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Abstract: Abstract: To investigate the differential expression of the chemokine signaling pathway
in lacrimal gland benign lymphoepithelial lesion (LGBLEL) and lacrimal lymphoma, providing
insights into the mechanisms underlying malignant transformation and aiding clinical differentiation.
Transcriptome analysis was conducted on patients with LGBLEL, lymphoma, and orbital cavernous
hemangioma (CH). Three cases of LGBLEL and three cases of lymphoma were randomly selected as
control and experimental groups, respectively. A real-time quantitative polymerase chain reaction
(RT-qPCR) was used to validate genes associated with the chemokine signaling pathway. Immunohis-
tochemical (IHC) staining and quantitative Western blotting (WB) were performed for precise protein
quantification. Transcriptome analysis revealed differential expression of the chemokine signaling
pathway between the LGBLEL and lymphoma groups, identifying ten differentially expressed genes:
CCL17, VAV2, CXCR5, NRAS, HCK, RASGRP2, PREX1, GNB5, ADRBK2, and CCL22. RT-qPCR showed
that, compared to the lymphoma group, the LGBLEL group had significantly higher expression of
CCL28, CXCL17, HCK, GNB5, NRAS, and VAV2 (p = 0.001, <0.001, <0.001, <0.001, =0.020, <0.001,
respectively) and lower expression of CCR1 (p = 0.002). IHC staining and quantitative analysis con-
firmed significant differences in protein expression between the groups for CCL28, CCR1, CXCL17,
HCK, GNB5, NRAS, and VAV2 (p = 0.003, 0.011, 0.001, 0.024, 0.005, 0.019, and 0.031, respectively).
While IHC provided localization, WB offered greater precision. WB revealed that, compared to the
lymphoma group, the LGBLEL group exhibited significantly higher expression of CCL28, CXCL17,
HCK, GNB5, NRAS, and VAV2 (p = 0.012, 0.005, 0.009, 0.011, 0.008, and 0.003, respectively) and lower
expression of CCR1 (p = 0.014). The chemokine signaling pathway plays a role in the malignant
transformation of LGBLEL. The decreased expression of CCL28 and CXCL17, coupled with the
increased expression of CCR1, may be linked to the progression of LGBLEL into lymphoma.

Keywords: lacrimal gland; benign lymphoepithelial lesion; lymphoma; pathogenesis; chemokine
signaling pathway

1. Introduction

Lacrimal gland benign lymphoepithelial lesion (LGBLEL), also known as Mikulicz
disease, is a chronic inflammatory lesion characterized by the painless enlargement of
the lacrimal gland and the swelling of the eyelids [1,2]. With advancements in the under-
standing of the concept of “immunoglobulin G4-related ophthalmic disease (IgG4-ROD)”
in recent years, the Japanese scholar Goto proposed diagnostic criteria for IgG4-ROD in
2014 [3]. IgG4-ROD is a subset of IgG4-related disease (IgG4-RD), with an incidence rate of
approximately 4–34% in IgG4-RD and 25% among orbital lymphoproliferative diseases [4,5].
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While the lacrimal gland is affected in 84% of IgG4-ROD cases, other orbital structures, such
as the trigeminal nerve, extraocular muscles, orbital fat, eyelid, and other tissues, may also
be involved [6]. It is suggested that Mikulicz disease, BLEL, and other lymphoplasmacytic
infiltrative diseases fall under the umbrella of IgG4-ROD [7].

Research has shown that LGBLEL can progress to lymphoma, with mucosa-associated
lymphoid tissue (MALT) lymphoma being the most common type. Other forms, such as
diffuse large B-cell lymphoma and follicular lymphoma, have also been reported [8,9].
Additionally, one study found that the incidence of lymphoma in patients with IgG4-
ROD is approximately 7%, which is 10 times higher than that in the general popula-
tion [10]. The mechanisms behind the transformation of LGBLEL into lymphoma are
complex but may involve several pathways, including B-cell receptor signaling, NF-κB
signaling, FcγR-mediated phagocytosis, FcεRI signaling, pathways in cancer, and the
complement system [11,12].

Chemokines and their receptors may play a crucial role in immune and inflammatory
responses, as well as in the development and progression of lymphoid tumors. Chemokines
regulate B–T cell interactions, and the primary pathological manifestation of LGBLEL and
lymphoma is the presence of abundant inflammatory lymphocytes or diffuse infiltration
of neoplastic lymphocytes [13,14]. In our previous transcriptome sequencing analysis
comparing LGBLEL and cavernous hemangioma (CH), we identified an upregulation of
the chemokine signaling pathway in LGBLEL. This upregulation involved 39 differentially
expressed genes (DEGs), including RASGRP2, CXCL9, ADRBK2, CCR1, CXCL14, and
many others [14]. Based on these findings, we hypothesize that the chemokine signaling
pathway may play a crucial role in the development and malignant transformation of
LGBLEL. To further explore this, we performed additional transcriptome sequencing of
LGBLEL and lymphoma, using CH as a control. According to the characteristics of the
disease, lacrimal lymphoma is more common in males, LGBLEL is more likely to occur in
females, and CH has a slightly greater tendency to develop in females. Both LGBLEL and
CH are more common in middle age, but the age of onset of lacrimal lymphoma is older
than that of LGBLEL and CH [15,16]. This article aims to confirm the differential expression
of the chemokine signaling pathway in LGBLEL and lymphoma, providing insight into its
mechanisms of development and aiding in clinical differentiation.

2. Materials and Methods
2.1. Subjects

The main pathological manifestations of LGBLEL include diffuse infiltration of plasma
cells and lymphocytes in the lacrimal gland, glandular atrophy, and fibrous tissue hyper-
plasia [1,2]. To investigate the immune involvement, we performed immunohistochemical
staining on B cells, T cells, and macrophages in LGBLEL, MALT lymphoma, and CH. The
results demonstrated higher expression levels of B cells and T cells in both LGBLEL and
MALT lymphoma, suggesting that their pathogenesis is closely linked to immune mecha-
nisms (Figure 1). Between January 2011 and January 2012, two experienced pathologists
randomly selected 15 cases of LGBLEL, 14 cases of lacrimal lymphoma, and 9 cases of
CH, all confirmed by histopathological examination, from Capital Medical University for
transcriptome sequencing. Statistically significant differences in age and sex were observed
between the LGBLEL and lymphoma groups, while no significant differences were found
between the other groups (Tables 1 and 2). For the verification experiment, 3 cases of
LGBLEL and 3 cases of MALT lymphoma diagnosed histopathologically between May and
June 2023 were randomly selected as the experimental and the control group, respectively.
Consequently, no significant differences in age or sex were found between the LGBLEL and
CH groups, but there were notable differences in onset between LGBLEL and lymphoma,
as well as between lymphoma and CH.
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Figure 1. Immunohistochemical staining of CD3, CD20, and CD68 in LGBLEL, lacrimal lymphoma, 
and CH (×200). CD3 and CD20 exhibited abundant positive expression, while CD68 showed scat-
tered positive expression in the LGBLEL group. CD20 demonstrated strong positive expression, 
with tumor B cells lacking expression of CD3 and CD68 in the MALT lymphoma group. In the CH 
group, CD3, CD20, and CD68 were predominantly negative. 

Table 1. Characteristics of patients with LGBLEL, lymphoma, and CH for transcriptome sequencing. 

Group Mean Age (Years Old) Sex (Male: Female) 

LGBLEL (n = 15) 
42.60 ± 8.48 

(range, 27–57) 1:6.5 

Lymphoma (n = 14) 
57.43 ± 11.06 

(range, 38–78) 2.5:1 

CH (n = 9) 
48.67 ± 7.09 

(range, 37–55) 1:3.5 

Table 2. The statistical differences in age and gender among LGBLEL, lymphoma and CH. 
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Mean age (years 
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0.000 # 0.016 # 0.069 # 

Figure 1. Immunohistochemical staining of CD3, CD20, and CD68 in LGBLEL, lacrimal lymphoma,
and CH (×200). CD3 and CD20 exhibited abundant positive expression, while CD68 showed scattered
positive expression in the LGBLEL group. CD20 demonstrated strong positive expression, with tumor
B cells lacking expression of CD3 and CD68 in the MALT lymphoma group. In the CH group, CD3,
CD20, and CD68 were predominantly negative.

Table 1. Characteristics of patients with LGBLEL, lymphoma, and CH for transcriptome sequencing.

Group Mean Age (Years Old) Sex (Male: Female)

LGBLEL (n = 15) 42.60 ± 8.48
(range, 27–57) 1:6.5

Lymphoma (n = 14) 57.43 ± 11.06
(range, 38–78) 2.5:1

CH (n = 9) 48.67 ± 7.09
(range, 37–55) 1:3.5

Table 2. The statistical differences in age and gender among LGBLEL, lymphoma and CH.

p Value LGBLEL vs.
Lymphoma Lymphoma vs. CH LGBLEL vs. CH

Mean age (years old) 0.000 # 0.016 # 0.069 #

Sex (male: female) 0.003 * 0.036 * 0.615 *

Note: “*” stands for Fisher’s exact probability method; “#” stands for Wilcoxon rank-sum test.
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Inclusion criteria included 1. confirmation by histopathology; 2. no inflammatory or
tumor lesions in areas other than the lacrimal gland; and 3. a complete medical history.
Exclusion criteria included 1. the presence of inflammatory or tumor lesions in areas other
than the lacrimal gland and 2. an incomplete medical history. This study was conducted in
accordance with the principles of the Declaration of Helsinki and approved by the Ethics
Committee of Beijing Tongren Hospital, Capital Medical University (TRECKY2019-093).

2.2. Tissue and Blood Specimen Collection

Pathological tissues from LGBLEL, lymphoma, and CH patients were collected during
surgery and transferred to laboratories. Some of the tissue samples were frozen at −80 ◦C
for future use, and the remainder were embedded in paraffin soaked with 10% formalin.

2.3. Whole-Transcript Sequencing

We used whole-transcript sequencing to study LGBLEL, lymphoma and CH, with
CH as the control group and LGBLEL and Lymphoma as the experimental groups. Total
RNA was extracted using a mirVana miRNA Isolation Kit (Ambion, Austin, TX, USA). The
quantity and integrity of total RNA samples was assessed using an Agilent 2100 Bioanalyzer,
a Qubit 2.0 Fluorometer (Life Technologies, Waltham, MA, USA); cDNA was synthesized,
and fragments were enriched by PCR. For sequencing, the Illumina HiSeq (100–2000 bp
paired-end) platform and FASTQ software version 0.0.13 (http://hannonlab.cshl.edu/
fastx_toolkit/, accessed on 1 September 2018) were used for quality control [17]. Reads
were mapped to the human reference genome hg19 (RefSeq annotation) using the STAR
aligner (v2.5.0a, Illumina) of the RNA-seq Alignment app (v2.0.1) with default parameters
in BaseSpace [18]. The featuresCounts software (v2.0.3) was used to accurately count reads,
and the abundance of gene expression was calculated using fragments per kilobase of exon
per million fragments mapped (FPKM). The Benjamini–Hochberg method was utilized for
multiple tests and corrections to control the false discovery rate (FDR). The DEGs were
screened by DESeq and selected based on |log2FC| > 1 and FDR < 0.1. Gene Ontology
(GO) enrichment analysis was conducted using the GOseq R software package (v1.12.0).
KOBAS software (v2.0) was employed to analyze the statistical enrichment of DEGs in the
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway.

2.4. Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR)

RNA was extracted with a TRIzol reagent (Invitrogen). Total RNA was reverse-
transcribed into cDNA using the aScript cDNA SuperMix (Quanta Biosciences, Beverly,
MA, USA). Gene primers were designed with Primer Express v3.0 Software. PCR reaction
conditions were 95 ◦C/3 min, followed by 40 cycles of 95 ◦C/30 s, 55 ◦C/20 s, 72 ◦C/20 s,
each involving DNA denaturation, annealing, and extension [14]. GADPH was used as an
endogenous control. Melting curves were monitored to detect nonspecific amplifications.
Primer sequence information is shown in Table 3.

Table 3. Sequences of real-time PCR primers.

Gene Primer Sequence 5′-3′

h GAPDH_F GCCTTCCGTGTCCCCACTGC
h GAPDH_R GGCTGGTGGTCCAGGGGTCT
h CCL28_F GCCCTACATGCCTCAGAAG
h CCL28_R CTTAACAGTATGGTTGTGCGG

h CXCL17_F CTGTTGCTGCCACTAATGC
h CXCL17_R GCTCTCAGGAACCAATCTTTG

h HCK_F GGAGCCCATCTACATCATCA
h HCK_R CCGTGTACTCGTTGTCCTCA
h NRAS_F CAATCCAGCTAATCCAGAACC
h NRAS_R TGTTTCCCACTAGCACCATAG
h GNB5_F GTTCTGTGTACCCCTTGACG

http://hannonlab.cshl.edu/fastx_toolkit/
http://hannonlab.cshl.edu/fastx_toolkit/
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Table 3. Cont.

Gene Primer Sequence 5′-3′

h GNB5_R GGCTTTCTTGTCACATCCC
h VAV2_F ACGAGGACATCATCAAGGTG
h VAV2_R GGTAGTACTTGGCCTCGGTC
h CCR1_F GGAATTCACTCACCACACCTG
h CCR1_R ACGGACAGCTTTGGATTTCT

2.5. Immunohistochemical Staining (IHC)

The tissue sections were placed in xylene for deparaffinization, followed by rehy-
dration through a series of ethanol gradients (100%, 95%, 70%, 50%) and a final rinse
with distilled water. After deparaffinization, antigen retrieval was performed in 0.01 M
citrate buffer, and endogenous peroxidase activity was quenched by incubating the sec-
tions in 3% hydrogen peroxide in methanol for 10 min. To block nonspecific binding, the
slides were incubated with 10% normal goat serum in phosphate-buffered saline (PBS)
for 1 h at room temperature. Primary antibodies were applied to the slides and incubated
overnight at 4 ◦C, followed by incubation with biotinylated goat antimouse immunoglob-
ulin G (St. Louis, MO, USA) for 1 h at room temperature. Following three washes with
PBS, a biotin-labeled secondary antibody was added, and the tissue was incubated at
37 ◦C/60 min [14]. An appropriate amount of biotin substrate was then added. The slides
were colored with DAB solution and subsequently stained with hematoxylin. Finally, the
tissue was dehydrated and made transparent with xylene. The immunohistochemical
staining results were evaluated by two specialized pathologists. The primary antibodies
were as follows: CCL28 (DF7045; Affinity Biosciences, Beijing, China), CXCL17 (18108-1-AP;
Proteintech, Wuhan, China), HCK (abs111311; Absin, Shanghai, China), GNB5 (abs141190;
Absin), NRAS (abs119341; Absin), VAV2 (abs146517; Absin), CCR1 (abs146517; Absin), and
GAPDH (60004-1-1g; Proteintech).

2.6. Western Blotting (WB)

Took the lacrimal gland tissue out of the −80 ◦C freezer, cut a portion of the tissue, and
transferred it into a 1.5 mL EP tube, then minced it. Added 250 µL of Western and IP lysis
buffer to each tube and lysed the tissue on ice for 45 min. After lysis, centrifuged the tissue at
12,000 rpm for 15 min at 4 ◦C, extracted the protein supernatant, and quantified it. Loaded
all protein samples in 5 × sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–
PAGE) loading buffer (P1040, Solarbio, Beijing, China), heated them in a 100 ◦C water bath
for 10 min, and prepared them for SDS–PAGE and PVDF membrane transfer [14]. Soaked
the PVDF membrane in TBST containing 5% skim milk (blocking solution) and blocked
it on a shaker at room temperature for 2 h. Diluted the corresponding primary antibody
with the blocking solution and incubated the PVDF membrane in the primary antibody
incubation solution at 4 ◦C overnight. Washed the PVDF membrane thoroughly with TBST
3–4 times, 15 min per wash. Diluted the HRP-labeled secondary antibody with the blocking
solution and incubated the PVDF membrane in the secondary antibody incubation solution
at 37 ◦C on a shaker for 2 h. Washed the PVDF membrane thoroughly with TBST 3–4 times,
15 min per wash. Mixed the enhanced ECL reagent and stable peroxidase solution in a
1:1 ratio, applied the working solution to the PVDF membrane, and, after a few minutes,
when the fluorescent bands were visible, blotted the excess substrate solution with filter
paper. Then, exposed and photographed the membrane using the Tanon fully automated
chemiluminescence analyzer.

2.7. Data Processing and Statistical Analysis

Statistical analysis was performed using SPSS version 18.0 (SPSS Inc., Chicago, IL,
USA) and GraphPad Prism 8.0 (GraphPad Software Inc., La Jolla, CA, USA). Count data
were analyzed using the chi-square test or Fisher’s exact test. Measurement data that fol-
lowed a normal distribution were analyzed using the t-test, while non-normally distributed
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data were analyzed using the nonparametric rank-sum test. The t-test or nonparamet-
ric rank-sum test was also used to analyze the differences in RNA content and protein
concentration between the LGBLEL and MALT groups. p values < 0.05 were considered
statistically significant.

3. Results
3.1. Transcriptome Sequencing Results of Lymphoma and CH

We conducted transcriptome sequencing analysis of lymphoma and CH and identified
5409 DEGs (Supplementary S1). In comparison to the CH group, GO analysis revealed that
the top 20 upregulated terms were enriched in immune response, T- and B-cell development,
activation, aggregation, inflammation, and other processes, while the downregulated terms
were enriched in the processes of cell adhesion, signal transduction, angiogenesis, and tissue
and organ development (Figure 2A,B) (Supplementary S2). KEGG analysis results showed
that the top 20 upregulated signaling pathways included BCR signaling, TCR signaling, and
chemokine signaling (Figure 2C), whereas the downregulated signaling pathways included
TGFβ signaling pathways, pathways in cancer, and calcium signaling pathways (Figure 2D)
(Supplementary S3). The interaction network of differentially expressed signaling pathways
is shown in Figure 2E. These results suggest that the chemokine signaling pathway is
differentially expressed in lymphoma and CH. We analyzed the chemokine signaling
pathway of lymphoma and CH and identified 38 DEGs, including GNG4, CXCL14, CXCL9,
GNG7, RASGRP2, CCR2, CCL11, ITK, GNG2, CCR6, CCL5, VAV2, PRKCD, CCL21, CCL17,
CCL19, LYN, CCL22, GNB5, PRKCB, ADRBK2, CXCR3, CCR5, HCK, CSK, GNGT2, CXCR4,
STAT1, CCR7, GRK6, ADCY7, CXCR5, PREX1, PIK3CD, RAC2, DOCK2, JAK3, and VAV1
(Supplementary S3).
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3.2. Transcriptome Sequencing Results of Lymphoma and LGBLEL

Compared to the lymphoma group, 1301 DEGs were found in the LGBLEL group,
including 439 upregulated and 862 downregulated genes (Supplementary S4). The interac-
tion network of differential genes is shown in Figure 3A (Supplementary S5). GO analysis
revealed that the top 20 upregulation terms were enriched in the BCR signaling pathway,
B- and T-cell activation, development, immune response, inflammatory response, and
other processes. The downregulated terms were enriched in cell development, metabolism,
adhesion, and differentiation (Figure 3B,C) (Supplementary S6). KEGG analysis showed
significant differences in the BCR signaling pathway, Fc epsilon RI signaling pathway,
chemokine signaling pathway, and cytokine–cytokine receptor interaction (Figure 3D).
Additionally, we noted 19 downregulated pathways, primarily related to salivary secretion,
immune system development, cell metabolism, cell development, adhesion, and other
processes (Supplementary S7). We analyzed the chemokine signaling pathway and found
10 DEGs between lymphoma and LGBLEL, including CCL17, VAV2, CXCR5, NRAS, HCK,
RASGRP2, PREX1, GNB5, ADRBK2, and CCL22 (Supplementary S8). Therefore, we hypoth-
esize that the chemokine signaling pathway is upregulated in the LGBLEL group compared
with the lymphoma group and may play a crucial role in its malignant transformation. A
map of the DEGs with the KEGG pathways for the chemokine signaling pathway is exhib-
ited in Figure 3E. The activation of the chemokine signaling pathway involves a diverse
array of chemokines and receptors. In preliminary IHC staining experiments, we identified
key proteins associated with the activation of the chemokine signaling pathway based on
transcriptome sequencing results and relevant literature (Supplementary S4 and S8). These
proteins included CCL28, CCR1, CXCL17, HCK, GNB5, NRAS, and VAV2.
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(D) Diagram of enrichment results of pathway with differential expression. (E) DEGs mapped with
KEGG chemokine signaling pathway (green: downregulated; purple: upregulated).

3.3. Key Genes of the Chemokine Signaling Pathway Are Differentially Expressed in LGBLEL
and Lymphoma

Based on the transcriptomic sequencing results, we selected some DEGs of the chemokine
signaling pathway for RT-qPCR detection. The results showed significant differences in
the mRNA expression levels of CCL28, CCR1, CXCL17, HCK, GNB5, NRAS, and VAV2.
Compared to the lymphoma group, the LGBLEL group exhibited higher expression levels
of CCL28, CXCL17, HCK, GNB5, NRAS, and VAV2 (p = 0.001, <0.001, <0.001, <0.001, 0.020,
and <0.001, respectively) and lower expression of CCR1 (p = 0.002) (Figure 4).

3.4. IHC Revealed Differential Expression of Key Proteins in the Chemokine Signaling Pathway in
LGBLEL and Lymphoma

IHC staining showed that all indicators were highly expressed in LGBLEL acinar
cells; however, in the B lymphocyte infiltrated area, with the exception of HCK, which was
negatively expressed, CCL28, CCR1, CXCL17, GNB5, NRAS, and VAV2 were all positively
expressed. In lymphoma groups, besides the strongly positive expression of CCR1, other
indicators were either not expressed or expressed at low levels (Figure 5). Compared to
the lymphoma group, the protein quantitative analysis of the LGBLEL group exhibited
significantly differentially expressed CCL28, CCR1, CXCL17, HCK, GNB5, NRAS, and
VAV2 (p = 0.003, 0.011, 0.001, 0.024, 0.005, 0.019, and 0.031, respectively) (Figure 6).
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Figure 4. The mRNA expression levels of important genes (CCL28, CCR1, CXCL17, HCK, GNB5,
NRAS and VAV2) in the chemokine signaling pathway. (Error: mean ± SD; test method: Wilcoxon
rank-sum test).
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Figure 5. Immunohistochemical staining of proteins related to the chemokine signaling pathway in 
LGBLEL and MALT groups (SP method, magnification ×200). CCL28, CXCL17, HCK, GNB5, NRAS, 
and VAV2 were low or not expressed in the B lymphocyte infiltration region of the MALT lymphoma 
group, and high expression in the acinar region or lymphocyte infiltration region of LGBLEL. The 
expression level of CCR1 in the MALT lymphoma group was higher than that of LGBLEL. 

Figure 5. Immunohistochemical staining of proteins related to the chemokine signaling pathway in
LGBLEL and MALT groups (SP method, magnification ×200). CCL28, CXCL17, HCK, GNB5, NRAS,
and VAV2 were low or not expressed in the B lymphocyte infiltration region of the MALT lymphoma
group, and high expression in the acinar region or lymphocyte infiltration region of LGBLEL. The
expression level of CCR1 in the MALT lymphoma group was higher than that of LGBLEL.
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Figure 6. Quantitative analysis of immunohistochemical indicators. The expression level of proteins
CCL28, CXCL17, HCK, GNB5, NRAS, and VAV2 in the LGBLEL was higher than that of MALT
lymphoma group. The expression level of CCR1 in the MALT lymphoma group was higher than that
of LGBLEL. (Error: mean ± SD; test method: Wilcoxon rank-sum test).
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3.5. Western Blotting Reveals Differential Expression in the Chemokine Signaling Pathway Key
Proteins in LGBLEL and Lymphoma

WB analysis showed that CCL28, CCR1, CXCL17, HCK, GNB5, NRAS, and VAV2
were differentially expressed. Compared to the lymphoma group, the LGBLEL group
showed higher expression of CCL28, CXCL17, HCK, GNB5, NRAS, and VAV2 (p = 0.012,
0.005, 0.009, 0.011, 0.008, and 0.003, respectively) and lower expression of CCR1 (p = 0.014)
(Figure 7A,B).
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4. Discussion

Chemokines are categorized into four subfamilies, including CC, CXC, CX3C, and
XC. The interaction between chemokines and their G protein-coupled receptors promotes
leukocyte migration and directly recruits leukocytes to the inflammatory sites, aiding in
tissue repair [19]. Beyond their role in inflammation, chemokines are involved in various
processes such as cell and tissue proliferation, activation, and differentiation; extracellular
matrix remodeling; angiogenesis; and tumor metastasis [20]. They are also critical in
the pathogenesis of IgG4-RD. The literature indicates that SDF-1/CXCL12 can regulate
B-cell development, neovascularization, and fibrosis and may play a role in IgG4-RD [21].
Additionally, the CCL18-CCR8 axis may contribute to the pathogenesis of IgG4-RD by
promoting cell chemotaxis, inducing fibrosis, and stimulating IgG4 production. CCL18
also serves as a valuable biomarker for assessing both disease activity in IgG4-RD and
patient response to treatment [22,23]. Targeting CXCR5 and its ligand, CXCL13, presents a
potential therapeutic strategy for patients with refractory IgG4-RD [24]. LGBLEL, a form of
IgG4-ROD, has not previously been linked to the chemokine signaling pathway.

Chemokines and their receptors also play a crucial role in the pathogenesis of vari-
ous lymphomas, such as diffuse large B-cell lymphoma, follicular lymphoma, and T-cell
lymphoma [25,26]. Research has demonstrated that chemokines are important for distin-
guishing lymphoma from other pathologically similar conditions. Commonly recognized
markers include CCL17, CXCR4, CXCL9, CXCL10, CXCR3, CXCL13, and CCL11 [25–28].
In studies on primary Sjogren’s syndrome, CXCL13 and CCL11 have been linked to chronic
B-cell activation, disease activity, and the development of lymphoma [29,30]. Additionally,
CXCL13 and CCL21 directly contribute to reactive lymphocyte proliferation, while CXCL12
is associated with epithelial infiltration and malignant B-cell components, potentially reg-
ulating the survival of malignant B cells [31]. Furthermore, CXCR3, CXCR4, and CXCR5
have been implicated in the pathogenesis of MALT lymphoma [32,33].

We employed IHC and WB for protein quantification, with WB offering greater ac-
curacy for detecting protein levels, while IHC allowed for the localization of protein
expression. This localization helped us better evaluate protein changes during the trans-
formation of B lymphocytes. Our findings showed that CCL28 was highly expressed in
the acinar and the lymphocyte infiltration regions of LGBLEL but absent in the lymphoma
group. Similarly, CXCL17 was highly expressed in these regions in LGBLEL but not in the
lymphoma group. CCR1 showed low positively in the acinar and lymphocyte infiltration
area of LGBLEL but was highly positively expressed in lymphoma. CCL28 has been shown
to selectively attract lymphocyte subsets and are involved in the mucosal homing of B
and T cells [34]. It has also been reported to attract eosinophils and promote plasma cell
infiltration and facilitate monocyte migration in classic Hodgkin’s lymphoma tissue or
inflammatory lesions, contributing to inflammation or tumorigenesis [35,36]. CXCL17, an
orphan chemokine, acts as a strong chemoattractant for monocytes, dendritic cells, and
macrophages [37]. It may also have anti-inflammatory activity, as previous studies have
showed that increased CXCL17 expression can inhibit the release of pro-inflammatory
cytokines, thus playing a role in inhibiting inflammatory responses [38]. CXCL17 is also
involved in the pathogenesis of diffuse large B-cell lymphoma, where it serves as a prog-
nostic marker [39]. CCR1, a member of the C-C motif chemokine receptor subfamily, is
expressed in monocytes, natural killer cells, and immature bone marrow cells. Studies have
indicated that the expression level of CCR1 in MALT lymphomas is higher than that in
inflammatory lesions, as well as being higher in high-grade lymphomas such as diffuse
large B-cell lymphomas, which seems to be related to the high-grade transformation of
lymphomas [40,41]. Based on these findings, we speculated that the loss of CCL28 and
CXCL17 expression and the increase in CCR1 expression in LGBLEL tissue may be related
to malignant transformation and could serve as an effective prognostic indicator.

HCK, GNB5, NRAS, and VAV2 are key genes in the chemokine signaling pathway,
but there have been no reports on the role of this pathway in the malignant transfor-
mation mechanism of LGBLEL. Lymphocytes play a crucial role in the pathogenesis of
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both LGBLEL and lymphoma. However, lymphocyte trafficking and homing are tightly
controlled by signaling pathways and are mediated through cytokines, chemokines, their
respective receptors, and adhesion molecules [42]. Therefore, we speculate that, in LGBLEL,
elevated levels of certain chemokines such as CCL28 contribute to pro-inflammatory effects
by activating the chemokine signaling pathway and recruiting a large number of infiltrating
lymphocytes. Under the regulation of autoimmune mechanisms, the increased expression
of CXCL17 plays a role in suppressing inflammatory responses. Prolonged chronic inflam-
mation may lead to clonal expansion of lymphocytes, resulting in lymphoma. In these
abnormally activated B lymphocytes, the expression of chemokines and their receptors is
relatively deficient or elevated, leading us to believe that these factors may be related to the
malignant transformation of LGBLEL.

The mechanism underlying the malignant transformation of LGBLEL is highly com-
plex and involves multiple signal pathways. In this study, key genes from the chemokine
signaling pathway—HCK, GNB5, NRAS, and VAV2—were validated, confirming their
differential expression between LGBLEL and lymphoma and suggesting their important
role in the malignant transformation of LGBLEL. Moreover, we identified CCL28, CXCL17,
and CCR1 as potential markers for monitoring malignant transformation and aiding in
differential diagnosis. Since MALT lymphoma is the most common pathological type of
malignant transformation in LGBLEL, patients with MALT lymphoma were selected as
the experimental group during the verification stage. Our findings related to the transfor-
mation into high-grade lymphoma will be further verified in future studies, providing a
foundation for understanding the malignant transformation mechanisms of LGBLEL.
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