
Citation: Hrgovic, I.; Zöller, E.; Doll,

M.; Hailemariam-Jahn, T.; Jakob, T.;

Kaufmann, R.; Meissner, M.;

Kleemann, J. Arsenic Trioxide

Decreases Lymphangiogenesis by

Inducing Apoptotic Pathways and

Inhibition of Important Endothelial

Cell Receptors. Curr. Issues Mol. Biol.

2024, 46, 67–80. https://doi.org/

10.3390/cimb46010006

Academic Editor: Dumitru A.

Iacobas

Received: 19 October 2023

Revised: 5 December 2023

Accepted: 19 December 2023

Published: 21 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Arsenic Trioxide Decreases Lymphangiogenesis by Inducing
Apoptotic Pathways and Inhibition of Important Endothelial
Cell Receptors
Igor Hrgovic 1,* , Eva Zöller 2, Monika Doll 2, Tsige Hailemariam-Jahn 2, Thilo Jakob 1, Roland Kaufmann 2,
Markus Meissner 2 and Johannes Kleemann 2

1 Department of Dermatology and Allergy, Experimental Dermatology and Allergy Research Group,
University Medical Center Giessen, Justus Liebig University, 35392 Giessen, Germany

2 Department of Dermatology, Venereology and Allergy, Goethe University, 60596 Frankfurt am Main, Germany
* Correspondence: igor.hrgovic@derma.med.uni-giessen.de; Tel.: +49-641-985-45200; Fax: +49-641-985-43229

Abstract: Tumor-induced lymphangiogenesis is strongly associated with the formation of tumor
metastasis. Therefore, the regulation of lymphangiogenesis offers a promising target in cancer ther-
apy. Arsenic trioxide (ATO) is highly effective in the treatment of patients with acute promyelocytic
leukemia (APL). As ATO mediates anti-angiogenic effects on endothelial and tumor cells, we aimed
to explore the impact of ATO on lymphangiogenesis in human lymphatic endothelial cells (LEC).
The BrdU assay and flow cytometry analysis were used to evaluate the influence of ATO on the
proliferation and cell cycle distribution of LECs. The lymphatic suppression effects of ATO were
investigated in vitro using the lymphatic tube formation assay. The effects of ATO on apoptosis, mi-
tochondrial membrane potential and endothelial cell receptors were investigated by Western blotting,
ELISA, flow cytometry and qRT-PCR. The treatment of LECs with ATO attenuated cell proliferation,
blocked tube formation and induced subG0/G1 arrest in LECs, thus suggesting enhanced apoptosis.
Although subG0/G1 arrest was accompanied by the upregulation of p21 and p53, ATO treatment
did not lead to visible cell cycle arrest in LECs. In addition, ATO caused apoptosis via the release of
cytochrome c from mitochondria, activating caspases 3, 8 and 9; downregulating the anti-apoptotic
proteins survivin, XIAP and cIAP-2; and upregulating the pro-apoptotic protein Fas. Furthermore,
we observed that ATO inhibited the VEGF-induced proliferation of LECs, indicating that pro-survival
VEGF/VEGFR signaling was affected by ATO treatment. Finally, we found that ATO inhibited the
expression of the important endothelial cell receptors VEGFR-2, VEGFR-3, Tie-2 and Lyve-1. In
conclusion, we demonstrate that ATO inhibits lymphangiogenesis by activating apoptotic pathways
and inhibiting important endothelial cell receptors, which suggests that this drug should be further
evaluated in the treatment of tumor-associated lymphangiogenesis.

Keywords: arsenic trioxide (ATO); lymphangiogenesis; apoptotic pathways; Tie-2; VEGFR-2/3;
Lyve-1

1. Introduction

Various derivatives of arsenic have been used for more than 2000 years as a therapeutic
drug for many diseases, such as malaria, syphilis and the plague [1]. Arsenic trioxide (ATO)
is an inorganic compound with the formula As2O3. Despite the toxicity of arsenic com-
pounds, ATO has been used in a number of Chinese and Indian medicines to treat cancer [2].
In the late 1990s, interest in ATO treatment options for acute promyelocytic leukemia (APL)
widely emerged. In 1998, Soignet and colleagues showed the first successful treatment
outcomes of APL with arsenic trioxide in the USA [3]. Since then, several studies have
confirmed the efficacy of ATO in the treatment of APL [4]. Currently, combined ATO
and all-trans retinoic acid (ATRA) is strongly recommended as a first-line therapy in the
treatment of low- and intermediate-risk APL, with complete remission rates and 4-year
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survival rates of more than 90% [5,6]. Although the toxicity of arsenic compounds can
vary greatly, ATO has demonstrated a favorable safety profile in patients with APL [7]. In
the context of treating APL, ATO induces terminal differentiation both in vitro and in vivo
via the proteasomal degradation of the retinoic acid receptor-alpha gene (PML-RARα)
fusion protein, which is mainly involved in the pathogenesis of APL [8]. ATO induces
differentiation, growth arrest or apoptosis in a number of tumor cell lines in vitro. In
addition, ATO has been shown to suppress anti-apoptotic genes (e.g., survivin, bcl-2 and
Mcl-1) and to upregulate pro-apoptotic genes (e.g., Puma, Bax and NOXA) in various
tumor cell lines, such as leukemia, glioma and rhabdomyosarcoma [9–11]. Furthermore,
ATO regulates the expression of proteins implicated in cell cycle control and differentiation
(e.g., p21WAF1/KIP1, p53, E2F1, HoxC9, cyclin E and D) [12–14]. Moreover, ATO has been
reported to suppress angiogenesis by inhibiting pro-angiogenic factors, such as vascular
endothelial growth factor (VEGF), Notch1 and VEGFR-2 [15,16]. Lymphangiogenesis is the
formation of new lymphatic vessels from preexisting ones. In adults, lymphangiogenesis
mainly occurs during the development of the corpus luteum, tissue repair, wound healing
or regeneration [17]. Thus far, several studies have revealed the importance of lymphangio-
genesis for the formation of metastasis in the tumor-draining lymph nodes. Due to this fact,
increased tumor-related lymphangiogenesis correlates with the formation of metastasis and
a poor prognosis in patients with breast cancer and melanoma [18]. Thus, targeting tumor
lymphangiogenesis may provide a promising approach to treat cancer metastasis. The first
evidence in a gastric cancer model revealed that As2O3 may inhibit lymphangiogenesis by
suppressing the expression of VEGF-C and VEGFR-3 in gastric cancer cells [19]. Based on
these findings, we investigated the anti-lymphangiogenic effects of ATO in primary human
lymphatic endothelial cells.

2. Materials and Methods
2.1. Cell Culture

Cryopreserved primary human dermal lymphatic endothelial cells were obtained
from PromoCell (Heidelberg, Germany). The cells were isolated from the dermis of juvenile
foreskin from single donors. LECs were cultured at 37 ◦C and 5% CO2 in an endothelial cell
basal medium MV2 (PromoCell, Heidelberg, Germany) supplemented with 7.5% human
serum (Corning, Corning, NY, USA). Cells at passages 4–8 were used in this study.

2.2. Chemicals

Arsenic trioxide (ATO) was purchased from TEVA Pharma (Ulm, Germany), stau-
rosporine from Sigma-Aldrich (Taufkirchen, Germany) and cytochalasin D from Biomol
(Hamburg, Germany). Recombinant human VEGF-A and VEGF-C were obtained from
ReliaTech (Wolfenbüttel, Germany).

2.3. Fluorescence-Activated Cell Sorting Analysis

LECs were blocked in the S-phase of the cell cycle by serum deprivation for 24 h. The
cells were then treated with 5 µM ATO or 1 µM staurosporine as a control for 24 h. After the
treatment, cells were washed once with 1× PBS, trypsinized and washed again with PBS.
The cells were fixed in ice-cold 70% ethanol for 30 min and 4 ◦C. After fixation of the cells
and subsequent centrifugation, cell pellets were incubated in PBS containing 40 µg/mL
RNase A for 30 min at 37 ◦C and resuspended in PBS containing 50 µg/mL propidium
iodide. Cell cycle analysis was performed using a BD Accuri™ C6 flow cytometer (Becton
Dickinson, Franklin Lakes, NJ, USA).

2.4. Cell Proliferation and Cytotoxicity Assay

The impact of ATO on cell proliferation was determined using the ELISA-BrdU from
Roche Diagnostics (Mannheim, Germany). The detailed cell assay processes were per-
formed as described previously [20]. The effect of ATO on cytotoxicity in LECs was tested
using the cytotoxicity detection kit (Roche Diagnostics, Mannheim, Germany), measuring
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lactate dehydrogenase (LDH) released from the cells in the supernatant. For this assay,
cells were seeded in triplicate into 96-well plates (1 × 105/well) and allowed to adhere
overnight. Then, they were incubated with increasing concentrations of ATO (0.5–10 µM)
or 0.1% Triton-X100 (Sigma-Aldrich, Taufkirchen, Germany) as a positive control for 24 h.
Then, 50 µL of the supernatant was transferred into empty wells of a 96-well plate, mixed
with 50 µL of the provided LDH reaction mix and incubated in the dark for 30 min at RT.
To quantify LDH release, absorbance measurements at 500 nm were conducted using the
photometer ASYS Expert96 (Deelux Labortechnik, Gödenstorf, Germany). The data from
each treatment group are expressed as a percentage of the control group.

2.5. Tube Formation Assay

LECs were treated with increasing concentrations of ATO (0.5–10 µM) or 6 µM cytocha-
lasin D as a positive control for 24 h in endothelial cell basal medium MV2 supplemented
with 7.5% human serum, without the addition of the growth factors VEGF and bFGF
from the supplemental mix. Growth factor-reduced MatrigelTM (BD Discovery Labware,
Bedford, MA, USA) supplemented with 0.5 ng/mL VEGF (recombinant human VEGF
165) and 10 ng/mL FGF was placed into the lower chambers of µ-slide angiogenesis wells
(IBIDI, Planegg/Martinsried, Germany) and allowed to polymerize for 30 min at 37 ◦C.
Then, treated LECs were resuspended in growth media supplemented with VEGF and
FGF and seeded on the gel in duplicate at a density of 1 × 104 cells/well. Cytochalasin
D is a mycotoxin and acts as a positive control in this assay due to its ability to inhibit
tube formation. Four pictures per well were taken after 6 h using a 200×magnification in
phase contrast mode. Images were taken on the Biozero BZ-8000K microscope (Keyence
Deutschland GmbH, Frankfurt am Main, Germany). Images were acquired via the BZ
analyzer software 2.1 (Keyence Deutschland GmbH, Frankfurt am Main, Germany). Using
the tool Angiogenesis Analyzer [21] in the software ImageJ v1.52a (U.S. National Institutes
of Health, Bethesda, MD, USA), the tube formation ability was analyzed by counting the
master segments of each picture.

2.6. Apoptosis Assay

The effect of ATO on apoptosis was assessed by measuring cytoplasmic histone-
associated DNA fragments (mono- and oligonucleosomes) after induced cell death using
the Cell Death Detection ELISA PLUS Kit from Roche Diagnostics (Mannheim, Germany).
The detailed cell assay processes were performed as described previously [20].

2.7. Caspase Assays

To analyze the ability of ATO to activate caspases 3/7, 8 and 9, Caspase-Glo® Assays
were conducted (Promega, Madison, WI, USA). LECs were seeded in triplicate into black
96-well plates at a density of 1.5 × 104 cells per well. Twenty-four hours later, the cells
were treated with increasing concentrations of ATO (2.5 µM, 5 µM and 10 µM). After 24 h,
the medium was removed and the caspase 3/7, 8 or 9 activity was determined using a
luminescent Caspase-Glo® 3/7, 8 or 9 assay kit according to the manufacturer’s protocol.
The luminescence was measured using a CytoFluor® Series 4000 (Applied Biosystem,
Waltham, MA, USA).

2.8. Cytochrome c Release

LECs were plated in cell culture dishes (5 × 106 cells/60 cm2) and treated the next
day with ATO at concentrations of 2.5, 5 and 10 µM. After 24 h, cytoplasmic extracts
were obtained by digitonin permeabilization, as described previously [20]. To analyze the
cytochrome c levels in cytosol, an enzyme-linked immunosorbent assay (R&D Systems,
Wiesbaden, Germany) was conducted according to the manufacturer’s manual. Optical
density (450 nm) was measured using an ELISA reader (ELISA Reader ASYS Expert 96,
Deelux Labortechnik, Gödenstorf, Germany).
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2.9. Western Blot Analysis

Protein samples were prepared as described previously [22]. Following SDS-PAGE and
electroblotting, membranes were incubated with the following primary antibodies: anti-p21
(diluted 1:1000) (#2947, Cell Signaling, Danvers, MA, USA), anti-p53 (diluted 1:1000) (#9282,
Cell Signaling, Danvers, MA, USA), anti-cIAP-1 (diluted 1:1000) (#4952, Cell Signaling, Dan-
vers, MA, USA), anti-cIAP-2 (diluted 1:1000) (#3130, Cell Signaling, Danvers, MA, USA),
anti-survivin (diluted 1:1000) (#2803, Cell Signaling, Danvers, MA, USA), anti-XIAP (di-
luted 1:1000) (#2042, Cell Signaling, Danvers, MA, USA), anti-Fas (dilutes 1:1000) (#4233,
Cell Signaling, Danvers, MA, USA), anti-tubulin (diluted 1:2000) (#3873, Cell Signaling,
Danvers, MA, USA), anti-Lyve-1 (diluted 1:500) (FAB20891, R&D Systems, Minneapolis,
MN, USA), anti-Tie2 (diluted 1:1000) (sc-324, Santa Cruz, CA, USA), anti-VEGFR-2 (diluted
1:1000) (#9698, Cell Signaling, Danvers, MA, USA) and anti-VEGFR-3 (diluted 1:500) (sc-321,
Santa Cruz, CA, USA). Primary antibody application was followed by incubation with
horseradish peroxidase-conjugated secondary antibodies (anti-mouse and anti-rabbit IgG,
Amersham, Uppsala, Sweden; anti-goat, Dako, Glostrup, Denmark). Western blot analysis
was performed as described earlier [20]. Protein bands were quantified by using ImageJ
(v1.52a). Optical band densities were normalized with the corresponding tubulin bands.

2.10. Real-Time Quantitative PCR Analysis

To analyze the gene expression of VEGFR-3 and Lyve-1 on the RNA level, total cellular
RNA extraction was conducted using QIAshredder columns (Qiagen, Hilden, Germany)
and an RNeasy Mini Kit (Qiagen, Hilden, Germany) as recommended by the manufacturer
after DNase digestion. First, 750 ng of RNA was used for first-strand cDNA synthesis
using the QuantiTect RT-Kit (Qiagen, Hilden, Germany). Measurements of the relative
mRNA amounts of the target genes were conducted using the SYBRgreen dye technique on
a LightCycler system (Roche Diagnostics, Mannheim, Germany). Ct values (cycle at which
the SYBR Green intensity exceeds a threshold) were measured by using the LightCycler
Software Version 4.05 (Roche). The relative gene expression rates were calculated using the
2−∆∆Ct method [23] with normalization to the housekeeping gene β-actin.

2.11. Mitochondrial Membrane Potential Measurements

To investigate the influence of ATO on mitochondrial membrane potential (∆ψm), the
tetramethylrhodamine ethyl ester perchlorate (TMRE) mitochondrial membrane potential
assay was used (Abcam, Cambridge, UK). Human lymphatic endothelial cells were seeded
into 6-well plates and allowed to adhere overnight. The next day, the cells were treated
with increasing concentrations of ATO (0.5–10 µM) for 6 h or 100 nM carbonyl cyanide
4-(trifluoromethoxy)phenylhydrazone (FCCP) for 10 min. FCCP was used as a positive con-
trol due to its ability to uncouple ionophores and so to eliminate mitochondrial membrane
potential. After the treatment, the medium was removed from the cells and the TMRE
working solution (100 nM TMRE in 1x PBS + 0.2% BSA) was transferred to the cells. To
stain the cells, they were incubated for 20 min at 37 ◦C and 5% CO2. During the incubation,
TMRE, a red-orange dye, was transported inside the cells through the membrane and
accumulated in the negatively charged mitochondria due to its positive charge. In the
event of decreased membrane potential, mitochondria are less negative, which leads to
decreased fluorescent intensity due to lower concentrations of TMRE at the mitochondria.
After 20 min, cells were trypsinized from the plate. After washing the pellets two times
with 1x PBS, they were resuspended in 150 µL 1x PBS for FACS measurement. Fluorescent
intensities were measured using a flow cytometer. After gating for cell populations, the
FL-2 intensities (excitation: 488 nm; emission max.: 575 nm) were compared using the BD
Accuri™ C6 software.

2.12. Intracellular ROS Measurement

The production of intracellular reactive oxygen species (ROS) induced by ATO was
assessed using the 2′,7′-dichlorofluorescin diacetate (DCFDA) Cellular ROS Detection
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Assay Kit (Abcam, Cambridge, UK). LECs were seeded in triplicate into black 96-well
plates (1.5 × 104) and allowed to adhere overnight. After washing the cells with the
provided 1x buffer, they were stained with 25 µM DCFDA for 45 min at 37 ◦C and 5%
CO2. After a second washing step, the cells were treated with increasing concentrations
of ATO (0.5–10 µM) and 50 µM tert-butyl hydrogen peroxide (TBHP) as a positive control
for 24 h at 37 ◦C and 5% CO2. During the incubation, the non-fluorescent substrate in the
cells was oxidized by ROS into the highly fluorescent compound 2′,7′-dichlorofluorescein
(DCF). Unstained cells were included to eliminate background fluorescence. After 24 h, the
fluorescence intensity was immediately measured in a microplate reader (CytoFluor 4000,
Applied Biosystems, Waltham, MA, USA) with λexc 495 nm and λem 529 nm.

2.13. Statistical Analysis

If not stated otherwise, experiments were carried out at least three times indepen-
dently. Cytotoxicity, proliferation, cytochrome c, ROS and caspase activity assays were
carried out at least in triplicate per experiment. Data analysis was performed using the
SigmaPlot 12.0 software (Systat Software Inc., San Jose, CA, USA) and data were expressed
as means ± standard deviation (SD). The normal distribution of the data was assessed
using the Shapiro–Wilk normality test. Subsequently, for differences between more than
two groups, the Kruskal–Wallis test was applied, followed by Dunn‘s post hoc analysis. The
Mann–Whitney rank sum test was applied to determine differences between two groups.
A p value of less than 0.05 was considered statistically significant.

3. Results

The effects of ATO on cell toxicity, cell proliferation and in vitro lymphangiogenesis in
human lymphatic endothelial cells were evaluated.

First, we examined the effects of ATO on cell proliferation and cytotoxicity using LECs.
In our experiments, we found that ATO reduced cell proliferation in a dose-dependent
manner, as determined by the BrdU assay (Figure 1a). To assess the cytotoxic effects of
ATO, we performed lactate dehydrogenase assays and found that treating LECs with 0.5,
2.5 or 5 µM ATO for 24 h did not lead to significant changes in LDH release compared to
the untreated control, whereas ATO at a concentration of 10 µM led to a significant increase
in detected LDH (Figure 1b). Additionally, we found that ATO inhibited capillary-like
structure formation in a concentration-dependent manner (Figure 1c,d). These findings pro-
vide evidence that ATO mediates anti-lymphangiogenic effects by influencing endothelial
cell function.

3.1. ATO Induces Apoptotic Cell Death in LECs

Given the effect of ATO on LEC proliferation, we next monitored the cell cycle phase
distribution by flow cytometry. Our data revealed that the percentage of cells in the
subG0/G1 phase, which contains apoptotic cells, was significantly increased upon ATO
treatment for 24 h (Ctrl.: 3.5 ± 1.5%; 5 µM ATO: 17.1 ± 7.8%). The staurosporine control
exhibited 44.4% of cells in the subG0/G1 phase (Figure 2a). Furthermore, we found that
ATO did not influence the other phases of the cell cycle, and only staurosporine treatment
led to a significant decrease in cells in the G0/G1 and G2/M phases. These findings were
further verified by using a histone/DNA ELISA. As shown in Figure 2b, we found that
the 24 h incubation of LECs with 5 and 10 µM ATO significantly induced apoptosis. In
summary, these findings indicate that ATO leads to an increase in apoptosis but not to an
arrest in other cell cycle phases.

3.2. ATO Activates Both the Intrinsic and Extrinsic Apoptotic Pathways in Human Lymphatic
Endothelial Cells

To further determine the underlying mechanisms of ATO-mediated LEC apoptosis,
we explored whether ATO-induced apoptosis was related to caspase activation. As shown
in Figure 3a–c, we found that ATO increased the activation of caspases 3/7, 8 and 9 after
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24 h exposure in a dose-dependent manner. These results reveal that ATO induces LEC
apoptosis through both extrinsic and intrinsic signaling pathways.

3.3. ATO Triggers Apoptosis through Mitochondrial Pathway but Is Independent of Induction of
ROS in LECs

During intrinsic apoptosis, the membrane potential of mitochondria is decreased,
which leads to the release of certain apoptosis triggering factors such as cytochrome c,
which is followed by caspase 9 activation. To investigate whether increasing concentrations
of ATO also lead to changes in mitochondrial membrane potential, an assay using FACS
was conducted. We found that increasing concentrations of ATO (0.5–10 µM) decreased the
mitochondrial membrane potential in LECs. The positive control (100 nM FCCP) abolished
the membrane potential (Figure 4a). Consistent with this result, ATO induced cytochrome
c release from mitochondria to cytosol in LECs in a concentration-dependent manner
(Figure 4b). Next, we investigated the impact of ATO on intracellular ROS accumulation
in LECs, which is an important step in mitochondrial membrane permeabilization and
the subsequent release of cytochrome c. In our experiments, we observed that none of
the used concentrations of ATO (2.5–10 µM) led to a significant difference in measured
ROS activity in LECs, whereas the positive control (50 µM TBHP) led to an increase from
100% (ctrl. untreated) to around 4000% (Figure 4c). Taken together, our results demonstrate
that ATO decreases the mitochondrial membrane potential with subsequent cytochrome c
release independently of ROS induction in LECs.
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(0.5, 2.5, 5 and 10 µM) for 24 h as indicated. (a) The proliferation of LECs was analyzed by BrdU assay.
The data are represented as the mean ± SD, each obtained in triplicate from at least six independent
experiments. * p < 0.05 vs. ctrl. (b) Cytotoxicity was examined at 24 h by LDH assay. Values are
represented as the mean ± SD, each assessed in triplicate (n = 6). Significance was determined by
Kruskal–Wallis test with * p < 0.05 vs. ctrl. (c) Tube formation assay was conducted with LECs treated
with increasing concentrations of ATO (0.5–10 µM) and with a positive control (6 µM cytochalasin D)
for 24 h; 200× magnification, phase contrast. (d) Mean values of master segments analyzed with the
tool “Angiogenesis Analyzer for ImageJ” (v1.52a) from three independent experiments are shown as
mean ± SD. Significance was determined by Kruskal–Wallis test with * p < 0.05 vs. ctrl.
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rosporine as positive control and H2O/DMSO as solvent control for 24 h (n = 6). Cell cycle distribution
was analyzed by flow cytometry after propidium iodide staining. The figure shows the percentage of
cells in each phase of cell cycle with regard to solvent controls (=100%; H2O/DMSO). Significance
was determined by Mann–Whitney rank sum test with * p < 0.05 vs. ctrl. (b) Cells were treated with
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in triplicate are shown. Significance was determined by Kruskal–Wallis test with * p < 0.05 vs. ctrl.
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cytochrome c was quantified using an enzyme-linked immunosorbent assay. Mean values from four
independent triplicate experiments are depicted ± SD (error bars); data are expressed as cytochrome
release in percentage (%) with regard to solvent controls (=100%; H2O). Significance was determined
by Kruskal–Wallis test with * p < 0.05 vs. ctrl. (c) ROS accumulation assay was performed with
LECs treated with increasing concentrations of ATO (0.5–10 µM) or with 50 µM TBHP as a positive
control for 24 h as indicated. Mean values from three independent triplicate experiments are shown
as mean ± SD. Mean value of ctrl. was set to 100%. Mean values of remaining samples are shown as
percentage of ctrl. Data were analyzed using Kruskal–Wallis test. * p < 0.05 vs. ctrl.

3.4. Induction of Cell Death Markers by ATO Treatment

Western blot analysis was performed to determine the expression of apoptosis-related
markers that might be involved in the activation of ATO-induced intrinsic and extrinsic
apoptotic pathways in LECs. In our experiments, we demonstrated that ATO upregulated
the protein expression levels of p21 and p53 in a dose-dependent manner. Additionally, we
observed that ATO reduced the expression of anti-apoptotic proteins survivin, XIAP and
cIAP-2. Treating LECs with different concentrations of ATO did not lead to any significant
differences in the expression pattern of cIAP-1. Furthermore, we found that ATO increased
the protein expression of the important extrinsic apoptosis marker Fas (Figure 5a,b). These
results demonstrate that ATO induces apoptosis in LECs by upregulating the tumor sup-
pressor genes p21 and p53; downregulating the anti-apoptotic proteins survivin, XIAP and
cIAP-2; and upregulating the extrinsic apoptosis-related protein Fas.
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3.5. ATO Reduces the Expression of Important Endothelial Cell Receptors

Our results showed that the ability of ATO-treated LECs to build proper tubes
was impaired significantly (Figure 1c). Therefore, we analyzed the impact of ATO on
pro-angiogenic signaling. First, we demonstrated that ATO inhibited the VEGF-A and
-C-induced proliferation of LECs, observing that ATO could modulate angiogenic signaling
pathways (Figure 6a). Due to this, Western blot analysis with LECs treated with 0.5, 2.5 and
5 µM ATO as indicated for 24 h was conducted to examine the protein expression levels of
important endothelial cell receptors that play major roles in triggering lymphangiogenesis.
In our analysis, we found that ATO inhibited the expression of vascular endothelial growth
factor receptor-2 and -3 (VEGFR-2/3), angiopoietin receptor Tie-2 and lymphatic vessel
endothelial hyaluronan receptor Lyve-1 in a concentration-dependent manner (Figure 6b).
Additionally, we found that 5 µM ATO reduced the mRNA expression levels of VEGFR-3
and Lyve-1 (Figure 6c). In summary, we demonstrate that the anti-lymphangiogenic effects
of ATO are partly mediated by interfering with pro-survival signaling pathways through
diminished endothelial VEGFR-3, Lyve-1 and Tie2 expression in LECs.
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4. Discussion

Recently, studies have shown that lymphangiogenesis is an important step in tumor
progression [18]. Lymph node involvement has long been recognized as a significant
marker of poor prognosis in different types of tumors. Studies have revealed that intratu-
moral lymphatics and lymphatic invasion in melanoma and breast cancer are correlated
with distant metastasis and reduced disease-free survival [24,25]. Furthermore, various
studies have confirmed that increased lymphatic invasion in melanoma and breast cancer
is associated with sentinel lymph node metastasis and serves as a prognostic marker for
distant metastasis [26,27]. Taken together, it is assumed that therapies targeting tumor
lymphangiogenesis might contribute to a reduction in malignant cancer progression [18].
In our study, we examined the effects of ATO on lymphangiogenesis in human lymphatic
endothelial cells. ATO is a chemotherapy drug and exhibits low toxicity when used in the
treatment of APL [2]. ATO has been shown to induce anti-lymphangiogenic activity in a
mouse model of gastric cancer by various mechanisms, including the downregulation of
pro-lymphangiogenic factors such as VEGFR-3 and VEGF-C in cancer cells [19]. In addition,
it has been demonstrated that ATO impairs angiogenesis in vitro and in vivo [16,28,29].
Ge et al. demonstrated that ATO inhibited the proliferation and viability of human um-
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bilical vein endothelial cells (HUVEC) and decreased their migration. Furthermore, they
demonstrated that ATO reduced the expression of the pro-angiogenic factor VEGF-A
through the induction of Ets-2 and miRNA-126 [30]. Additionally, Sun and colleagues
demonstrated that ATO suppresses angiogenesis and induces autophagy in HUVECs
through the upregulation of forkhead box protein O3 [28]. In the study of Zhang and
colleagues, low dosages of ATO decreased the formation of vasculogenic mimicry (VM)
in hepatoblastoma cells in vitro and in vivo via reducing the expression levels of VM-
associated proteins such as VE-cadherin and MMP-9 [31]. Taken together, these findings
suggest the growing importance of ATO and indicate that it could be an attractive can-
didate for anti-angiogenic therapy. To date, however, to the best of our knowledge, the
anti-lymphangiogenic effects of ATO have not been studied on human lymphatic endothe-
lial cells. In this study, the anti-lymphangiogenic effects of ATO in LECs were confirmed to
be due to apoptosis and the inhibition of important endothelial cell receptors. To analyze
the effects of ATO on LECs, LECs were treated with low-dose ATO (0.5–10 µM) for 24 h.
Lymphatic endothelial cells showed a significant decrease in proliferation and tube forma-
tion starting from 2.5 µM. The cell cycle is important for the regulation of cell proliferation
and duplication. We demonstrated that ATO induced subG0/G1 arrest, thus suggesting
enhanced apoptosis. Although subG0/G1 arrest was accompanied by the induction of
the cell cycle-regulating proteins p21 and p53, ATO treatment did not lead to visible cell
cycle arrest in LECs, indicating a pro-apoptotic role of p21 and p53 for ATO-mediated
apoptosis. In line with our findings, recent evidence has shown that ATO can induce
apoptosis in a p21- and p53-dependent manner in other tumor models (e.g., hepatocellular
carcinoma and glioma) [13,32]. Numerous studies have revealed that ATO can enhance the
extrinsic apoptotic pathway by upregulating cell surface death receptors and/or ligands
(e.g., Fas and TRAIL), leading to the activation of caspase 8 [33,34]. Furthermore, it has
been found that ATO activates the intrinsic apoptotic pathway in different tumor cell lines
through mitochondrial membrane disruption, resulting in the release of cytochrome c and
the consecutive activation of caspases 3/7 and 9 [35,36]. In our study, we demonstrated
that ATO activated both the intrinsic and extrinsic apoptotic pathways in human lymphatic
endothelial cells by activating caspases 3, 8 and 9. The IAP and Bcl-2 proteins (such as
cIAP-1/2, XIAP, survivin and Bcl-xL) are the key regulators of the intrinsic apoptosis path-
way and cause mitochondrial disruption to release cytochrome c, which induces caspase
activity and apoptosis [37]. Therefore, the expression pattern of these proteins in LECs
after ATO treatment was verified. In our study, we demonstrated that ATO activated
the intrinsic apoptotic pathway in human lymphatic endothelial cells by decreasing the
mitochondrial membrane potential, increasing cytochrome c release and downregulating
the anti-apoptotic proteins survivin, XIAP and cIAP-2. Intracellular ROS production is
a frequent effect of chemotherapeutic agents such as ATO and is important in activating
apoptotic pathways [38]. In our experiments, we could exclude any effects of ATO on
intracellular ROS production in LECs, indicating that ROS is not involved in ATO-induced
endothelial apoptosis. The Fas–FasL pathway has been considered as a prototypic inducer
of the extrinsic apoptotic pathway in normal and neoplastic cells [37]. We found that
caspase 8 activation was accompanied by the ATO-induced upregulation of Fas. These
findings confirm that ATO-induced apoptosis may be at least one mechanism responsible
for the anti-lymphangiogenic properties of ATO. In summary, our study demonstrated that
ATO activates apoptosis in primary human lymphatic endothelial cells through inducing
the intrinsic and extrinsic apoptotic pathways. It is well known that lymphangiogenesis
in cancer is induced by tumor cells producing cytokines and growth factors like VEGF-A
or C and angiopoietins, which bind to VEGF receptors-2 and -3 and Tie-2 at the surfaces
of LECs located at quiescent lymphatic capillaries. This leads to the proliferation and
formation of new lymphatic vessels towards the primary cancer cells in a concentration-
based manner [39]. In addition, it has been found that signaling via Lyve-1, a lymphatic
endothelial cell-specific hyaluronan receptor, promotes the proliferation and migration
of lymphatic endothelial cells [40]. Interestingly, Xiao YF and colleagues showed that
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ATO delayed tumor growth, inhibited the microvessel density, downregulated VEGFR-1
and VEGFR-2 expression in gastric tumor xenografts and disturbed the stimulating effect
of VEGF-A on the growth of SGC7901 gastric cancer cells [41]. In vivo studies further
demonstrated that ATO could inhibit the expression of pro-lymphangiogenic VEGF-C and
VEGFR-3 in a mouse model of gastric cancer. However, the impact of ATO on lymphatic
endothelial cells has not been examined [19]. Here, we showed that ATO inhibited the
proliferation of LECs and that these effects could not be abolished by the addition of the
pro-lymphangiogenic growth factors VEGF-A and -C, indicating that ATO could modulate
pro-lymphangiogenic signaling pathways. Since VEGF-A and -C bind to VEGFR-2 and
-3, which leads to endothelial cell survival, proliferation and migration, we hypothesized
that the suppression of these important endothelial receptors by ATO may represent an
additional mechanism for ATO-mediated anti-lymphangiogenic effects. Furthermore, we
examined the protein expression patterns of the important lymphatic endothelial cell recep-
tors Tie-2 and Lyve-1. Our hypothesis was verified by our observation that ATO decreased
the protein expression of VEGFR-2 and -3, Tie-2 and Lyve-1 in LECs. In addition, VEGFR-3
and Lyve-1 mRNA expression was decreased after ATO treatment. Due to the major role of
these surface proteins in the process of lymphangiogenesis, particularly on the cell survival,
proliferation, migration and sprouting of LECs, it can be assumed that these reduced levels
led to the measured reduction in proliferation and impaired tube formation ability in LECs.
Taken together, our results provide, for the first time, strong evidence that the ATO-related
suppression of endothelial cell survival is partially mediated by the inhibition of specific
lymphatic endothelial cell receptors.

5. Conclusions

Taken together, the results of our study present strong evidence that ATO demon-
strates unique anti-lymphangiogenic effects in primary human lymphatic endothelial cells
through the activation of both intrinsic and extrinsic apoptotic pathways. ATO-induced
cell death was associated with a decrease in mitochondrial membrane potential; increased
cytochrome c release; the downregulation of the anti-apoptotic proteins survivin, XIAP
and cIAP-2; the upregulation of the pro-apoptotic proteins p21 and p53; and the induction
of the expression of Fas. We also demonstrated for the first time that ATO reduced the
expression of the important endothelial cell receptors VEGFR-2 and -3, Tie-2 and Lyve-1,
demonstrating that ATO could influence specific pro-lymphangiogenic signaling pathways.
Finally, our study has uncovered new targets in human lymphatic endothelial cells for the
anti-lymphangiogenic effects of ATO, which may be an interesting therapeutic strategy in
the treatment of tumor-associated lymphangiogenesis.
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