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Abstract: There are numerous clinically proven methods for treating cancer worldwide. Immunother-
apy has been used to treat cancer with significant success in the current studies. The purpose of this
work is to identify somatically altered target gene neoantigens and investigate liver cancer-related
immune cell interaction and functional changes for potential immunotherapy in future clinical trials.
Clinical patient data from the Cancer Genome Atlas (TCGA) database were used in this investigation.
The R maf utility package was used to perform somatic analysis. The 17-mer peptide neoantigens
were extracted using an in-house Python software called Peptide.py. Additionally, the epitope analy-
sis was conducted using NetMHCpan4.1 program. Neopeptide immunogenicity was assessed using
DeepCNN-Ineo, and tumor immune interaction, association with immune cells, correlation, and
survival analysis were assessed using the TIMER web server. Based on somatic mutation analysis, we
have identified the top 10 driver genes (TP53, TNN, CTNNB1, MUC16, ALB, PCLO, MUC4, ABCA13,
APOB, and RYR2). From the superfamily of 20 HLA (Human leukocyte antigens) allele epitopes, we
discovered 5653 neopeptides. Based on T cell receptor face hydrophobic analysis, these neopeptides
were subjected to immunogenicity investigation. A mutation linked to tumor growth may have an
impact on immune cells. According to this study’s correlation and survival analysis, all driver genes
may function as immune targets for liver cancer. These genes are recognized to be immune targets.
In the future, immune checkpoint inhibitors may be developed to prolong patient survival times and
prevent hepatocellular carcinoma (HCC) through immunotherapy.

Keywords: liver hepatocellular carcinoma; somatic mutations; neoantigens; immune checkpoint
inhibitors; immunotherapy

1. Introduction

Approximately 1.80 billion cases and 830,000 fatalities from liver cancer were predicted
for 2020; by 2025, more than 1 million people may be affected [1–3]. Liver cancer is currently
the third most common cause of cancer-related deaths globally. Out of the total liver
malignancies, 85–90% of them are hepatocellular carcinomas (HCC). Chronic hepatitis B
and C virus infections include a number of significant risk factors, the most dangerous
of which is cirrhosis [4,5]. As the pathogenic co-factors in HCC, alcohol and tobacco are
additional related risk factors [6].

Depending on the etiologies and gene alterations, different pathogenic molecular
studies have been conducted [7]. Molecular parthenogenesis could be used to identify the
disease’s underlying mutations, but the therapeutic use of this newfound understanding is
still far in the future [8]. Finding driver genes with oncogenic and suppressive properties
in HCC may be improved by the high throughput gene sequence [9]. Telomerase activation
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mutations, viral insertions, chromosomal changes, and gene duplications are characteristics
that set HCC apart [10]. Novel proteins (neoantigens) or tumor-specific proteins that
are attached to major histocompatibility complexes on the cell surface and that can be
recognized by T cell receptors (TCRs) for additional cell response may be generated by
mutations and viral oncogenes [11].

The immune classification of liver cancer has been established by numerous investiga-
tions utilizing biological, immunological, genomics, and epigenomics techniques [12,13].
The phrases immune-active, immune-exhausted, and immune-classification were utilized in
our study, which was immune-classification oriented. Tumor microenvironment activation
of immune-exhausted tumors is a major factor in HCC. It has an increased concentration
of helper T(CD4+) cells, and it may cause cytotoxic T (CD8+) cells to react negatively
to immune checkpoint inhibitors (ICIs) [14]. The immune system’s current reaction to a
tumor attack is known as the ICI, which activates T cells and has demonstrated increased
effectiveness in treating a number of solid tumors [12]. For the treatment of liver cancer, the
Food and Drug Administration (FDA) has approved ICIs such as ipilimumab, nivolumab,
pembrolizumab, and atezolimumab [15,16]. These immune checkpoint inhibitors (ICIs)
target T cell immunoglobulin and mucin domain –3 (TIM3), lymphocyte activation gene
3 (LAG-3), programmed cell death protein-1 (PD-1) and ligand (PDL-1), and cytotoxic
T-lymphocyte protein-4 (CTLA4). ICIs can shrink tumors and increase survival rates by
reactivating repressed T cells that attack cancer [17,18]. Checkpoint blockade therapy is
successful, although only a small percentage of patients benefit from it. There are currently
no immunological targets that can be used to predict a patient’s response. The identification
of unique and uncommon cancer antigens as well as co-inhibitory signaling molecules that
coordinate T cell immunotherapy thus constitutes the novelty of this work.

2. Materials and Methods
2.1. Data Collection

The TCGA database (accessed on 15 July 2022, https://portal.gdc.cancer.gov/) pro-
vided the whole exome sequencing (WES) open-source data for LIHC. The mutation
annotation format (MAF) file containing all of the patient’s clinical data was obtained. With
the Illumina HiSeq 2000 Whole Exome Sequencing Platform, 358 LIHC patients’ sample
sequencing was completed. All patients with hepatocellular carcinoma had the liver and
intrahepatic bile ducts as their primary sites of cancer. The MAF files were analyzed using
the R maftools and TCGA bio links packages.

2.2. Identification of Neoantigens

Protein sequences for the top 10 driver genes (P53, TNN, CTNNB1, MUC16, ALB,
PCLO, MUC4, ABCA13, APOB, and RYR2) were obtained from the Uniport database
(https://www.uniprot.org/, accessed on 15 July 2022). The 17-mer peptide length, where
the mutated type (MT) amino acid was in the middle of the other eight amino acids from
upstream and downstream, and wildtype (WT) amino acid sequences for the top 10 genes
(S2) were extracted using our proprietary Python script (Peptide.py) (Table S1) with pVAC-
seq (v.4.08) as the reference [19]. Artificial neural networks are used by NetMHCpan v4.1
software, Lyngby, Denmark to train an epitope analysis algorithm. We selected a super-
family of HLA class-I 20 alleles (HLA-A*01:01, HLA-A*02:01, HLA-A*02:03, HLA-A*02:07,
HLA-A*03:01, HLA-A*11:01, HLA-A*24:02, HLA-A*29:02, HLA-A*31:01, HLA-A*32:01,
HLA-A*68:02, HLA-A*07:02, HLA-B*15:01, HLA-B*35:01, HLA-B*40:01, HLA-B*44:02,
HLA-B* 44:03, HLA-B*51:01, HLA-B*54:01, and HLA-B*57:01) from earlier research [20].
For epitope analysis, the top 10 driver genes were tested against 20 alleles. The key selection
and filtering mechanism for all of the peptide binding affinity of MHC (major histocompat-
ibility) molecules is the 9-mer amino acid chain. For this investigation, we selected 9-mer
peptides determined by inhibitory concentration (IC50). These IC50 values are assumed to
have 500 nM for weak binding and 50 nM for strong binding [21–23].

https://portal.gdc.cancer.gov/
https://www.uniprot.org/


Curr. Issues Mol. Biol. 2024, 46 108

2.3. Potential Neoantigen Analysis

The class-I HLA neoantigens’ immunogenicity were predicted by the DeepCNN-Ineo
(accessed on 15 July 2022, http://119.3.70.71/dbPepNeo2/deepcnn-ineo.html) based on
the score. This application is based on a convolutional neural network-based deep learning
model that was generated utilizing curated MHC-I epitope data from the Immune Epitope
Database (accessed on 15 July 2022, IEDB, https://www.iedb.org/). The recommended
score for high immunogenicity is 0.8, with 0.5–0.8 for low immunogenicity and less than
0.5 for non-immunogenicity.

2.4. Immune Profile Studies with Timer Web Server

The tumor immune estimation resource (TIMER) is a web resource for systematic
evaluation of the clinical impact of different immune cells in diverse cancer types that
(accessed on 15 July 2022, https://cistrome.shinyapps.io/timer) may be used to analyze
the relationship and survival analysis between immune gene markers and liver cancer, as
well as to determine the infiltrating status for six immune cell types: B cells, CD8+ T cells,
CD4+ T cells, macrophages, neutrophils, and dendritic cells [24].

2.5. Statistical Analysis

All patient somatic mutation analysis was conducted using statistical significance
analysis, and presentations were performed using R v4.0. Fisher’s exact test was used to
compare categorical variables. We used Spearman’s correlation and statistical significance
to evaluate the correlation of gene expression. The Cox proportional hazards regression
model was used to assess the risk factors in the overall survival analysis.

3. Results
3.1. LIHC Data and Clinical Information Selection

We obtained LIHC data for 358 patient samples including normal and tumor samples
from the TCGA using clinical information. Whole exome sequencing (WES) data were
used for all of these samples. As seen in Figure 1, this clinical data included the patient
ID, gender, age, and survival status. The number of male patients (241) was more than the
number of female patients (117) in this instance (Table S2). Using Fisher’s exact test, the
death rate in the late stage was considerably high (p = 0.0436). The overall survival (OS) of
males and females differed slightly.
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3.2. Analyzing the MAF File for the Somatic Mutation Analysis

High-level platforms include the full exome sequencing, TCGA-LIHC MAF file data-
specific variant calling with MuSE or MuTech. We utilized the R package maftools to
statistically summarize and visualize the mutation study. The TCGA sample barcode in
the MAF file may be used to identify somatic mutations and determine the frequency of
mutations for each patient’s suggested clinical data. Plot maf was utilized to show the
variation categorization and kind in a boxplot, with the number of variants in each sample
in a stacked barplot. The summary of multiple hits, annotated variants, and mutated genes
is shown in Figure 2A. The number of variants in each gene divided by the total number of
patients (358) with at least one mutation identified provides the frequency of the genes. Of
the 358 total samples in Figure 2B, the top 10 genes altered 268 samples, or 74.86% of the
total. The functional plots in boxplot Figure 2C indicate the number of variations in allele
mean frequency 50 for each sample, which may help identify the most important driver
genes (P53, TNN, CTNNB1, MUC16, ALB, PCLO, MUC4, ABCA13, APOB, and RYR2).
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3.3. TMB (Tumor Mutational Burden)

The liver cancer mutation landscape has been revealed by NextGen Sequencing (NGS)
technology. The TMB measures assess how many non-synonymous somatic mutations there
are in each patient’s sample per million base pairs. Previous studies have demonstrated
that TMB reacts to solid tumors and may be used to target liver cancer biomarkers with
immune treatment. The TMB determines how many mutations there are in each megabase
(log10per) of the genomic sequences. It is believed that the TMB is a major factor in the
production of immunogenic neopeptides. One sample had no mutations, making the total
358 samples’ mutation burden one. Figure 2D shows a plot of the data, which are the
357 LIHC samples compared with 363 TCGA cohorts.

3.4. Mutational Signatures

Most hepatocytes constantly accumulate several DNA mutations and epigenetic mod-
ifications along with other risk factors when liver disorders arise. Six DNA substitutions
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(C > T, C > A, T > C, T > A, C > G, T > G) were found by the somatic mutation analysis
of LIHC. Additional classifications of the single nucleotide polymorphisms (SNPs) into
transitions (Ti) and transversions (Tv) are displayed in the stacked bar graph in Figure 3.
The C > T transition has the highest number of base mutations, but transversions in the
C > A and T > C transitions also have the highest number of base mutations. Notably, there
are significantly fewer transversions in the base pairs T > A, C > G, and T > G. Transversions,
on the other hand, encompass far more than just transitions.
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conversions of transitions and transversions.

3.5. Pathways of Oncogenic Signaling

In the present study, ten well-known signaling pathways such as the RTK-RAS, WNT,
NOTCH, Hippo, PIK3, Cell Cycle, MYC, TGF-, TP53, and NRF2 were examined. In addition,
we examined the processes behind these somatic alterations. Here, using 358 TCGA-LIHC
samples with a fraction of mutations in clusters on the X-axis, as displayed in Figure 4,
we worked on a framework to design routes evenly. Numerous studies have shown
that TCGA-LIHC commonly alters a wide range of significant pathways. More changed
pathways, such as 80% RTK-RAS or cell-cycle pathways in numerous tumor types, are also
present in tumors with the highest tumor mutation burden. In total, 30% to 50% of the
Wnt signaling pathways are caused by the CTNNB1 gene mutation. In 70% of other driver
genes, P53 genomic alterations changed gene-centricity as well as intra- and inter-pathway
interactions. This pathway particularly responds to immune checkpoint inhibitors and
may be enhanced by CD4+ and CD8+ cell infiltrations and immunological categorization
of HCC tumors. It might help in the treatment of cancer.
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3.6. Identification of Neoantigens (Peptide Selection and Epitope Analysis)

To choose the 17-mer peptide length MT and WT types in FASTA format, we created a
bespoke Python tool (Table S3). For the epitope analysis, we selected the top 10 somatic
mutation driver genes from the TCGA-LIHC. The Uniport database was the source of the
driver gene protein sequence. We chose super family HLA-Class-I (20) alleles, enabling us
to provide results that may account for 95% of the world’s human population. Additionally,
using the elution ligand method (EL) and the academically licensed NetMHCpan-4.1
software, epitope analysis was carried out using the HLA alleles versus peptides as inputs.
A large amount of allele training data was used to accurately quantify the peptide’s
prediction of the HLA binding affinity. On the basis of the IC50 threshold (500 nM) values,
we were able to forecast all potential mutant epitopes by strong and weak binding affinity.
Since 9-mer peptides may comprise 90% of neoantigens, we exclusively took them into
consideration. Human T cell responses may demonstrate this.

Using the default NetMhcpan4.1 IC50 values, we filtered 5653 neopeptides of driver
gene missense mutations (Table S4). The altered peptides are recognized by cytotoxic CD8+
T cells when they bind to class-I MHC molecules and nucleotides. Following the expected
extension and characterization of the investigation, there appeared to be a correlation
between the observed number of neopeptides and the mutation burden. Figure 5 shows
the findings of the largest amount of neopeptides’ predicted frequency driving genes.
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3.7. Identification of Potential Neoantigens

Ultimately, neoantigens and epitopes from the NetMHCpan study were confirmed
by HLA-class-I 8–9 amino acid length. Because they are more sensitive, a few amino acids
choose to add N- and C-terminal anchor sites. TCR binds to hydrophobic amino acids
most of the time. Epitopes with this frequency are very immunogenic. The frequency of
the neopeptide immunogenicity features was validated in the IEDB based on the charge.
To predict the TCR epitopes for both immunogenic and non-immunogenic neopeptides,
we employed the website DeepCNN-Ineo program. To identify neoantigens using the top
10 driver genes, we employed nine superfamilies (20) of HLA class-I alleles (Table S5).
The suggested peptide length is eight or twelve amino acids, with position two at the
N-terminus and position C-terminal being used as the terminal anchor sites by default. The
prediction scores were less than 0.5 when contemplating non-immunogenicity (negative
high), higher than 0.5 when considering high positive immunogenicity, and between
0.5 and 0.8 when indicating low positive immunogenicity. These values show that the
immunogenicity score is indicated on the Y-axis of all neoantigen immunogenicity values
that were plotted using the Python script results. Every driver gene with 20 HLA alleles on
the X-axis is a neoantigen (Figure 6).

3.8. Immune Profile Data Analysis

Genetic changes are linked to the growth and spread of tumors, and these changes
may have an impact on the immune cells that infiltrate tumors (TIIC). All six immune
cell types—B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic
cells—in their WT and mutant states could be compared with the driver gene somatic
mutation. P53 (28%), TNN (25%), CTNNB1 (24%), MUC16 (16%), PCLO (11%), ALB (11%),
MUC4 (10), ABCA13 (9%), APOB (9%), and RYR2 (9%) are the 10 most frequently mutated
genes. With the use of the dynamic web interface tool TIMER, the mutation module was
used to examine the immunological infiltration. The box plots produced for each immune
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group are shown in Figure 7, where the immune infiltration distribution level of each gene
mutation is compared using statistically significant values and a 95% confidence interval,
determined using the two-sided Wilcoxon rank sum test.
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Figure 7. The box plots from the mutation module display the difference in the tumor immune estima-
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(I). APOB, and (J). RYR2, respectively, in liver cancer.
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3.9. Investigate Immune Checkpoint Inhibitors

Immunotherapy using immune checkpoint inhibitors is currently the most successful
therapeutic treatment for metastatic liver cancer. This is an important development in
cancer biomarker prediction. In this work, we examined the relationship between immune
cells and tumor immune infiltration, and we found that immune inhibitory receptors such
as PDCD1, CTLA4, TIM3, and LAG3 may be important for T cell activation in tumor
cells. Dostarlimab (TSR-042), an antibody that blocks the PDCD1 receptor, was recently
approved by the FDA to treat endometrial cancer. Advanced solid tumors have been
used in this clinical trial (NCT02715284) to test the antibody mismatch repair and DNA
repair functions [25]. There are ongoing phase-II clinical trials (NCT03680508) using
TSR-042 PDCD1 (PD-1) and TSR-022 anti-HAVCR2 (TIM3) antibodies for primary liver
cancer. We examined the computational relationship between the widespread ICB receptors
PDCD1/HAVCR2 and LAG3 and the TCGA-LIHC driver gene. According to earlier
research, CD8+ T cells are associated with inhibitor receptors, which trigger T cell activation
for therapeutic liver cancer treatment. Not on a normal liver tissue sample but on CD8+ T
cell malignancies, elevated expression of TIM-3 and LAG-3 may facilitate immune evasion
and poor prognosis. The TIMER analysis revealed that PDCD1, CTLA4, HAVCR2, and
LAG-3 correlated with all ten of the TCGA-LIHC’s top genes, with correlation values
ranging from 0.19 to 1. The significant p values for this statistical connection, which were
determined using Spearman’s rho value, are displayed in Figure 8A,B.
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Figure 8. (A). Scatter plots derived from the relationship between the expression of driver genes
(TP53, TNN, CTNNB1, MUC16, and ALB) on the X-axis and known immune targets (PDCD1, CTLA4,
HAVCR2, and LAG3) on the Y-axis. (B). Scatter plots derived from the association between driver
genes (PCLO, MUC4, ABCA13, APOB, and RYR2) and known immunological targets (PDCD1,
CTLA4, HAVCR2, and LAG3) on the X- and Y-axes.

The median group computed the hazard ratio (HR) on the Cox PH model with a 95%
confidence interval (CI) by analyzing the TCGA-LIHC of each driver gene’s overall survival.
Red denotes a high group risk, and blue denotes a low group risk in the group survival
plot displayed in Figure 9. An examination of the tumor mutation burden survival shows
a correlation between these driver genes. Future immunotherapy research, including ICI
clinical studies, will be necessary.
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Figure 9. The overall survival analysis plot shows the median values on the Y-axis and months on
the X-axis, indicating all driver genes TP53, TNN, CTNNB1, MUC16, ALB, PCLO, MUC4, ABCA13,
APOB, and RYR2, respectively.

4. Discussion

The study group is gradually developing next-generation sequencing technology to
combine massive amounts of data for immune therapy-related mutation studies in various
malignancies. The entire exome sequences of 358 patients’ sample maf files, which were
obtained from the TCGA database, were used in the current investigation. Using R maf
tools, we conducted a mutation study and discovered a large number of mutant genes. The
number of neoantigens with somatic mutations per megabase in cancer correlates with the
tumor mutation burden [26]. Using the netMHCpan4.1 program, an epitope analysis was
conducted on a modified peptide sequence against 20 superfamily HLA-I alleles. Based on
the IC50 values of 500 nM strong interaction with T cells, MHC molecules were predicted
for the 8–9 mer epitopes/neoantigens. We identified possible neoantigens based on the
immunogenicity score of the neopeptides using the DeepCNN-Ineo website. Data from
the IEDB repository were used to train this program. The CD8+ T cells were classified as
immunogenic or non-immunogenic based on the relative hydrophobicity of amino acids
in this study. The T cell receptors could identify the antigenic character of the epitopes.
With low G+C genomic codons potentially having an impact on the amino acid use case,
the majority of the data included in this study came from intracellular diseases such as
viruses [27]. These more hydrophobic potential pathogens may be employed to identify
T cell receptors. Based on their close proximity to antigens, hydrophobic areas have been
found to greatly boost the rate of proteasomal breakdown and the immunogenic T cell
epitopes [28].

Current research on immunotherapy is leading to a greater understanding of how the
immune system infiltrates cancer. It is difficult to analyze and visualize the vast amounts
of clinical and genetic data. Developing a unique computational technique to deconvolve
complex data is essential to investigate tumor–immune interactions [29]. Using six immune
cells—B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells—
we comprehensively analyzed the immunological and genomic characteristics of tumors
in our study using the TIMER online server-based technology [30]. Mutations in the top
driver genes identified by TCGA-LIHC (TP53, TNN, CTNNB1, MUC16, ALB, PCLO, MUC4,
ABCA13, APOB, and RYR2) were examined. Box plots were constructed for each immune
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cell subgroup, and the expression displayed the statistically significant values that were
assessed using the two-sided Wilcoxon rank sum test (Figure 7). We found that CD8+
immune infiltration enhanced the tumors with high mutant gene counts in all TCGA-LIHC
patients. We postulated that the immunogenic mutations in these predictions may reflect
the expression of CD8+ [31].

The relationship between liver cancer driver genes and immune cell receptors was
analyzed using TIMER in another module, and the results indicated a modest correlation
with Spearman’s statistical significance (0.9–1). The most significant immune biomarkers
for hepatocellular carcinoma were employed in immunotherapy, according to earlier re-
search: PDCD1, CTLA4, HAVCR2/TIM3, and LAG3 [32]. Liver cancer patients now have
access to immune checkpoint inhibitor therapy. Both the tumor cells and the surrounding
environment should be affected by the immunotherapy [33]. The immune response of CD8+
immune cells and the PDCD1 tumor association may be the targets of ICI molecules, which
can also indicate the prognosis of cancer. TIM3 and LAG3 receptors are present on CD4+
and CD8+ immune cells [34]. Hepatocytes manufacture a unique functional fibrinogen-like
protein-1 ligand that is exclusive to LAG3. These research preclinical findings back up the
exploration of TIM3, LAG-3, and PDCD1 inhibition in liver cancer cases [35].

The best mean survival was 22.8 months based on the initial study of immunological
biomarkers (CTLA4, PDCD1) and ICI combinations of ipilimumab and nivolumab [36].
The FDA approved the combinational ICI and additional combinations of durvalumab
and tremelimumab for the PDCD1 in light of these positive results [37]. Atemalizumab
and bevacizumab were licensed by the FDA for use in immunotherapy for the first HCC
combination on a worldwide scale [38]. These findings have led to the present clinical
trials of a number of ICI combinations on patients receiving systemic immune treatment.
Adoptive cell therapy for liver cancer also involves lymphocyte sensitization therapy, which
is carried out in vivo prior to being reinfused into the patient [39]. The cytokine killer cells
are triggered by the lymphokine. Another extremely effective and promising treatment
for hematological malignancies with solid tumors that is still in the research phase is the
CAR T cell [40]. The antigen domain of this treatment is made up of a monoclonal antibody
signal fragment that is tailored to a particular tumor cell target. The target cell’s toxicity is
one drawback of this CAR T cell treatment. The target cells express themselves in normal
cells as a result. GPC3 CAR T cell intravenous injunction is undergoing safe and effective
clinical trials (NCT04121273) [41].

The use of vaccines to prevent cancer is another important factor. The potency may
rise due to the tumor-specific response. This demonstrates how well T lymphocytes are
prepared to combat antigens produced by cancer cells [42]. Historically, vaccinations have
been administered as a standalone treatment; however, it is now known that immuno-
suppression in the tumor microenvironment increases T cell activity [43]. Additional
immunological vaccinations may detect the antigen specific to a tumor. HLA typing is the
best method to use for immune-related peptide identification in this case. Furthermore,
specific immunological signatures associated with cytotoxic T-lymphocytes (CTLs) are
expressed along with this HLA peptidome. Based on these immunological signature results
on board, these vaccination clinical studies for liver cancer are still ongoing [44].

5. Conclusions

It is necessary to expand the gene mutation analysis from the sequence source in this
investigation of immunotherapy for liver cancer. Novel neoantigens unique to tumor anti-
gens recognized by T lymphocytes may be found as a result of somatic mutations. Further
research on immune cell profiles and immune infiltration expression CD8+ predictions are
indicated by the altered genes. In order to identify novel immune biomarkers from the
TCGA-LIHC and examine associated expression with established immune biomarkers for
T cell activation with an immune checkpoint inhibitor in liver cancer, this study examined
PDCD1, CTLA4, HAVCR2, and LAG3. These investigations on immune receptors and
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altered genes may prove useful in the future for developing vaccines and ICIs for the
immunotherapy of liver cancer.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cimb46010009/s1, Table S1: In-house c program for the 18-mer
neoantigen peptide filter from the wildtype and normal peptide sequences; Table S2: XLS file of
358 patients’ clinical information; Table S3: XLS file of the top 10 genes’ 18-mer peptide sequence
(wildtype and mutant); Table S4: XLS file of the 18-mer protein sequence with superfamily HLA class-
1 alleles using NetMhcpan software extensive data; Table S5: XLS file for the potential neoantigen
analysis data.

Author Contributions: Conceptualization, S.P., K.S. and V.D.R.; methodology, S.P., K.S. and V.D.R.;
software, S.P., K.S. and V.D.R.; validation, S.P., K.S. and V.D.R.; formal analysis, S.P., K.S. and V.D.R.;
investigation, S.P., K.S. and V.D.R.; resources, S.P., K.S. and V.D.R.; data curation, S.P., K.S. and V.D.R.;
writing—original draft preparation, S.P., K.S. and V.D.R.; writing—review and editing, S.P., K.S. and
V.D.R.; visualization, S.P., K.S. and V.D.R.; supervision, K.S. and V.D.R.; project administration, K.S.
and V.D.R.; funding acquisition, K.S. and V.D.R. All authors have read and agreed to the published
version of the manuscript.

Funding: V. Damodara Reddy thanks SERB, New Delhi, India, for providing financial support under
Ramanujan Fellowship schemes (SB/S2/RJN-043/2014 dated 17 December 2015), and Swetha Pu-
lakuntla thanks ICMR, India for a Senior Research Fellowship (ISRM/11 (32)/2022). Khajamohiddin
Syed sincerely thanks the University of Zululand for financial aid (Grant number P419).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data are available in the main manuscript and supplementary
information.

Acknowledgments: Vaddi Damodara Reddy thanks the University of Zululand, South Africa, for
appointing him as a visiting fellow.

Conflicts of Interest: The authors declare no conflicts of interest, and the funders had no role in
the design of the study, in the collection, analyses, or interpretation of data, in the writing of the
manuscript, or in the decision to publish the results.

References
1. Ferlay, J.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global Cancer Observatory:

Cancer Today; International Agency for Research on Cancer: Lyon, France, 2020. Available online: https://gco.iarc.fr/today/home
(accessed on 18 December 2023).

2. Villanueva, A. Hepatocellular Carcinoma. N. Engl. J. Med. 2019, 380, 1450–1462. [CrossRef] [PubMed]
3. Renne, S.L.; Sarcognato, S.; Sacchi, D.; Guido, M.; Roncalli, M.; Terracciano, L.; Di Tommaso, L. Hepatocellular carcinoma: A

clinical and pathological overview. Pathologica 2021, 113, 203. [CrossRef] [PubMed]
4. Llovet, J.; Kelley, R.; Villanueva, A.; Singal, A.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn, R.

Hepatocellular carcinoma. Nat. Rev. Dis. Primers 2021, 7, 6. [CrossRef] [PubMed]
5. Gilles, H.; Garbutt, T.; Landrum, J. Hepatocellular Carcinoma. Crit. Care Nurs. Clin. N. Am. 2022, 34, 289–301. [CrossRef]
6. Rich, N.E.; Yopp, A.C.; Singal, A.G.; Murphy, C.C. Hepatocellular carcinoma incidence is decreasing among younger adults in the

United States. Clin. Gastroenterol. Hepatol. 2020, 18, 242–248.e5. [CrossRef] [PubMed]
7. Gao, X.; Zhao, C.; Zhang, N.; Cui, X.; Ren, Y.; Su, C.; Wu, S.; Yao, Z.; Yang, J. Genetic expression and mutational profile analysis in

different pathologic stages of hepatocellular carcinoma patients. BMC Cancer 2021, 21, 786. [CrossRef] [PubMed]
8. Liver, E.A.F.T.S.O.T. EASL clinical practice guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2018, 69, 182–236.
9. Zeng, H.; Hui, Y.; Qin, W.; Chen, P.; Huang, L.; Zhong, W.; Lin, L.; Lv, H.; Qin, X. High-throughput sequencing-based analysis of

gene expression of hepatitis B virus infection-associated human hepatocellular carcinoma. Oncol. Lett. 2020, 20, 18. [CrossRef]
10. in der Stroth, L.; Tharehalli, U.; Günes, C.; Lechel, A. Telomeres and telomerase in the development of liver cancer. Cancers 2020,

12, 2048. [CrossRef]
11. Xie, N.; Shen, G.; Gao, W.; Huang, Z.; Huang, C.; Fu, L. Neoantigens: Promising targets for cancer therapy. Signal Transduct.

Target. Ther. 2023, 8, 9. [CrossRef]
12. Sia, D.; Jiao, Y.; Martinez-Quetglas, I.; Kuchuk, O.; Villacorta-Martin, C.; de Moura, M.C.; Putra, J.; Camprecios, G.; Bassaganyas,

L.; Akers, N. Identification of an immune-specific class of hepatocellular carcinoma, based on molecular features. Gastroenterology
2017, 153, 812–826. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/cimb46010009/s1
https://www.mdpi.com/article/10.3390/cimb46010009/s1
https://gco.iarc.fr/today/home
https://doi.org/10.1056/NEJMra1713263
https://www.ncbi.nlm.nih.gov/pubmed/30970190
https://doi.org/10.32074/1591-951X-295
https://www.ncbi.nlm.nih.gov/pubmed/34294938
https://doi.org/10.1038/s41572-020-00240-3
https://www.ncbi.nlm.nih.gov/pubmed/33479224
https://doi.org/10.1016/j.cnc.2022.04.004
https://doi.org/10.1016/j.cgh.2019.04.043
https://www.ncbi.nlm.nih.gov/pubmed/31042582
https://doi.org/10.1186/s12885-021-08442-y
https://www.ncbi.nlm.nih.gov/pubmed/34238242
https://doi.org/10.3892/ol.2020.11879
https://doi.org/10.3390/cancers12082048
https://doi.org/10.1038/s41392-022-01270-x
https://doi.org/10.1053/j.gastro.2017.06.007
https://www.ncbi.nlm.nih.gov/pubmed/28624577


Curr. Issues Mol. Biol. 2024, 46 119

13. Rebouissou, S.; Nault, J.-C. Advances in molecular classification and precision oncology in hepatocellular carcinoma. J. Hepatol.
2020, 72, 215–229. [CrossRef] [PubMed]

14. Ding, L.; Sun, L.; Bu, M.T.; Zhang, Y.; Scott, L.N.; Prins, R.M.; Su, M.A.; Lechner, M.G.; Hugo, W. Antigen presentation by clonally
diverse CXCR5+ B cells to CD4 and CD8 T cells is associated with durable response to immune checkpoint inhibitors. Front.
Immunol. 2023, 14, 1176994. [CrossRef] [PubMed]

15. Lachenmayer, A.; Alsinet, C.; Savic, R.; Cabellos, L.; Toffanin, S.; Hoshida, Y.; Villanueva, A.; Minguez, B.; Newell, P.; Tsai, H.-W.
Wnt-pathway activation in two molecular classes of hepatocellular carcinoma and experimental modulation by sorafenib. Clin.
Cancer Res. 2012, 18, 4997–5007. [CrossRef] [PubMed]

16. Brunet, J.-P.; Tamayo, P.; Golub, T.R.; Mesirov, J.P. Metagenes and molecular pattern discovery using matrix factorization. Proc.
Natl. Acad. Sci. USA 2004, 101, 4164–4169. [CrossRef] [PubMed]

17. Wu, M.; Huang, Q.; Xie, Y.; Wu, X.; Ma, H.; Zhang, Y.; Xia, Y. Improvement of the anticancer efficacy of PD-1/PD-L1 blockade via
combination therapy and PD-L1 regulation. J. Hematol. Oncol. 2022, 15, 24. [CrossRef] [PubMed]

18. Wang, B.; Zhao, Q.; Zhang, Y.; Liu, Z.; Zheng, Z.; Liu, S.; Meng, L.; Xin, Y.; Jiang, X. Targeting hypoxia in the tumor microenviron-
ment: A potential strategy to improve cancer immunotherapy. J. Exp. Clin. Cancer Res. 2021, 40, 24. [CrossRef]

19. Hundal, J.; Carreno, B.M.; Petti, A.A.; Linette, G.P.; Griffith, O.L.; Mardis, E.R.; Griffith, M. pVAC-Seq: A genome-guided in silico
approach to identifying tumor neoantigens. Genome Med. 2016, 8, 11. [CrossRef]

20. Bulik-Sullivan, B.; Busby, J.; Palmer, C.D.; Davis, M.J.; Murphy, T.; Clark, A.; Busby, M.; Duke, F.; Yang, A.; Young, L. Deep
learning using tumor HLA peptide mass spectrometry datasets improves neoantigen identification. Nat. Biotechnol. 2019, 37,
55–63. [CrossRef]

21. Abelin, J.G.; Keskin, D.B.; Sarkizova, S.; Hartigan, C.R.; Zhang, W.; Sidney, J.; Stevens, J.; Lane, W.; Zhang, G.L.; Eisenhaure,
T.M. Mass spectrometry profiling of HLA-associated peptidomes in mono-allelic cells enables more accurate epitope prediction.
Immunity 2017, 46, 315–326. [CrossRef]

22. Bassani-Sternberg, M.; Chong, C.; Guillaume, P.; Solleder, M.; Pak, H.; Gannon, P.O.; Kandalaft, L.E.; Coukos, G.; Gfeller, D.
Deciphering HLA-I motifs across HLA peptidomes improves neo-antigen predictions and identifies allostery regulating HLA
specificity. PLoS Comput. Biol. 2017, 13, e1005725. [CrossRef] [PubMed]

23. Lund, O.; Nielsen, M.; Kesmir, C.; Petersen, A.G.; Lundegaard, C.; Worning, P.; Sylvester-Hvid, C.; Lamberth, K.; Røder, G.;
Justesen, S. Definition of supertypes for HLA molecules using clustering of specificity matrices. Immunogenetics 2004, 55, 797–810.
[CrossRef] [PubMed]

24. Li, T.; Fan, J.; Wang, B.; Traugh, N.; Chen, Q.; Liu, J.S.; Li, B.; Liu, X.S. TIMER: A web server for comprehensive analysis of
tumor-infiltrating immune cells. Cancer Res. 2017, 77, e108–e110. [CrossRef] [PubMed]

25. Oaknin, A.; Tinker, A.V.; Gilbert, L.; Samouëlian, V.; Mathews, C.; Brown, J.; Barretina-Ginesta, M.-P.; Moreno, V.; Gravina, A.;
Abdeddaim, C. Clinical activity and safety of the anti–programmed death 1 monoclonal antibody dostarlimab for patients with
recurrent or advanced mismatch repair–deficient endometrial cancer: A nonrandomized phase 1 clinical trial. JAMA Oncol. 2020,
6, 1766–1772. [CrossRef] [PubMed]

26. Chan, T.A.; Yarchoan, M.; Jaffee, E.; Swanton, C.; Quezada, S.A.; Stenzinger, A.; Peters, S. Development of tumor mutation burden
as an immunotherapy biomarker: Utility for the oncology clinic. Ann. Oncol. 2019, 30, 44–56. [CrossRef] [PubMed]
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