suppressive effects of the deleterious properties
of cancer cells. Herein, we report the synthesis and identification of a novel ERK5 inhibitor, MHJ-627,
and verify its potent anticancer efficacy in a yeast model and the cervical cancer HeLa cell line.
MHJ-627 successfully inhibited the kinase activity of ERK5 (IC50: 0.91 µM) and promoted the mRNA
expression of tumor suppressors and anti-metastatic genes. Moreover, we observed significant cancer
cell death, accompanied by a reduction in mRNA levels of the cell proliferation marker, proliferating
cell nuclear antigen (PCNA), following ERK5 inhibition due to MHJ-627 treatment. We expect this
finding to serve as a lead compound for further identification of inhibitors for ERK5-directed novel
approaches for oncotherapy with increased specificity.
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1. Introduction

Extracellular signal-regulated kinase 5 (ERK5), also termed big mitogen-activated
protein kinase 1 (BMK1) and mitogen-activated protein kinase 7 (MAPK7), belongs to the
mitogen-activated protein kinase (MAPK) family, which mainly consists of four subfamilies
in mammalian cells: ERK1/2, c-Jun-N-terminal kinases (JNK)1/2/3, p38α/β/γ/δ, and
ERK5 [1]. In MAPK signaling cascades, three kinds of kinase are consecutively activated: a
MAPK kinase kinase (MAPKKK), a MAPK kinase (MAPKK) and a MAP kinase (MAPK).
In the ERK5 signaling pathway, MEKK2/3 are activated by various extracellular stimuli
such as mitogens, cytokines, and cellular stresses, and they subsequently phosphorylate
and activate MEK5 [2,3]. Once activated, MEK5 activates the apical kinase ERK5 by
phosphorylating the T-E-Y motif in the activation loop within the ERK5 kinase domain [4,5].
Activated ERK5 then modulates a wide array of key cellular processes such as cell survival,
proliferation, differentiation, angiogenesis, and apoptosis [6]. Structurally, the unique
behavior of ERK5 among MAPK members is due to its extended C-terminal non-catalytic
domain, which contains a transcriptional activation domain [7,8]. While other conventional
MAP kinases transmit signals to downstream molecules mainly by phosphorylation, ERK5
can regulate downstream targets in two ways: direct substrate phosphorylation through its
N-terminal kinase domain and transcriptional activation through autophosphorylation on
its C-terminal non-kinase domain [9]. Thus, ERK5 is able to translocate to the nucleus and
directly control gene expression by activating transcription factors [10].
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With lines of accumulating research, overexpression and upregulation of ERK5 have
been reported in various cancers, and ERK5 is widely implicated in the biological character-
istics of cancer cells [11,12]. Moreover, ERK5 inhibition has been shown to suppress cancer
cell proliferation, especially HeLa cells, and to induce tumor cell death in various tumor
types [13–16]. Accordingly, ERK5 has emerged as a potential novel therapeutic target for
overcoming malignancies and suppressing the deleterious actions of cancer cells [17].

However, to date, there has been a lack of high throughput screening systems to
detect changes in ERK5 activity in animal cells due to its complex networks and cross-talk
of signaling pathways [18]. Thus, we established a simple and time-saving yeast model
system which could be utilized as a primary ERK5 inhibitor screening procedure to select
putative ERK5 inhibitors among various candidate compounds we had (other compounds
not mentioned), based on the well-established homologous pathway in yeast. Mpk1 (Slt2)
in the CWI (Cell Wall Integrity) pathway that is functionally homologous to the ERK5
in humans is found in the yeast Saccharomyces cerevisiae [19]. It was demonstrated by
Truman et al. that the expression of human ERK5 in Mpk1-defective yeasts is capable
of rescuing diverse phenotypes attributable to the loss of native Mpk1 and therefore
yeast Mpk1 is a functional homologue of human ERK5 [19]. The C-terminal domain of
Mpk1 also possesses a transcriptional activating potential like ERK5, not to mention the
striking sequence similarity within the N-terminal domain (49.7%) [19,20]. Since it is
known that Mpk1 activates Rlm1 transcription factor by directly phosphorylating it and
Rlm1 subsequently activates the transcription of MLP1, the decrease in MLP1 expression
shown by the β-galactosidase reporter can be interpreted as inhibited catalytic activity of
Mpk1 (ERK5 homologue). This model system enables us to easily observe the alteration
in Mpk1 activity using the MLP1-lacZ reporter plasmid. Moreover, there are two types of
transcriptional regulatory pathways of ERK5, one reliant on the kinase domain and the
other on the transcriptional activation domain. Since it is demonstrated by Jung et al. that
Mpk1-Rlm1-MLP1 pathway is mediated by the catalytic action of Mpk1, this model system
makes it easier to achieve our goal to develop a kinase inhibitor of ERK5 [21].

Therefore, we ultimately aimed to develop a potential anticancer drug candidate
for ERK5 inhibition through a series of experiments in a yeast model and the cervical
cancer HeLa cell line. We report the synthesis and identification of a novel ERK5 inhibitor,
MHJ-627, and verify its potent anticancer efficacy.

2. Materials and Methods
2.1. Instruments and Chemicals

All chemical reagents were purchased from Acros Organics (Brookline, MA, USA),
Alfa Aesar (Haverhill, MA, USA), Sigma-Aldrich (St. Louis, MO, USA) or Tokyo Chem-
ical Industry (Tokyo, Japan) and were used as received. The progress of reactions was
monitored through thin-layer chromatography (TLC, silica gel 60 F254; Merck, Darm-
stadt, Germany). Melting points (m.p.) were determined on a Barnstead Electrothermal
9100 instrument and were uncorrected. 1H and 13C NMR spectra were recorded on a
JEOL JNM-ECZ400S (Tokyo, Japan). NMR solvent was purchased from Cambridge Iso-
tope Laboratories, Inc. (Andover, MA, USA) and spectra are referenced relative to the
chemical shift of tetramethylsilane (TMS) as an internal standard. Chemical shifts (δ) are
reported in parts-per-million (ppm), and coupling constants (J) are reported in Hertz (Hz).
High-resolution mass spectroscopy was performed with a JEOL JMS-700 mass spectrom-
eter. 1-(1,4-Bis(isopentyloxy)naphthalen-2-yl)-2-bromoethanone (2) and 1-isopentyl-1H-
benzo[d]imidazole (3) were prepared as previously described [22,23].

Synthesis of 3-(2-(1,4-bis(isopentyloxy)naphthalen-2-yl)-2-oxoethyl)-1-isopentyl-1H-
benzo[d]imidazol-3-ium bromide, MHJ-627: a solution of 1-(1,4-bis(isopentyloxy)naphth-
alen-2-yl)-2-bromoethanone (2, 0.10 g, 0.24 mml, 1.0 eq) and 1-isopentyl-1H-benzo[d]imidazole
(3, 0.045 g, 0.24 mmol, 1.0 eq) in acetonitrile (4.8 mL, 0.05 M) was stirred at reflux for 24 h.
After the reaction was complete, the product was concentrated in vacuo and recrystallized
in ether to yield MHJ-627 as an ivory solid. Yield: 80%. m.p.: 195.6–197.3 ◦C. 1H NMR
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(400 MHz, (CD3)2SO) δ (ppm): 0.97–1.00 (m, 18H), 1.61–1.71 (m, 1H), 1.75–1.80 (m, 2H),
1.84–1.97 (m, 6H), 4.21 (t, J = 6.4 Hz, 2H), 4.25 (t, J = 6.4 Hz, 2H), 4.65 (t, J = 7.6 Hz, 2H),
6.26 (s, 2H), 7.23 (s, 1H), 7.67–7.81 (m, 4H), 8.09 (dd, J = 1.2, 7.6 Hz, 1H), 8.17 (dd, J = 1.2,
7.6 Hz, 1 H), 8.19–8.28 (m, 2H), and 9.82 (s, 1H). 13C NMR (100 MHz, (CD3)2SO) δ (ppm):
22.10, 22.40, 22.60, 24.59, 24.78, 24.98, 37.14, 37.25, 38.48, 45.23, 55.83, 66.55, 75.51, 102.06,
113.67, 114.41, 122.30, 123.43, 123.68, 126.52, 126.68, 127.83, 128.25, 129.00, 129.05, 130.65,
131.96, 143.39, 150.58, 151.41, and 190.94. HRMS (FAB+ mode) m/z Calcd. for C34H45N2O3
[M-Br]+ 529.3430, found 529.3433.

A commercialized ERK5 inhibitor, XMD8-92 (S7525), and a MEK1/2 inhibitor, U0126
(S1102), were purchased from Selleck Chemicals (Houston, TX, USA).

2.2. Yeast Strains, Plasmids, Growth Conditions, and Transformation

The S. cerevisiae strain BY4742 was grown in a YEPD medium containing 2% Bacto
peptone, 1% Bacto yeast extract, and 2% glucose at 30 ◦C in a shaking incubator [24].
Escherichia coli DH5α was used to distribute the plasmids. For selective growth, they were
grown in a Luria Bertani (LB) medium containing 1% Bacto-tryptone, 0.5% Bacto-yeast
extract, 1% NaCl, and 100 µg/mL Ampicillin at 37 ◦C in a shaking incubator. The plasmid
used to transform the yeast contains an MLP1 promoter followed by lacZ, which makes it
possible to detect the expression level of MLP1 through β-galactosidase expression [24–26].
Yeasts were transformed with MLP1-lacZ-containing plasmids using the standard lithium
acetate-PEG method. Yeast transformants were cultured in a synthetic defined (SD) medium
without uracil (SD-Ura) at 23 ◦C in a shaking incubator for 18 h until the exponential growth
phase and then moved to a YEPD medium and cultured for 18 h to produce enough cells
for the experiment [27]. For the ONPG assay, yeast cells were adjusted to OD600 = 1.0 with
YEPD medium.

2.3. Animal Cell Lines and Culture

Human cervical cancer cell line HeLa cells (Korean Cell Line Bank, Seoul, Republic
of Korea) were selected since they are commonly used in the study of ERK5 due to their
ability to provide a clear observation of ERK5 activity [28,29]. It is known that negative
regulation of ERK5 induces apoptosis in HeLa cells since ERK5 activity is necessary for
survival of HeLa cells [16]. Cells were routinely cultured in Dulbecco’s Modified Eagle’s
Medium (DMEM) high glucose, supplemented with 10% (vol/vol) fetal bovine serum (FBS)
and 1% (vol/vol) penicillin/streptomycin. HeLa cells were grown at 37 ◦C in a humidified
incubator with 5% CO2 [30].

2.4. β-Galactosidase Reporter Assay

Yeast cells bearing MLP1-lacZ reporter plasmids were prepared as described above.
For this, 3 mL of cells (OD600 = 1.0) were treated with 15 µL of compounds. Yeast cells were
prepped via centrifugation and resuspended in 250 µL of breaking buffer (100 mM Tris-HCl
pH = 8, 1 mM dithiothreitol, and 20% glycerol), with 100 µL of glass beads of 0.4–0.6 mm
in diameter [31]. Yeast cells were homogenized via a bead beater to extract proteins.
After 6 cycles of bead beating, samples were clarified via centrifugation at 12,000 RPM
for 15 min at 4 ◦C. The Bradford method was used to measure protein concentration.
Here, 100 µL of protein extracts containing 15 ug of proteins were mixed with 900 µL of Z
buffer (60 mM Na2HPO4·7H2O, 40 mM NaH2PO4·H2O, 10 mM KCl, 1 mM MgSO4·7H2O,
50 mM 2-Mercaptoethanol, and pH = 7.0). After 5 min at 28 ◦C, 200 µL of O-nitrophenyl-
β-D-galactopyranoside (ONPG) solution (4 mg/mL in Z buffer) was added. The reaction
was conducted at 28 ◦C in a water bath for 3 h until the mixture obtained a pale-yellow
color. The reaction was terminated by adding 500 µL of Na2CO3 solution. To measure the
degree of ONPG hydrolysis by β-galactosidase, optical density was measured at 420 nm
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using a spectrophotometer [32]. All the procedures are based on Rose and Botstein’s
method [26,33,34]. Miller unit was calculated as follows.

OD420 × 1.7
0.0045× protein concentration (mg/mL)× protein extract volume (mL)× time (m)

2.5. In Vitro Kinase Assay

An in vitro kinase assay was conducted to determine the inhibition of ERK5 kinase
activity caused by MHJ-627 at concentrations of 5 µM, 1 µM, 0.1 µM, and 0 µM. The kinase
assay was performed using Z’-LYTE™ Kinase Assay Kit—Ser/Thr 4 Peptide (PV3177;
Thermo Fisher Scientific, Waltham, MA, USA) following the manufacturer’s instruction.
For this, 9 ng of ERK5 (ab126913; Abcam, Eugene, OR, USA) was used per one kinase
reaction, and 100 µM ATP was used to drive the kinase reaction [35]. Fluorescence intensity
was detected with a Varioskan™ LUX multimode microplate reader (VL0000D0; Thermo
Fisher Scientific, Waltham, MA, USA).

2.6. Transient Transfection and qRT-PCR-Based Luciferase Reporter Assay

To measure the activity of AP-1, which is activated by ERK5, HeLa cells were trans-
fected with pGL4.44 plasmid [luc2P/AP1 RE/Hygro] containing six copies of an AP-1
response element (AP1 RE), which drives transcription of the luciferase reporter gene luc2P
(Photinus pyralis), using a LipofectamineTM 3000 reagent (Invitrogen, Waltham, MA, USA)
according to the manufacturer’s protocol [36]. After 24 h of transfection, the cells were
seeded at a density of 3 × 105 cells per well in a 6-well plate. After 24 h, the cells were
treated with MHJ-627 at concentrations of 5 µM, 1 µM, 0.1 µM, and 0 µM, as well as with
XMD8-92 (positive control) at a concentration of 5 µM. To measure the mRNA expression
level of luciferase, quantitative real-time PCR was conducted.

2.7. Quantitative Real-Time PCR Analysis

HeLa cells were seeded at a density of 3.0 × 105 cells per well of 6-well plates in
2 mL of serum-containing DMEM and were further cultured for 24 h for attachment. Then,
various concentration (5 µM, 1 µM, and 0.1 µM) of MHJ-627 dissolved in 2 mL of serum-free
DMEM were added, and cells were further cultured for 24 h. After 24 h of treatment, total
RNA was isolated using a Trizol reagent (Thermo Fisher Scientific, Waltham, MA, USA)
according to the manufacturer’s protocol and reverse-transcribed to cDNA [37]. qRT-PCR
was carried out using 2X SybrGreen Real-Time PCR Master Mix (Biofact, Daejeon, Republic
of Korea). A housekeeping gene, GAPDH, served as an endogenous control [38]. Sequences
of the primers used are listed in Table 1. 2−∆∆Cq was calculated in duplicate, and an average
of the two values was used to analyze expression of the genes [39].

Table 1. List of primers used in quantitative real-time PCR analysis.

Gene Primer Sequence (5′ to 3′) References

GAPDH F: GTGAAGGTCGGAGTCAACG
R: TGAGGTCAATGAAGGGGTC [37]

PCNA F: AACCTCACCAGTATGTCCAA
R: ACTTTCTCCTGGTTTGGTG [40]

DDIT4 F: GTGGAGGTGGTTTGTGTATC
R: CACCCCTTGCTACTCTTAC This study

CXCL1 F: AAAGCTTGCCTCAATCCTGC
R: CTTCAGGAACAGCCACCAGT This study

KLF4 F: CCAATTACCCATCCTTCCTG
R: CGATCGTCTTCCCCTCTTTG This study

NR4A1 F: GCTTCATGCCAGCATTATGG
R: GTTCGGACAACTTCCTTCAC This study
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Table 1. Cont.

Gene Primer Sequence (5′ to 3′) References

RORα
F: AGGCTCGCTAGAGGTGGTGTT
R: TGAGAGTCAAAGGCACGGC This study

PTPRC F: CTTCAGTGGTCCCATTGTGGTG
R: CCACTTTGTTCTCGGCTTCCAG This study

CCL5 F: TCATTGCTACTGCCCTCTGC
R: TACTCCTTGATGTGGGCACG This study

ICAM1 F: AGCGGCTGACGTGTGCAGTAAT
R: TCTGAGACCTCTGGCTTCGTCA This study

SIGLEC1 F: ACCTGGAGGAAACTGACAGTGG
R: CTCAGTGTCACTGCCTGTCCTT This study

luc2P F: CTTTTGCAGCCCTTTCTTGC
R: CTTTTGCAGCCCTTTCTTGC This study

2.8. Western Blot Analysis

HeLa cells were seeded at a density of 3.0 × 105 cells per well of 6-well plates in
2 mL of serum-containing DMEM and were further cultured for 24 h for attachment. Then,
various concentrations (5 µM, 1 µM, 0.1 µM, and 0 µM) of MHJ-627 dissolved in 2 mL of
serum-free DMEM were applied to cells and further cultured for 24 h. After 24 h treatment,
cells were lysed in radio-immunoprecipitation assay (RIPA) buffer containing 150 mM
sodium chloride, 1% Triton X-100, 0.5% sodium deoxycholate, 0.1% sodium dodecyl sulfate
(SDS), 50 mM Tris (pH 8.0), and a complete protease inhibitor cocktail (BIOMAX, Seoul,
Republic of Korea). Protein concentration was determined using the BCA protein assay kit
(TaKaRa, San Jose, CA, USA) according to the manufacturer’s protocol. An equal amount
of protein (10 µg/lane) was separated using sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE), transferred to a polyvinylidene difluoride (PVDF) membrane,
and blocked with 5% BSA and 5% skim milk in a TBST buffer (20 mM Tris-HCl, 150 mM
NaCl, and 0.1% Tween 20, pH 7.6) [37]. The membranes were probed with primary
antibodies against GAPDH (sc-25778), ERK5 (sc-398015), and phospho-ERK5 (sc-135760)
(Santa Cruz Biotechnology, Inc., Dallas, TX, USA) at 4 ◦C overnight. Membranes were then
incubated with secondary antibodies for one hour at room temperature. Protein bands were
developed with an ECL reagent and detected using a UVITEC imaging system equipment
(UVITEC, Cambridge, UK) [40,41]. Relative protein expression from the Western blot data
was determined using ImageJ.

2.9. Cytotoxicity Assay

Cytotoxicity, the ability of compounds to kill cancer cells, was evaluated via methylthi-
azol tetrazolium (MTT) assay. HeLa cells were seeded at a density of 1.0× 104 cells per well
of 96-well plates in 100 µL serum-containing DMEM and were further cultured for 24 h
for settlement as described during cell culture [42,43]. Subsequently, 100 µL of serum-free
DMEM compounds with various concentrations was added to each well, and cells received
24 h compound exposures. The reason for serum starvation was to eliminate the possibility
of serum affecting the results of the assay and to only observe the effects of the treated
compounds [44–47]. MHJ-627, at concentrations of 100 µM, 50 µM, 10 µM, 5 µM, 1 µM,
0.1 µM, and 0 µM, was added to the cells. Compounds were dissolved in 100% dimethyl
sulfoxide (DMSO) at the original concentration of 10 mM. In order to prevent the dilution
of DMSO from interfering with the results, dilution proceeded while maintaining the same
percentage of DMSO in the treatment. After 24 h of compound exposures, MTT solution
(5 mg/mL) was diluted 10 times in serum-free DMEM and then added to the wells after
suction. Then, the plate was further maintained at 37 ◦C in the incubator for 3 h. Briefly,
100 µL of DMSO was added to each well after suction in order to dissolve the formazan
crystals, and the plate was wrapped in aluminum foil to avoid light and gently shaken
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on an orbital shaker for 30 more minutes [48]. Absorption values at 540 nm and 570 nm
were measured via a microplate spectrophotometer (BioTek Instruments, Winooski, VT,
USA). Survival of untreated cells was regarded as a negative control and set as 100%.
Then, survival of treated cells was calculated as a percentage of negative control [49]. As
MTT showed that most of the cells were dead at 10 µM of MHJ-627, 5 µM was set as the
maximum concentration in other experiments.

2.10. Statistical Analysis

All of the experiments were performed in duplicate and independently repeated at
least 3 times. All the data are presented as the mean ± standard deviation (SD). Statistically
significant differences were analyzed using two-tailed t test when only two groups were
compared and one-way ANOVA with Dunnett’s post hoc test using 0 µM as a control when
more than two groups were compared [50]. p < 0.05 was considered statistically significant.
All statistical analyses were conducted using GraphPad Prism software program version
5.0 (Graphpad Software, La Jolla, CA, USA).

3. Results and Discussion
3.1. MHJ-627 Compound Synthesis

In our previous study (Figure 1), we synthesized various naphthalene-2-acyl thia-
zolium salts by combining the structures of 1,4-dialkoxynaphthalene and thiazole and
evaluated their potential as AGE (advanced glycation end products) breakers [51]. The 1,4-
dialkoxynaphthalene moiety played a significant role in their pharmacological activity. Sub-
sequently, we replaced thiazole with an imidazole ring to produce 1,4-dialkoxynaphthalene-
2-acyl imidazolium salt derivatives, which exhibited antifungal activity [22]. We further
confirmed that combination with the 1,4-dialkoxynaphthalene moiety served as a good
pharmacophore. After screening the activity of several 1,4-dialkoxynapthalene imidazolium
salts, it was confirmed that MHJ-627 is a potent ERK5 inhibitor (Figure 1).
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Figure 1. Design and synthesis of the new 1,4-dialkoxynaphthalen-2-acyl imidazolium salt, MHJ-627.

The synthesis of MHJ-627 was carried out as follows: a key intermediate acyl bromide
2 was synthesized from a commercially available starting compound 1 using a known pro-
cess [22] and subsequently reacted with benzimidazole 3 to produce the desired compound,
MHJ-627.

3.2. MHJ-627 Suppressed the Catalytic Activity of Mpk1 to Activate Rlm1 Transcription Factor
and Attenuated the Expression of MLP1

As a primary putative ERK5 inhibitor screening procedure among various candidate
compounds (other compounds not mentioned), we evaluated the ability of MHJ-627 to
reduce the kinase activity of Mpk1, a functional homologue of human ERK5 [19], by exam-
ining the expression of MLP1, a target gene of Mpk1, through a transcriptional reporter
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assay using an MLP1-lacZ reporter plasmid in a yeast model system [24]. It is known that
Rlm1 transcription factor activated by the kinase activity of Mpk1 promotes the transcrip-
tion of MLP1 (Figure 2a) [24]. MHJ-627 significantly suppressed MLP1 expression by 66%
compared to the control treated with DMSO only (Figure 2b). Since Rlm1 regulation is
already demonstrated to be dependent on kinase activity of Mpk1 [21,24], this result implies
that MHJ-627 impaired the kinase activity of Mpk1 to phosphorylate Rlm1 transcription
factor and consequently inhibited MLP1 expression, suggesting that MHJ-627 may also
inhibit the kinase activity of human ERK5.

Curr. Issues Mol. Biol. 2023, 3, FOR PEER REVIEW 7 
 

 

3.2. MHJ-627 Suppressed the Catalytic Activity of Mpk1 to Activate Rlm1 Transcription Factor 
and Attenuated the Expression of MLP1 

As a primary putative ERK5 inhibitor screening procedure among various candidate 
compounds (other compounds not mentioned), we evaluated the ability of MHJ-627 to 
reduce the kinase activity of Mpk1, a functional homologue of human ERK5 [19], by ex-
amining the expression of MLP1, a target gene of Mpk1, through a transcriptional reporter 
assay using an MLP1-lacZ reporter plasmid in a yeast model system [24]. It is known that 
Rlm1 transcription factor activated by the kinase activity of Mpk1 promotes the transcrip-
tion of MLP1 (Figure 2a) [24]. MHJ-627 significantly suppressed MLP1 expression by 66% 
compared to the control treated with DMSO only (Figure 2b). Since Rlm1 regulation is 
already demonstrated to be dependent on kinase activity of Mpk1 [21,24], this result im-
plies that MHJ-627 impaired the kinase activity of Mpk1 to phosphorylate Rlm1 transcrip-
tion factor and consequently inhibited MLP1 expression, suggesting that MHJ-627 may 
also inhibit the kinase activity of human ERK5. 

 
Figure 2. MHJ-627 suppressed the kinase activity of Mpk1 and attenuated MLP1 expression in an S. 
cerevisiae model. (a) Schematic representation of Mpk1 regulation in the S. cerevisiae model system, 
which is functionally homologous to the human ERK5. Inactivation of Mpk1 activity results in 
downregulated transcriptional activity of Rlm1 transcription factor and subsequent decrease in 
MLP1 expression; (b) effect of MHJ-627 on expression of MLP1 measured by β-galactosidase activ-
ity. Yeasts were transformed with MLP1-lacZ reporter plasmid and treated with 15 µL of DMSO 
(control) and MHJ-627 in 3 mL of media. The data were calibrated to the control value (DMSO con-
trol = 1). Data are presented as mean ± SD. Each experiment was performed in duplicate and re-
peated at least three times. Two-tailed unpaired Student’s t test (*** p < 0.001) was used for signifi-
cance. 

3.3. MHJ-627 Inhibited the Kinase Activity of Human ERK5 In Vitro 
To further verify the capability of MHJ-627 to inhibit the kinase activity of human 

ERK5, a FRET-based in vitro kinase assay was carried out [52]. Relative kinase activity of 
ERK5 dropped to 0.58 at 0.1 µM, 0.49 at 1 µM, and 0.44 at 5 µM, which means MHJ-627 
exhibited inhibitory activity by 42% at 0.1 µM, 51% at 1 µM, and 56% at 5 µM, respectively 
(Figure 3). This dose-dependent decrease in kinase activity according to the concentration 
of MHJ-627 shows that MHJ-627 also impairs the kinase activity of human ERK5 (IC50: 0.91 
µM), as we expected from the previous yeast screening. XMD8-92, a commercialized ERK5 
inhibitor, was used as a positive control and showed an inhibition rate of 56% at 5 µM, 
which means that MHJ-627 and XMD8-92 exhibit similar inhibitory activity at 5 µM in 
vitro [33,52]. Since we confirmed that most of the cells were severely affected at 10 µM of 
MHJ-627 in the MTT assay, 5 µM was set as the maximum concentration in this assay. 

Figure 2. MHJ-627 suppressed the kinase activity of Mpk1 and attenuated MLP1 expression in an
S. cerevisiae model. (a) Schematic representation of Mpk1 regulation in the S. cerevisiae model system,
which is functionally homologous to the human ERK5. Inactivation of Mpk1 activity results in
downregulated transcriptional activity of Rlm1 transcription factor and subsequent decrease in MLP1
expression; (b) effect of MHJ-627 on expression of MLP1 measured by β-galactosidase activity. Yeasts
were transformed with MLP1-lacZ reporter plasmid and treated with 15 µL of DMSO (control) and
MHJ-627 in 3 mL of media. The data were calibrated to the control value (DMSO control = 1). Data
are presented as mean ± SD. Each experiment was performed in duplicate and repeated at least three
times. Two-tailed unpaired Student’s t test (*** p < 0.001) was used for significance.

3.3. MHJ-627 Inhibited the Kinase Activity of Human ERK5 In Vitro

To further verify the capability of MHJ-627 to inhibit the kinase activity of human
ERK5, a FRET-based in vitro kinase assay was carried out [52]. Relative kinase activity of
ERK5 dropped to 0.58 at 0.1 µM, 0.49 at 1 µM, and 0.44 at 5 µM, which means MHJ-627
exhibited inhibitory activity by 42% at 0.1 µM, 51% at 1 µM, and 56% at 5 µM, respectively
(Figure 3). This dose-dependent decrease in kinase activity according to the concentration
of MHJ-627 shows that MHJ-627 also impairs the kinase activity of human ERK5 (IC50:
0.91 µM), as we expected from the previous yeast screening. XMD8-92, a commercialized
ERK5 inhibitor, was used as a positive control and showed an inhibition rate of 56% at
5 µM, which means that MHJ-627 and XMD8-92 exhibit similar inhibitory activity at 5 µM
in vitro [33,52]. Since we confirmed that most of the cells were severely affected at 10 µM
of MHJ-627 in the MTT assay, 5 µM was set as the maximum concentration in this assay.

3.4. MHJ-627 Suppressed the Activity of ERK5 and Impaired AP-1 Activity in HeLa Cells

To further examine the ability of MHJ-627 to inhibit the kinase activity of human ERK5
in cells, activation of activator protein-1 (AP-1), a downstream transcription factor of ERK5,
was measured via a luciferase reporter [36]. HeLa cells were transfected with a plasmid
bearing an AP-1 response element followed by a luciferase reporter gene and the mRNA
level of luciferase was measured using quantitative real-time PCR (qRT-PCR). As the AP-1
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transcription factor is a downstream target of ERK5, even though it is also a downstream
of ERK1/2, it is often used to evaluate the alteration in ERK5 activity in cells [53]. Since
ERK5 is often dysregulated in cancers, AP-1 is also found in a hyperactivated form in
tumor cells [54,55]. The mRNA of luciferase transcribed by the AP-1 transcription factor
decreased in a dose-dependent manner (Figure 4), signifying hindered AP-1 activation by
ERK5 following MHJ-627 and XMD8-92 treatment [56]. This result suggests that MHJ-627
successfully inhibits ERK5 both in vitro and at the cell level.
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Figure 3. MHJ-627 reduced the kinase activity of human ERK5 in vitro. Relative ERK5 kinase activity
following MHJ-627 treatment was measured via in vitro kinase assay. Kinase activity of ERK5 was
reduced dose-dependently, supporting ERK5-inhibitory activity of MHJ-627 in vitro. Relative ERK5
kinase activity of the 0 µM control was set as 1. Data are presented as mean ± SD. Each experiment
was performed in duplicate and repeated at least three times. One-way ANOVA (** p < 0.01) was used
for significance. All values were compared to the 0 µM control value to determine the significance.
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Figure 4. MHJ-627 suppressed ERK5 kinase activity to activate AP-1 transcription factor. To deter-
mine the ability of ERK5 to activate the transcription factor AP-1, luciferase reporter plasmid was
transformed into HeLa cells and qRT-PCR was conducted to measure the mRNA level of luciferase
after 24 h compound treatment. There was a decrease in luciferase mRNA levels, indicating reduced
activity of AP-1 possibly caused by suppressed activity of ERK5 to activate AP-1. Relative AP-1
activity of the 0 µM control was set as 1. Data are presented as mean ± SD. Each experiment was
performed in duplicate and repeated at least three times. One-way ANOVA (** p < 0.01) was used for
significance. All values were compared to the 0 µM control value to determine the significance.
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3.5. ERK5 Inhibition by MHJ-627 Modified the mRNA Expression of Genes Regulated by ERK5

qRT-PCR was performed to assess the expression of genes that are previously reported
to be regulated or influenced by ERK5 in the gene expression analyses of ERK5 signaling
though they are not the established direct targets of ERK5 [57]. As previously reported,
downregulation of proliferating cell nuclear antigen (PCNA) expression is a known effect
of ERK5 inhibition or ablation. Consistently, we observed a decrease in mRNA expression
of PCNA, which is involved in DNA replication and repair machinery (Figure 5a) [58–60].
In contrast, as illustrated by previous literature, the mRNA level of DNA damage-inducible
transcript 4 (DDIT4), which acts as a negative regulator of the mammalian target of ra-
pamycin (mTOR) pathway, was elevated (Figure 5b) [57,61]. Furthermore, we observed
increases in mRNA expression of the genes that can be categorized into two groups based
on the function of the proteins they encode: transcription factors and immune-related
proteins. The mRNA expression of KLF transcription factor 4 (KLF4), nuclear receptor
subfamily 4 group A member 1 (NR4A1) and retinoic acid receptor-related orphan receptor-
alpha (RORα), which act as transcription factors, was upregulated (Figure 5c). There was
an increase in mRNA expression of protein tyrosine phosphatase receptor type C (PTPRC),
C-C motif chemokine ligand 5 (CCL5), intercellular adhesion molecule 1 (ICAM1), sialic
acid binding Ig like lectin 1 (SIGLEC1), and C-X-C motif chemokine ligand 1 (CXCL1),
which all are related to immunity (Figure 5d). Since an activation of immune cells and
immune responses following ERK5 inhibition has been reported, we speculate that this
increase in expression is due to a feedback loop of the signal transduction pathway [11].
The decrease in PCNA mRNA and increase in DDIT4 and CXCL1 mRNA, which have been
reported to occur when ERK5 is inhibited, are evidence that MHJ-627 effectively targets
ERK5 [58].

Especially, PCNA, which is distinctly considered a cell proliferation marker due to
its accumulation in late G1 and S phases, is strongly suggested to be involved in cell
survival and tumorigenesis [62,63]. Considering previous knowledge that the degradation
of PCNA inhibits cancer proliferation in vitro and in vivo, a dose-dependent decrease in
PCNA mRNA levels may be indicative of the anticancer efficacy of MHJ-627 [64]. Therefore,
in future study, we will conduct in-depth study on how ERK5 inhibition downregulates
PCNA and verify if PCNA could be a direct target of ERK5. KLF4 is suggested to act as
a tumor suppressor, and its expression is often downregulated in some types of cancer,
including cervical cancer, colorectal cancer, and lung cancer [65–67]. Particularly, in cervical
cancer, previous study has shown the inactivation of KLF4 as a tumor suppressor [68].
Similarly, RORα is a potential tumor suppressor, and its downregulation, which is related
to tumor progression, is often observed in cancers [69,70]. Nuclear receptor 4A1 (NR4A1) is
proposed to be downregulated in metastatic tumors and to play a protective role against
metastasis [71,72]. Taken together, these results suggest that MHJ-627-induced ERK5
inhibition contributes to establishing a suitable environment to overcome malignancies
by promoting the expression of some tumor suppressors and anti-metastatic genes which
we assumed to be an outcome of targeting overexpressed ERK5 in cancers. However, in
the cases of KLF4, NR4A1, and ICAM1, the trend of alteration in mRNA expression when
treated with MHJ-627 was different from the positive control, increasing in the MHJ-627
treatment while decreasing in the positive control treatment [73]. Since the ERK5-inhibitory
effect of MHJ-627 was already demonstrated via in vitro kinase assay in Figure 3, this
result indicates that the mechanism governing ERK5 inhibition of these compounds may
be somewhat different and needs to be further investigated in a follow-up study to identify
the precise mechanism of MHJ-627’s inhibition of ERK5 activity.
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Figure 5. Alteration in mRNA expression pattern of the genes influenced by ERK5 after MHJ-
627 treatment. (a) Decrease in mRNA expression of PCNA, which is a cell proliferation marker;
(b) increase in mRNA expression of DDIT4, which is reported to increase when ERK5 is inhibited;
(c) increase in mRNA expression of genes that encode transcription factors; (d) increase in mRNA
expression of genes that encode immune-related proteins. Relative mRNA expression of genes
influenced by ERK5 was measured via qRT-PCR analysis after 24 h compound treatment in HeLa
cells. Relative mRNA expression of the 0 µM control was set as 1. Data are presented as mean ± SD.
Each experiment was performed in duplicate and repeated at least three times. One-way ANOVA
(* p < 0.05, ** p < 0.01) was used for significance. All values were compared to the 0 µM control value
to determine the significance.

3.6. MHJ-627 Paradoxically Increased ERK5 Expression Possibly due to the Stimulatory Crosstalk
of the ERK1/2 Pathway

To determine whether MHJ-627 affects the protein expression levels of ERK5 and
pERK5, Western blot analysis was conducted. MHJ-627 paradoxically appeared to ele-
vate ERK5 expression and phosphorylation, and so did the positive control, XMD8-92
(Figure 6a–c). However, even though the protein expression and phosphorylation of ERK5
increased, previous experimental results from Figures 3 and 4 have already shown that the
actual activity of ERK5 was successfully inhibited as expected.

Since crosstalk and feedback loop mechanisms of other signaling pathways have been
suggested as the most challenging problem in developing kinase inhibitors, we assumed
that the elevations in ERK5 expression and phosphorylation may be attributed partly
to the stimulatory crosstalk and compensatory action of the PI3K-AKT pathway or the
ERK1/2 pathway [74,75]. Therefore, we examined the effect of the ERK1/2 pathway
by treatment with 5 µM of an MEK1/2 inhibitor, U0126, which inhibits the activation
of ERK1/2, together with various concentrations of MHJ-627 [76]. As expected, protein
expression and phosphorylation of ERK5 among the lanes showed no difference (Figure 6d),
suggesting that the previous increase in expression was due to the compensatory action of
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the ERK1/2 pathway, at least in part. Nevertheless, the precise mechanism is still unknown
and is yet to be identified.

Figure 6. MHJ-627 paradoxically upregulated the expression and phosphorylation of ERK5, possibly
due to the stimulatory crosstalk of the ERK1/2 pathway. (a) Western blot image depicting the eleva-
tions in ERK5 protein expression and phosphorylation. Effect of MHJ-627 on the protein expression
and phosphorylation of ERK5 was measured via Western blot analysis after HeLa cells were treated
with compounds for 24 h; (b) quantitation of Western blot showing a paradoxical increase in ERK5
expression; (c) quantitation of Western blot showing a trend of increase in ERK5 phosphorylation;
(d) the increase in ERK5 expression and phosphorylation was due to the compensatory action of
ERK1/2. GAPDH was used as a loading control. Relative protein expression of the 0 µM control
was set as 1. Western blot data were quantified using ImageJ software. Data are presented as
mean ± SD. Each experiment was performed in duplicate and repeated at least three times. One-way
ANOVA (* p < 0.05) was used for significance. All values were compared to the 0 µM control value to
determine the significance.

3.7. MHJ-627 Showed Anti-Proliferative Effect in the Human Cervical Cancer HeLa Cells

To measure the anticancer efficacy of MHJ-627, an MTT assay was conducted. HeLa
cells were treated with the indicated concentration of MHJ-627 for 24 h and 48 h. XMD8-92
was used as a positive control. HeLa cells treated with XMD8-92 showed a significant
decline in cell viability and showed an anti-proliferative effect of 16.9% after 24 h and of
22.7% after 48 h at 5 µM treatment, providing evidence for the possible anticancer efficacy
of ERK5 inhibition (Figure 7a). The viability of HeLa cells significantly decreased in a dose-
dependent manner after MHJ-627 treatment (Figure 7b). Especially, MHJ-627 exhibited anti-
proliferative effect of 61% after 24 h (IC50: 2.45 µM) and 94.2% after 48 h at 5 µM treatment.
Almost every cancer was severely affected at a concentration of 10 µM in both the 24 h and
48 h treatments. The fact that MHJ-627 significantly exhibited higher cytotoxicity in HeLa
cells confirms the higher anticancer efficacy of MHJ-627, which possibly resulted from the
stronger ERK5-inhibitory activity, since negative regulation of ERK5 is known to induce
apoptosis in HeLa cells [16]. This result casts a new light on the promise that MHJ-627 may
serve as a more potent ERK5 inhibitor than the ones previously identified.
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4. Conclusions 
ERK5 is a rising therapeutic target to combat cancer since its overexpression and 

dysregulation have been reported in various types of cancer [11,12]. However, despite its 
pivotal involvement in tumorigenesis, most previous works have focused on ERK1/2. In 
this study, we synthesized a novel ERK5 inhibitor, MHJ-627, and verified its potent anti-
cancer property in the cervical cancer HeLa cells. MHJ-627 successfully impaired the ki-
nase activity of ERK5 to produce significant anticancer efficacy accompanying upregula-
tion of tumor suppressors and anti-metastatic genes, suggesting MHJ-627 as a promising 
ERK5 inhibitor. 

There is no doubt that inhibition of ERK5 is a promising novel way to combat cancer 
[12,17]. Moreover, in the case of ERK1/2 inhibition, where extensive studies have been 
carried out, the compensatory elevation in the ERK5 pathway has conferred resistance to 
the ERK1/2 therapy [77,78]. Development of an ERK5 inhibitor for a combination therapy 
with ERK1/2 inhibitors may contribute to overcoming this resistance [75,79]. In this study, 
we focused on confirming ERK5-inhibitory activity of MHJ-627 which was also identified 
in our in silico simulation model that MHJ-627 actually binds to an ATP-binding pocket 
of ERK5. In future studies, our next goal is to utilize MHJ-627 as a lead compound and 
modify it to be a more potent ERK5 inhibitor with increased specificity to ERK5 that can 
exhibit a powerful anticancer efficacy. Further study with improved ERK5 inhibitor will 
also include ERK5 knock-out and knock-down models to clearly demonstrate its specific 
ERK5-inhibitory efficacy. 
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were compared to the 0 µM control value to determine the significance.

4. Conclusions

ERK5 is a rising therapeutic target to combat cancer since its overexpression and
dysregulation have been reported in various types of cancer [11,12]. However, despite
its pivotal involvement in tumorigenesis, most previous works have focused on ERK1/2.
In this study, we synthesized a novel ERK5 inhibitor, MHJ-627, and verified its potent
anticancer property in the cervical cancer HeLa cells. MHJ-627 successfully impaired the
kinase activity of ERK5 to produce significant anticancer efficacy accompanying upregula-
tion of tumor suppressors and anti-metastatic genes, suggesting MHJ-627 as a promising
ERK5 inhibitor.

There is no doubt that inhibition of ERK5 is a promising novel way to combat can-
cer [12,17]. Moreover, in the case of ERK1/2 inhibition, where extensive studies have been
carried out, the compensatory elevation in the ERK5 pathway has conferred resistance to
the ERK1/2 therapy [77,78]. Development of an ERK5 inhibitor for a combination therapy
with ERK1/2 inhibitors may contribute to overcoming this resistance [75,79]. In this study,
we focused on confirming ERK5-inhibitory activity of MHJ-627 which was also identified
in our in silico simulation model that MHJ-627 actually binds to an ATP-binding pocket
of ERK5. In future studies, our next goal is to utilize MHJ-627 as a lead compound and
modify it to be a more potent ERK5 inhibitor with increased specificity to ERK5 that can
exhibit a powerful anticancer efficacy. Further study with improved ERK5 inhibitor will
also include ERK5 knock-out and knock-down models to clearly demonstrate its specific
ERK5-inhibitory efficacy.
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