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Abstract: The study of molecular drivers of cancer is an area of rapid growth and has led to the
development of targeted treatments, significantly improving patient outcomes in many cancer
types. The identification of actionable mutations informing targeted treatment strategies are now
considered essential to the management of cancer. Traditionally, this information has been obtained
through biomarker assessment of a tissue biopsy which is costly and can be associated with clinical
complications and adverse events. In the last decade, blood-based liquid biopsy has emerged as a
minimally invasive, fast, and cost-effective alternative, which is better suited to the requirement for
longitudinal monitoring. Liquid biopsies allow for the concurrent study of multiple analytes, such as
circulating tumour cells (CTCs) and circulating tumour DNA (ctDNA), from a single blood sample.
Although ctDNA assays are commercially more advanced, there is an increasing awareness of the
clinical significance of the transcriptome and proteome which can be analysed using CTCs. Herein,
we review the literature in which the microfluidic, label-free Parsortix® system is utilised for CTC
capture, harvest and analysis, alongside the analysis of ctDNA from a single blood sample. This
detailed summary of the literature demonstrates how these two analytes can provide complementary
disease information.

Keywords: blood; cancer; liquid biopsy; circulating tumor cells; circulating tumor DNA; cell-free
DNA; microfluidic devices; neoplastic cells

1. Background
1.1. Tumour Burden and Heterogeneity

The global burden of cancer challenges human health and the economy and was
responsible for nearly 10 million deaths in 2020 [1] (accessed on 18 September 2023). Ris-
ing prevalence and incidence rates call for effective diagnostics and treatment selection
strategies. Furthermore, the dynamic landscape of cancer demands continuous up-to-date
and accurate monitoring methods for effective patient care [2]. This intertumoral and
intratumoral heterogeneity of cancer as a basis for tumour evolution, treatment resistance
and subsequent treatment failure, is an area of growing understanding [3]. Recent ad-
vances in high-throughput, relatively low-cost sequencing techniques (for example, next
generation sequencing (NGS)) have shed light on molecular drivers of cancer, actionable
mutations and the continuous process of clonal evolution from selective pressure of cancer
therapies [4]. As such, it is widely accepted that personalised or precision medicine will
optimise response to cancer therapy and improve quality of life for the patient.

The standard of care for evaluating patient specific biomarkers, mutations, and genetic
signatures for the appropriate selection of targeted cancer treatments is to conduct a tissue
biopsy. Despite being the most widely used technique, tissue biopsies have numerous
disadvantages such as being invasive, costly, failing to capture tumour heterogeneity,
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and being harmful to the patient [5]. Moreover, tissue biopsies are rarely suitable for
longitudinal monitoring where the patient is too unwell and where the patient’s primary
tumour has been excised, or metastasised to two or more sites [6]. Liquid biopsy techniques
are advancing to provide a less invasive, safer, less costly alternative that provides results
faster than tissue biopsies [7]. Furthermore, this technique is better suited for longitudinal
disease monitoring and captures heterogeneity and the clonal evolution responsible for
treatment failure and drug resistance [7].

1.2. Liquid Biopsy

A liquid biopsy is a minimally invasive test performed using bodily fluids, such as
blood, and it has received growing clinical interest for its applications in personalised
medicine [8]. Blood-based liquid biopsies allow for the analysis of circulating tumour cells
(CTCs), cell-free DNA (cfDNA), circulating tumour DNA (ctDNA), or other plasma com-
ponents, such as cell-free RNA, proteins, and exosomes, to provide clinically relevant and
actionable information. More specifically, liquid biopsies have shown significant relevance
across the cancer care pathway, informing cancer diagnosis, prognosis, treatment selection,
the monitoring of disease evolution, and disease relapse [7,8] (Figure 1). The advancement
of sequencing technology is fuelling a revolution in liquid biopsy analysis, providing
genomic and transcriptomic characterisation for personalised therapy selection [9]. Liquid
biopsies are also emerging as valuable tools for drug discovery and development having
applications as prognostic and pharmacodynamic biomarkers, with several consortiums
founded to analyse, implement, and develop standards for liquid biopsy in clinical trials
and drug development. These include Friends of Cancer research ctMONiTR, the Interna-
tional Liquid Biopsy Standardization Alliance (ILSA), the Blood profiling Atlas in Cancer
(BloodPAC) Consortium and Cancer ID.

1.3. Circulating Tumour DNA

Cell-free DNA (cfDNA) consists of DNA fragments found in the body fluids of healthy
and non-healthy patients and is thought to be derived from cellular breakdown mecha-
nisms [10]. cfDNA circulates in fragments typically ranging in size from 120 to 140 base
pairs [10]. In cancer patients, circulating tumour DNA (ctDNA) accounts for a very low
percentage (0.01–1%) of total cfDNA and is specifically derived from the tumour [11]. The
origin of ctDNA is not fully understood, but is believed to be from apoptotic cells, necrotic
cells or to enter the bloodstream via active secretion [8,12,13]. The profiling of ctDNA has
received attention for early diagnosis, treatment selection, the identification of resistance
mechanisms and detection of post-surgical minimal residual disease in numerous cancer
types [4,12,14]. The analysis of ctDNA provides a simple method of obtaining genetic
information; however, this is limited to point mutations, structural rearrangements, copy
number variants (CNVs) and changes in DNA methylation [4]. It has been reported in the
literature that genetic signatures in ctDNA can be derived from the major clone in a tumour
and thus, subclonal signatures may be missed when studying this analyte [5]. However,
ctDNA and cfDNA are the most established liquid biopsy analytes in the oncology mar-
ket with five FDA-approved companion diagnostics for targeted treatment selection and
residual disease monitoring [15] (accessed on 1 December 2023). For example, the cobas epi-
dermal growth factor receptor (EGFR) mutation test V2 (Roche) to detect EGFR mutations
(Exon 19 deletion or exon 21 L858R substitution mutation) in non-small-cell lung cancer
(NSCLC) patients for treatment with Tagrisso (osimertinib) and Tarceva (erlotinib) [16,17]
(accessed on 9 January 2024).
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Figure 1. Clinical utility of liquid biopsies across the patient care pathway. Liquid biopsies are
minimally invasive tools used (1) in patient screening to predict risk of disease, prognosis, and
overall survival; (2) in early-stage cancer to inform targeted therapies for first-line treatment, identify
novel biomarkers, and to monitor treatment response and to provide an early predictor of treatment
resistance; (3) at disease progression in advanced stage cancer to confirm metastatic diagnosis, inform
targeted treatment selection, monitor treatment response and treatment resistance, and identify new
drug targets as the tumour evolves (clonal evolution); (4) post treatment to identify minimal residual
disease, monitor the patient during remission, and identify risk of relapse. Liquid biopsies allow the
analysis of different blood-based analytes including circulating tumour cells (CTCs) and cell-free
DNA (cfDNA). The latter provides genomic information from fragmented DNA, whereas CTCs are
whole cells providing not only genomic, but transcriptomic and proteomic information for a more
inclusive view of the current state of tumour mutations and biomarkers towards personalised therapy.

1.4. Circulating Tumour Cells

CTCs are whole cells released by a tumour into the bloodstream and are responsible
for metastatic seeding [18,19]. CTC enumeration provides robust prognostic information;
increased CTC presence correlates to metastatic burden, with a strong association with
overall survival in numerous cancer types [4]. Beyond CTC enumeration, CTCs can provide
functional genomic, transcriptomic and proteomic information, providing accurate tumour
phenotypic information at the time of sampling [2,3,8]. This presents a unique real-time
window into clinically relevant information towards personalised treatment. This analyte
has been reported to reflect high levels of tumour heterogeneity [3] and represent clonal
evolution that may be responsible for treatment failure and drug resistance [2,8,19]. As
such, CTCs are suitable for treatment selection [2], real-time longitudinal disease monitor-
ing, treatment monitoring, and relapse monitoring [5]. Furthermore, harvesting CTCs from
blood facilitates research into the complex landscape of cancer including CTC clustering,
cellular invasion, and metastasis [4] and is suitable for in vitro/in vivo culture research [20].
CTCs are an area of growing interest across multiple cancer types [2,8] and are emerging
as a tool to address challenges of the complex landscape of heterogeneity in the clinic. As
such, there is a demand for enrichment technologies that are able to successfully isolate rare
CTCs from whole blood. Numerous CTC enrichment technologies are emerging based on a
cell’s physical properties, biological properties and a combination of the two [19,21]. These
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include membrane microfilters, microfluidic technologies, non-microfluidic technologies,
positive selection by tumour marker technologies, and negative selection by non-tumour
marker technologies [19,21]. Technologies face challenges in isolating CTCs given their
rarity, their phenotype, size heterogeneity and the need for downstream analysis [22,23].
Often, there is a reported trade-off between CTC recovery and sample purity [22]. Microflu-
idic CTC isolation technologies have received attention for high throughput, sensitivity,
low sample consumption and cost [23].

Currently there are only two FDA-cleared medical devices for the enrichment of CTCs.
These include the CellSearch® Circulating Tumor Cell (CTC) Test (Menarini-Silicon Biosys-
tems, Huntingdon Valley, PA, USA): for the enumeration of CTCs of epithelial origin for the
monitoring of prognostic information of patients with metastatic breast, colorectal, or prostate cancer,
and the Parsortix® PC1 System (ANGLE plc, Guildford, UK): for the capture and harvest
of CTCs from the blood of metastatic breast cancer (MBC) patients for subsequent, user-validated
analysis. CellSearch® isolates and detects CTCs of epithelial origin via an immunoaffinity-
based enrichment method. However, CTCs can exist in three subtypes including epithelial,
mesenchymal, and epithelial/mesenchymal CTCs, thus cells undergoing or having un-
dergone epithelial to mesenchymal transition (EMT) (a process that increases metastatic
properties of cancer cells, enhancing cellular migration and invasion [24]) may be missed
by such enrichment technologies. The Parsortix® system overcomes this issue with epitope-
independent CTC capture, isolating epithelial, mesenchymal, and epithelial/mesenchymal
CTCs. Furthermore, the subsequent downstream analysis of CTCs provides a wealth of
information as compared to CTC enumeration.

1.5. The Parsortix® System

The Parsortix® system is a liquid biopsy platform that uses a patented microfluidic
technology enabling label-free (epitope-independent) capture of all CTC phenotypes based
on cell size and deformability, allowing for CTC enumeration and subsequent downstream
analysis [25]. More specifically, the Parsortix® system can facilitate the capture [25] of CTCs,
as well as the harvest of CTCs for subsequent downstream analysis methods, [26] including
individual gene expression analysis (messenger RNA [mRNA]) and protein evaluation
(e.g., cytological/immunofluorescent [IF] staining) [27–29], the evaluation of DNA aber-
rations [30], and whole genomic [31] and transcriptomic sequencing [32], amongst others.
These subsequent downstream methods have been utilised in the literature as tools for
studying CTCs and the tumour microenvironment [33,34], identifying clinically actionable
targets [30] towards therapeutic screening [31]/patient cohort selection and personalised
treatment, resistance profiling [35], and drug discovery [33] and development [14].

These applications and techniques used in tandem with the Parsortix® system are ex-
plored in 92 peer reviewed publications from 38 independent study centres across 18 cancer
types [36] (accessed on 28 September 2023). The Parsortix® PC1 Clinical System’s analyt-
ical performance [37] and multi-centre clinical performance [26] has been demonstrated
to capture and harvest CTCs, and provide specific, user-validated downstream analysis
in MBC. Moreover, the Parsortix® system is currently under evaluation in clinical trials
to investigate therapeutic influence on CTC clusters [38], the role of sleep in the spread
of CTCs in lung cancer patients [39], and to investigate the intestinal polyp secretion of
tumour cells and circulating factors [40].

2. Molecular Advances: The Omics Revolution

In the last 20 years, there have been exponential advances in the understanding and
application of molecular analysis and computational tools as genomic sequencing has
become well-established and affordable. More recently, it is understood that studying the
genome provides a basis of information that is just the beginning of a complex biological
landscape and that we are able to look beyond the genome [41]. Genomic information can
be supplemented with transcriptomic and proteomic data for closer evaluation of tumour
phenotype towards more accurate, real-time information for personalised treatment (the
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study of multi-omics). Genomic analysis provides information on past mutations acquired
during the evolutionary history of the tumour, whereas transcriptomic analysis provides
a window into epigenetic influence on gene expression and thus the current state of the
tumour [42]. This interplay between the genome and the transcriptome is relevant for
identifying up-to-date and accurate treatment options [42]. The importance of studying the
transcriptome has been demonstrated in real-world clinical data, in which tissue-derived
RNA sequencing discovered more clinically actionable targets than DNA sequencing alone,
increasing the number of patients eligible for matched therapies by 24% [43]. Similarly,
other research has shown that utilising transcriptomics can increase the number of patients
administered for matched therapy [44]. Moreover, it is predicted that by harnessing
NGS tools and the nature of transcriptomics, it is possible to head towards a new era
of personalised medicine, something which is recognised by the National Institute of
Health [45]. As such, we are entering an omics revolution that aims to progress personalised
medicine [41]. Furthermore, this evolution of molecular technology has necessitated the
concurrent development and application of artificial intelligence and machine learning for
the integration of big data into the clinic [46].

These molecular advances are fuelling liquid biopsy analysis [9]. Advances in digital
polymerase chain reaction (dPCR) and sequencing technologies are facilitating low-cost,
rapid analysis, with limited starting material to provide clinically relevant multi-omic in-
formation [47]. Notably, the application of NGS technology is enabling the identification of
druggable targets, clonal selection, and metastatic information from liquid biopsy analytes
as real-time tools [30]. There are 20 peer reviewed publications that utilise the Parsortix®

system and NGS technology to study the genome or transcriptome. More specifically, eight
of these publications perform bulk harvest NGS analysis, and 12 study the use of single-cell
analysis. As such, the ability of CTCs to provide both genomic and transcriptomic informa-
tion in addition to genomic information from ctDNA as dual analytes from the same patient
sample is an exciting prospect. Currently, there is no single device or companion diagnostic
approved for the combined analysis of CTCs and ctDNA or multi-analyte analysis from a
single blood sample, but dual analysis is emerging in the literature.

3. Complementary Insights

In the literature, the enumeration of CTCs and analysis of ctDNA in tandem have
previously informed prognosis across various cancer types [48,49]. Rapid advances in CTC
isolation technologies and the omics revolution have enabled the molecular analysis of
both CTCs and ctDNA as a minimally invasive approach to define tumour heterogeneity
and clonal evolution to study metastasis [4]. As this information is imperative for treatment
success, CTCs and ctDNA have been described as cornerstones of liquid biopsy diagnosis,
paving the way for new diagnostic opportunities [8]. Until recently, the analysis of CTCs
and ctDNA have been referred to in the literature as competing sources of information [50];
however, there has been a shift in understanding that the two analytes can provide comple-
mentary insights [3,8], expanding the amount of clinically actionable information to inform
the patient care pathway.

Aoki et al. (2020) describe the dual analysis of these analytes to increase genomic
mutation profiling sensitivity without decreasing specificity [51] and alludes to the unique
ability of CTCs to provide novel genomic, transcriptomic, proteomic, metabolomic, and
secretomic information in the future. Onidani et al. (2019) conducted NGS research into
the genomic profiles of CTCs and ctDNA via the targeted sequencing of 37 head and
neck or gastrointestinal cancer patients [52]. They reported that in both cancer types,
patients identified with both concordant and discordant clinically actionable information
within CTCs and ctDNA (Figure 2). For example, in some head and neck cancer patients,
mutations in ALK and KIT were present in both analytes, whereas mutations in TP53
and SMAD4 were exclusive to CTCs and mutations in MET were exclusive to ctDNA.
Similarly, in colorectal cancer patients, mutations in TP53 and SMAD4 were present in both
analytes, whereas EGFR mutations were exclusive to CTCs, and BRAF, KRAS and PIK3CA



Curr. Issues Mol. Biol. 2024, 46 778

mutations were exclusive to ctDNA. The authors state that CTCs and ctDNA exhibited
genetic heterogeneity and that dual analysis is more informative than using one analyte
alone, outlining the relevance of this tool for real-time monitoring of disease progression,
treatment selection and personalised care [52]. Similarly, Manier et al., (2018), performed
research into 28 multiple myeloma patients to report that whole exome sequencing (WES)
revealed mutations exclusive to either CTCs or cfDNA. These analytes presented different
genetic profiles for the cross-evaluation of mutations, and the research infers that this
complementary information provided a comprehensive profile of clonal heterogeneity in
multiple myeloma [53]. This research also reports that in specific cases, the actionable
biomarker TP53 was mutated in both CTCs and ctDNA but not in primary tissue samples,
highlighting the benefit of liquid biopsy [53].
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Kong et al. (2020) performed CTC and ctDNA mutation profiling via qPCR and Sanger
sequencing in 16 lung adenocarcinoma and 21 breast ductal carcinoma patients. This
research reported that higher degrees of genomic heterogeneity were present in CTCs as
compared to ctDNA. More specifically, in some breast cancer patients, clinically actionable
mutations such as JAK3, BRAF or MTOR amplifications were present at specific timepoints
in CTC analysis but absent in matched ctDNA. The authors hypothesise that the difference
may stem from the origin of the analytes; CTCs may have evolved and survived treatment
whereas the ctDNA may be presenting genetic information of apoptotic tumour cells.
Furthermore, when analysed together, CTCs and ctDNA displayed higher degrees of
concordance with the metastatic tumour as compared to the primary tumour, representing
clonal evolution. In detail, this evidence indicates that dual analysis detected evolving
signatures during the progression of disease and throughout treatment, highlighting the
potential for use as treatment guides in personalised therapy [5]. Other research articles
support the findings that dual analysis of these analytes provides complementary profiling
information [54,55]. Some authors state that single-cell profiling of CTCs allows tumour
heterogeneity insights beyond that of ctDNA alone, and that the addition of CTCs to the
study of cfDNA is clinically relevant for monitoring clonal evolution and relapse [3].

Keup et al., report on a project named ELIMA (‘evaluation of multiple liquid biopsy
analytes in metastatic breast cancer patients all from one blood sample’) in which they
published a series of investigations assessing the mutation profiles in three or more blood-
based analytes. Keup et al. (2021) evaluated CTC mRNA, extracellular vesicle (EV) mRNA
and cfDNA profiles in 27 hormone receptor positive, HER2 negative MBC patients, report-
ing that the largest and most diverse number of overexpression signals occurred within
CTCs [56]. The authors state that this diversity mirrors spatial tumour heterogeneity, a
leading cause of treatment failure. Moreover, EV signals fluctuated greatly showing that
temporal heterogeneity and cfDNA provided a source for actionable variants. Thus, all
three analytes were complementary and together provided longitudinal, multiparamet-
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ric information to capture heterogeneity and tumour evolution [56]. In a similar ELIMA
study, Keup et al. (2021) evaluated CTC mRNA, CTC gDNA, EV mRNA and cfDNA
from 26 hormone receptor positive, HER2 negative MBC patients via qPCR, finding that
a combination of two analytes resulted in 81–92% of patients presenting with actionable
signals, a combination of three resulted in 92–96%, and all four resulted in 96% of patients
presenting with an actionable mutation signal [57]. Thus, these analytes are complementary
as opposed to competitive, and enable genomic and transcriptomic disease characterisation
towards more effective personalised medicine.

In the literature, the number of articles published including both CTCs and cfDNA/
ctDNA blood analytes is low in comparison to the analytes studied alone. The rapid
evolution of this research field may influence this in the future. Currently, clinical tri-
als undertaking the dual assessment of CTCs and ctDNA are underway in a number of
cancer types to assess patterns in diagnosis [58], to monitor biomarker response to treat-
ment [59,60], and to test if dual analysis is more sensitive than standard parameters and
imaging for disease monitoring [61]. It is suggested that the current limited access to both
CTC enrichment platforms and ctDNA sequencing platforms in the same laboratory is
responsible for the rarity of dual analysis research articles [5]. Moreover, it is reported
that in some studies, the dual analysis of CTCs and ctDNA has taken place, but only
epithelial CTCs have been isolated, thus mesenchymal or EMT phenotypes were missing.
Furthermore, some studies have only focused on a single mutation and therefore lack
comprehensive profiling, and others study CTCs and ctDNA from different blood samples,
failing to account for inter-sample heterogeneity [5]. The Parsortix® system can address
these issues as a label-free tool for the isolation and harvest of CTCs, facilitating the analysis
of CTCs in conjunction with ctDNA from the same blood sample. Herein, we review the
literature in which the Parsortix® system has been utilised for this dual analysis.

4. The Parsortix® System and Dual Analysis

The Parsortix® system has been used in studies investigating complementary informa-
tion from CTCs and ctDNA in NSCLC [62–66], triple negative breast cancer (TNBC) [67],
head and neck cancer, colorectal cancer, and melanoma [68]. These studies include dual
analysis towards the evaluation of prognosis [62,68], biomarker treatment selection [62,67]
and to inform treatment resistance [64,66] and relapse [62,63] faster than the standard of
care [69]. This showcases the clinical utility of liquid biopsy dual analysis throughout the
patient care pathway. A selection of these peer reviewed publications is discussed below
and listed in Table 1.

Markou et al. (2023) investigated Parsortix®-enriched CTCs and also cfDNA for
hotspot mutations in four therapeutically relevant genes (BRAF, KRAS, EGFR, and PIK3CA:
E545K and H1045R) from 49 early-stage NSCLC patients via droplet digital PCR (ddPCR)
to find complementary genomic information from the same blood sample. The prevalence
of the mutations tested was higher in CTCs as compared to cfDNA (38.8% and 24.5%,
respectively), and high heterogeneity was present both within and between the analytes.
The combined analyses of CTCs and cfDNA increased the percentage of patients identified
with actionable mutations to 53%, highlighting the benefit of dual analysis (Figure 3).
Moreover, this research showed that the incidence of progression and relapse was higher
when at least one mutation was detected in either sample, as compared to no detectable
mutation, revealing important stratification factors for early-stage NSCLC. As such, these
samples provided diverse genomic information regarding the prognosis and treatment of
NSCLC [62].
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Table 1. Publications using the Parsortix® system: CTC and ctDNA analysis.

Study Cancer Patients Analysis Key Message Reference

Markou et al.
(2023)

Early-stage
NSCLC 49

ddPCR of hotspot
mutations BRAF,

KRAS, EGFR,
and PIK3CA

Dual analysis provided
complementary molecular

information and greater diversity in
genomic information for cancer

prognosis and treatment.

[62]

Markou et al.
(2022)

Early-stage
NSCLC 42

MSP of APC,
RASSFIA1, FOXA1,

SLFN11, SHOX2

Methylation profiles varied between
CTCs, ctDNA, and primary tissue,

suggesting that dual analysis allowed
real-time monitoring of tumour
evolution. A higher incidence of

relapse was reported when at least
one gene promoter is methylated in

CTCs or cfDNA, highlighting the
prognostic value of dual analysis.

[63]

Ntzifa et al.
(2021) NSCLC 42

DNA methylation
patterns of RASSF1A,
RASSF10, APC, WIF-1,

BRMS1, SLFN11,
RARβ, SHISA3,

and FOXA1

CTCs and cfDNA provided
complementary information and

showed that methylation was
associated with disease progression

and identified as a potential
resistance mechanism.

[64]

Ntzifa et al.
(2021) NSCLC 48

Crystal dPCR
genotyping of EGFR

mutations
including T790M

Differences between ctDNA and
CTCs show heterogeneity and could

be predictive of resistance
mechanisms useful for evolution

tracking and treatment monitoring.

[66]

Ortolan et al.
(2021) TNBC 42

ddPCR and NGS,
personalised panels

including TP53,
PIK3CA, FGFR3

and more.

ctDNA and CTCs represent both
spatial and temporal heterogeneity
and allow dynamic monitoring of

cancer progression.

[67]

Mondelo-
Macia et al.

(2020)

Lung, colon,
prostate,

melanoma,
breast,

and gastric

30

ddPCR for MET
amplification in

cfDNA and IF for MET
overexpression

in CTCs

CTC and cfDNA MET status analysis
is a tool for monitoring resistance to
anti-EGFR therapy and can inform

overall survival.

[65]

Gorges et al.
(2019) Melanoma 84

Analysis of 61
clinically relevant
variants across 13

genes including BRAF,
NRAS and MAP2K1

Combined CTC and ctDNA analyses
can reveal synergistic information, as

well as predict relapse earlier than
imaging and the standard of care in

some cases.

[69]

Aya-Bonilla
et al. (2020) Melanoma 37

Immunocytochemistry
of CTCs and ddPCR of

MLANA, TYR,
MAGEA3, ABCB5

and PAX3

CTCs are a complementary feature to
cfDNA monitoring and can be

associated with shorter overall and
progression-free survival.

[70]

The same research group investigated the prognostic value of DNA methylation de-
tection in five gene promoters (APC, RASSFIA1, FOXA1, SLFN11, SHOX2) in early-stage
NSCLC patients via real-time methylation-specific PCR (MSP). Beyond DNA mutations,
epigenetic changes in methylation patterns can influence tumour suppressor gene expres-
sion and can be identified as an early event in tumorigenesis. This study reports differences
in DNA methylation patterns in CTCs, cfDNA and the primary tumour, as well as a higher
incidence of relapse when at least one methylated gene promoter was detected in CTCs
or cfDNA, highlighting the complementary nature and prognostic benefit to dual analyte
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analysis. The authors state that the dual analysis of CTCs and cfDNA allow for real-time
monitoring of tumour evolution [63]. Similarly, Ntzifa et al. (2021) investigated the DNA
methylation patterns of nine genes (RASSF1A, RASSF10, APC, WIF-1, BRMS1, SLFN11,
RARβ, SHISA3, and FOXA1) in NSCLC patients during osimertinib treatment to find com-
plementary information in CTCs and cfDNA. This research reported that the presence of at
least one gene methylation pattern was associated with progressive disease and identified
methylation as a potential resistance mechanism [64].
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Figure 3. Mutation status in four therapeutically relevant genes (BRAF, KRAS, EGFR, and PIK3CA:
E545K and H1045R) from 49 early-stage NSCLC patients in (a) CTC-derived DNA and (b) plasma
ctDNA and (c) the percentage of patient mutations from CTC-derived DNA alone, plasma ctDNA
alone or analysed in combination. Red represents mutation. Green represents wildtype. Figure
reproduced from Markou, A.N. et al. (2023) [62].

Mondelo-Macía et al. (2020) reported the successful detection of MET (hepatocyte
growth factor receptor) expression in CTCs (via immunofluorescence) and amplification in
cfDNA (via ddPCR) in a variety of cancer types (lung, colon, prostate, melanoma, breast,
and gastric cancer patients) towards the characterisation of tumours and for the detection
of treatment resistance [68]. More specifically, a correlation between cfDNA concentration
and MET copy number was determined. Furthermore, an association between CTCs that
were MET positive and poor survival in head and neck cancer patients was reported, an
association not observed for MET amplification determined by cfDNA analysis [68]. This
research highlights the potential for both CTC and cfDNA analysis as useful tools for
characterising tumours and guiding personalised treatment upon detection of treatment
resistance, through longitudinal monitoring.

In a study by Ntzifa et al. (2021), the presence of EGFR mutations in tissue, cfDNA and
CTCs in NSCLC patients undergoing osimertinib therapy was determined using Crystal
Digital PCRTM and subsequently compared (Figure 4). Of note, two patients (#11 and #38)
with a T790M mutation (a mutation associated with resistance to EGFR inhibitors) detected
in CTCs at the baseline but not in cfDNA or tissue had significantly lower progression-free
survival. Moreover, the presence of the T790M mutation was detected in CTCs from three
patients (#12, #17 and #18) at disease progression, which was absent at this time in cfDNA.
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The authors reported that this may be indicative of tumour heterogeneity and could also
be predictive of resistance mechanisms occurring under selective treatment pressure. The
authors conclude that analysis of EGFR mutations in both CTCs and cfDNA could be more
informative for treatment monitoring in these patients [66].
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Ortolan et al. (2021) evaluated CTCs and ctDNA in 42 patients with early-stage TNBC,
via ddPCR and NGS. The authors state that ctDNA presence was indicative of relapse
events and may help stratify patients suitable for intensification or alterative treatment
post therapy to prevent metastasis development. Furthermore, CTCs analysed at disease
progression revealed unique genetic abnormalities such as gain/loss of chromosome 10 and
21q. Network analysis of these altered regions identified actionable pathways including
PI3K/Akt, erbB, Raf, platinum-resistance signalling, and regulation of immune response.
This research states that CTCs were non-epithelial in most cases, as such they would
not have been detected by epithelial dependent CTC enrichment technologies. Overall,
the research team endorsed blood-based genomic analyses to utilise ctDNA as a tool for
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treatment response monitoring and CTCs as a tool to explore druggable targets in disease
progression in TNBC patients [67].

In a study by Gorges et al. (2019), CTCs and ctDNA samples from 84 melanoma
patients underwent the analysis of 61 clinically relevant variants across 13 genes including
BRAF, NRAS and MAP2K1. The study reported that ctDNA and CTCs provided comple-
mentary information, indicated relapse prior to standard of care imaging, and were more
accurate than the current melanoma staging system and biomarkers in some patients. More
specifically, in one case, CTCs presented with BRAFV600E and EGFRI491M mutations at
patient relapse, guiding targeted therapy; however, neither ctDNA, LDH (lactate dehydro-
genase), or S100 (a melanoma marker gene) levels were elevated at this time. This research
concludes that CTCs and ctDNA together provide real-time, complementary information
on the mutational status of RNA and protein expression, with clinical significance for
melanoma patients [69]. Aya-Bonilla, et al. (2020) also studied CTCs and cfDNA from
melanoma patients (37 patients). The researchers reported that although immunocytochem-
istry showed a vast heterogeneity of CTC morphology and phenotype, gene expression
analysis via ddPCR of five melanoma-associated genes revealed a comparable trend in CTC
and cfDNA scores. However, in some cases CTC analysis revealed changes in molecular
signatures at the baseline and in post treatment that were complementary to ctDNA moni-
toring. Furthermore, this research describes the Parsortix® yield as a suitable platform for
potential downstream transcriptomic analysis due to its low white blood cell background
yield as compared to other technologies [70].

5. Future Directions

As the omics revolution continues, we expect the further uptake of transcriptomics
and proteomics to shape the future of liquid biopsies and personalised medicine for a
comprehensive picture of tumour biology and clinical insights. The integration of multi-
omics from laboratory bench to patient bedside faces challenges in translating vast and
complex datasets into clinical benefit. Liquid biopsy-based multi-omics analysis is in its
infancy, and standardisation and clinical feasibility are key to the successful integration
of this tool into the clinic. This includes a need for improved access to microfluidic CTC
isolation devices and sequencing platforms. However, the future of liquid biopsies is
bright, with promising data emerging to support the use of whole blood as a source for
multiple analytes providing information on disease prognosis, treatment selection, the
monitoring of tumour evolution, and disease relapse. Furthermore, the use of dual analytes
to discover complementary information will continue to emerge in the future literature,
uncovering exclusive actionable insights to better inform personalised medicine. The future
of the Parsortix® system involves the development and commercialisation of a breadth
of downstream assays to expand CTC analysis, via immunofluorescent and molecular
solutions, to provide clinically actionable insight, as well as continued investigation into
the dual analysis of CTCs and ctDNA.

6. Conclusions

Liquid biopsies are emerging as a less invasive, less costly, and safer tool that provide
faster results and are more suited for longitudinal disease monitoring for cancer care. CTCs
and ctDNA are described as cornerstones of liquid biopsy analysis, providing minimally in-
vasive, real-time clinical information throughout the patient care pathway. Rapid advances
in technology and the affordability of NGS continue to excel, paving the way for a new era
of liquid biopsy. The omics revolution is driving the dual analysis of CTCs and ctDNA
as complementary sources of genomic and transcriptomic information, as RNA emerges
as a tool for more accurate phenotypical sampling. The Parsortix® system is a versatile
microfluidic device that facilitates epitope-independent capture and the analysis of CTCs
in conjunction with the analysis of ctDNA from a single blood sample towards real-time
personalised medicine, overcoming the shortfalls of immunoaffinity-based enrichment
technologies that rely on epithelial surface markers known to understate CTC capture.
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In particular, the Parsortix® system has been utilised in studies investigating the comple-
mentary information from CTCs and ctDNA for the evaluation of prognosis, to inform
treatment selection and assess resistance and relapse, in some cases faster than the standard
of care. This system addresses issues of sample heterogeneity and epitope-dependent CTC
capture with label-free microfluidic isolation.
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