Zinc in Dermatology: Exploring Its Emerging Role in Enhancing Botulinum Toxin Formulations and Clinical Efficacy
Abstract
:1. Background on the Properties of Zinc
2. Zinc in Dermatological Products
3. Uses of Topical Zinc
4. Stabilizing Properties of Zinc
5. Zinc in Hyaluronic Acid Preparations—Uses in Dermatology
6. Zinc Nanoparticles (ZnNPs) Without Hyaluronic Acid
7. Background on Botulinum Toxin and Its Formulations
- Onabotulinum toxin A (ONA; Botox®/Vistabel®; Allergan Inc., Dublin, Ireland): The 150 kDa neurotoxin is part of a 900 kDa complex with other proteins (complexing proteins) [42]. Other contents of the formulation include human serum albumin and NaCl.
- Abobotulinum toxin A (ABO; Dysport®/Azzalure®; Ipsen, Paris, France/Galderma, Lausanne, Switzerland): BoNTA is part of a protein complex, but the size of the ABO complex is unknown [42]. Other contents of the formulation include human serum albumin and lactose.
- Incobotulinum toxin A (INCO; Xeomin®/Bocouture®, NT 201; Merz Pharmaceuticals GmbH, Frankfurt, Germany): Xeomin stands out in its formulation because its purification process eliminates the complexing proteins from the botulinum toxin complex. Unlike other market-available preparations, Xeomin is purely composed of the 150 kD neurotoxin [42]. Other contents of the formulation include human serum albumin and sucrose. Xeomin has the minimal bacterial protein content among all botulinum toxins available. Additionally, even with repeated high-dose applications, Xeomin does not lead to the creation of neutralizing antibodies. Clinical research indicates that Xeomin is comparable in its effects to Botox. A unit of Xeomin is equivalent to a unit of Botox [41]
- PrabotulinumtoxinA (JEUVEAU Evolus Inc., Newport Beach, CA, USA): JEUVEAU contains accessory proteins in a complex of 900 kDA. One vial contains 100 Units of botulinum toxin type A neurotoxin complex, human serum albumin (0.5 mg), and sodium chloride (0.9 mg) in a sterile, vacuum-dried form without a preservative [43].
- DaxibotulinumtoxinA (Daxxify, Revance Therapeutics, Inc., Nashville, TN, USA): DaxibotulinumtoxinA for Injection (DAXI) is a novel BoNTA product containing highly purified 150-kDa core neurotoxin and is the first to be formulated with a proprietary stabilizing excipient peptide (RTP004) instead of human serum albumin [43]. Other contents of the formulation include histidine, trehalose dihydrate, and polysorbate 20.
- MyoBloc (Elan Corporation, Dublin, Ireland): This is an injectable solution comprising botulinum toxin type B, human serum albumin, sodium succinate, and sodium chloride at about pH 5.6.
8. Registered Patents on Zinc in Botulinum Neurotoxin-A Formulations with Zinc
- (1)
- A primary combination of botulinum toxin (e.g., botulinum toxin type A) and recombinant albumin.
- (2)
- An alternate version that consists of botulinum toxin, NAT (N-acetyl tryptophan), and zinc.
- (3)
- A different embodiment encompasses a botulinum toxin combined with a primary stabilizer and a secondary stabilizer. The primary stabilizer could be a recombinant one, like r-HSA, while the secondary stabilizer might be a metal, such as zinc. Alternative secondary stabilizers can be caprylate (octanoate) or NAT.
9. Literature on Zinc in Botulinum Toxin Formulations and Oral Zinc Supplementation
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gupta, M.; Mahajan, V.K.; Mehta, K.S.; Chauhan, P.S. Zinc therapy in dermatology: A review. Dermatol. Res. Pract. 2014, 2014, 709152. [Google Scholar] [CrossRef] [PubMed]
- Vollmer, D.L.; West, V.A.; Lephart, E.D. Enhancing Skin Health: By Oral Administration of Natural Compounds and Minerals with Implications to the Dermal Microbiome. Int. J. Mol. Sci. 2018, 19, 3059. [Google Scholar] [CrossRef] [PubMed]
- Mahoney, M.G.; Brennan, D.; Starcher, B.; Faryniarz, J.; Ramirez, J.; Parr, L.; Uitto, J. Extracellular matrix in cutaneous ageing: The effects of 0.1% copper-zinc malonate-containing cream on elastin biosynthesis. Exp. Dermatol. 2009, 18, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Al-Khafaji, Z.; Brito, S.; Bin, B.H. Zinc and Zinc Transporters in Dermatology. Int. J. Mol. Sci. 2022, 23, 16165. [Google Scholar] [CrossRef]
- Lin, P.H.; Sermersheim, M.; Li, H.; Lee, P.H.U.; Steinberg, S.M.; Ma, J. Zinc in Wound Healing Modulation. Nutrients 2017, 10, 16. [Google Scholar] [CrossRef]
- Liang, Y.; Liang, Y.; Zhang, H.; Guo, B. Antibacterial biomaterials for skin wound dressing. Asian J. Pharm. Sci. 2022, 17, 353–384. [Google Scholar] [CrossRef]
- Smijs, T.G.; Pavel, S. Titanium dioxide and zinc oxide nanoparticles in sunscreens: Focus on their safety and effectiveness. Nanotechnol. Sci. Appl. 2011, 4, 95–112. [Google Scholar] [CrossRef]
- Pinnell, S.R.; Fairhurst, D.; Gillies, R.; Mitchnick, M.A.; Kollias, N. Microfine zinc oxide is a superior sunscreen ingredient to microfine titanium dioxide. Dermatol. Surg. 2000, 26, 309–314. [Google Scholar] [CrossRef]
- Mascarenhas-Melo, F.; Mathur, A.; Murugappan, S.; Sharma, A.; Tanwar, K.; Dua, K.; Singh, S.K.; Mazzola, P.G.; Yadav, D.N.; Rengan, A.K.; et al. Inorganic nanoparticles in dermopharmaceutical and cosmetic products: Properties, formulation development, toxicity, and regulatory issues. Eur. J. Pharm. Biopharm. 2023, 192, 25–40. [Google Scholar] [CrossRef]
- Sharquie, K.E.; Noaimi, A.A.; Al-Salih, M.M. Topical therapy of acne vulgaris using 2% tea lotion in comparison with 5% zinc sulphate solution. Saudi Med. J. 2008, 29, 1757–1761. [Google Scholar]
- Faghihi, G.; Iraji, F.; Shahingohar, A.; Saidat, A. The efficacy of “0.05% Clobetasol + 2.5% zinc sulphate” cream vs. “0.05% Clobetasol alone” cream in the treatment of the chronic hand eczema: A double-blind study. J. Eur. Acad. Dermatol. Venereol. JEADV 2008, 22, 531–536. [Google Scholar] [CrossRef] [PubMed]
- Sadeghian, G.; Ziaei, H.; Nilforoushzadeh, M.A. Treatment of localized psoriasis with a topical formulation of zinc pyrithione. Acta Dermatovenerol. Alp. Pannonica Adriat. 2011, 20, 187–190. [Google Scholar] [PubMed]
- Abendrot, M.; Kalinowska-Lis, U. Zinc-containing compounds for personal care applications. Int. J. Cosmet. Sci. 2018, 40, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Lionetti, N.; Rigano, L. The New Sunscreens among Formulation Strategy, Stability Issues, Changing Norms, Safety and Efficacy Evaluations. Cosmetics 2017, 4, 15. [Google Scholar] [CrossRef]
- Benson, H.A.; Sarveiya, V.; Risk, S.; Roberts, M.S. Influence of anatomical site and topical formulation on skin penetration of sunscreens. Ther. Clin. Risk Manag. 2005, 1, 209–218. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1661631/ (accessed on 3 November 2023).
- Maikawa, C.L.; Smith, A.A.A.; Zou, L.; Meis, C.M.; Mann, J.L.; Webber, M.J.; Appel, E.A. Stable Monomeric Insulin Formulations Enabled by Supramolecular PEGylation of Insulin Analogues. Adv. Ther. 2020, 3, 1900094. [Google Scholar] [CrossRef]
- Manoharan, C.; Singh, J. Insulin loaded PLGA microspheres: Effect of zinc salts on encapsulation, release, and stability. J. Pharm. Sci. 2009, 98, 529–542. [Google Scholar] [CrossRef]
- Ko, M.K.; Kim, H.W.; Park, S.H.; Park, J.H.; Kim, S.M.; Lee, M.J. The role of zinc sulfate in enhancing cellular and humoral immune responses to foot-and-mouth disease vaccine. Virus Res. 2023, 335, 199189. [Google Scholar] [CrossRef]
- Varki, A.; Cummings, R.D.; Esko, J.D.; Stanley, P.; Hart, G.W.; Aebi, M.; Darvill, A.G.; Kinoshita, T.; Packer, N.H.; Prestegard, J.H.; et al. (Eds.) Essentials of Glycobiology, 4th ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2022. Available online: http://www.ncbi.nlm.nih.gov/books/NBK579918/ (accessed on 3 November 2023).
- Frenkel, J.S. The role of hyaluronan in wound healing. Int. Wound J. 2014, 11, 159–163. [Google Scholar] [CrossRef]
- Mahedia, M.; Shah, N.; Amirlak, B. Clinical Evaluation of Hyaluronic Acid Sponge with Zinc versus Placebo for Scar Reduction after Breast Surgery. Plast. Reconstr. Surg. Glob. Open 2016, 4, e791. [Google Scholar] [CrossRef]
- Paramadini, A.W.; Chinavinijkul, P.; Meemai, A.; Thongkam, P.; Apasuthirat, A.; Nasongkla, N. Fabrication and in vitro characterization of zinc oxide nanoparticles and hyaluronic acid-containing carboxymethylcellulose gel for wound healing application. Pharm. Dev. Technol. 2023, 28, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Csenkey, A.; Hargitai, E.; Pakai, E.; Kajtar, B.; Vida, L.; Lorincz, A.; Gergics, M.; Vajda, P.; Jozsa, G.; Garami, A. Effectiveness of four topical treatment methods in a rat model of superficial partial-thickness burn injury: The advantages of combining zinc-hyaluronan gel with silver foam dressing. Injury 2022, 53, 3912–3919. [Google Scholar] [CrossRef]
- Juhász, I.; Zoltán, P.; Erdei, I. Treatment of partial thickness burns with Zn-hyaluronan: Lessons of a clinical pilot study. Ann. Burn. Fire Disasters 2012, 25, 82–85. [Google Scholar]
- Tankova, T.; Dakovska, G.; Koev, D. Zinc hyaluronate in the treatment of diabetic foot ulcers: A controlled randomized open-label study. Diabetol. Croat. 2002, 30, 93–96. [Google Scholar]
- Majhi, R.K.; Mohanty, S.; Khan, M.I.; Mishra, A.; Brauner, A. Ag@ZnO Nanoparticles Induce Antimicrobial Peptides and Promote Migration and Antibacterial Activity of Keratinocytes. ACS Infect. Dis. 2021, 7, 2068–2072. [Google Scholar] [CrossRef]
- Saddik, M.S.; Elsayed, M.M.A.; El-Mokhtar, M.A.; Sedky, H.; Abdel-Aleem, J.A.; Abu-Dief, A.M.; Al-Hakkani, M.F.; Hussein, H.L.; Al-Shelkamy, S.A.; Meligy, F.Y.; et al. Tailoring of Novel Azithromycin-Loaded Zinc Oxide Nanoparticles for Wound Healing. Pharmaceutics 2022, 14, 111. [Google Scholar] [CrossRef]
- The Aesthetic Society. New 2022 Data from The Aesthetic Society Reveals Surge in Nonsurgical Procedures. The Aesthetic Society. Published 14 August 2023. Available online: https://www.theaestheticsociety.org/media/press-releases/new-2022-data-aesthetic-society-reveals-surge-nonsurgical-procedures#:~:text=Findings%20demonstrate%20Americans%20spent%20over,field%20of%20aesthetic%20plastic%20surgery (accessed on 5 November 2023).
- Michas, F. Leading Nonsurgical Cosmetic Procedures in the United States. Statista. Published 30 August 2023. Available online: https://www.statista.com/statistics/281246/leading-nonsurgical-cosmetic-procedures-in-the-united-states/#:~:text=Aug%2030%2C%202023,thus%20the%20most%20common (accessed on 5 November 2023).
- International Society of Aesthetic Plastic Surgery (ISAPS). Global Survey 2021: Full Report and Press Releases. Published 9 January 2023. Available online: https://www.isaps.org/discover/about-isaps/global-statistics/reports-and-press-releases/global-survey-2021-full-report-and-press-releases/ (accessed on 5 November 2023).
- Anderson, K. Top 10 Medical Aesthetic Trends for 2023. MedEsthetics. Published 22 February 2023. Available online: https://www.medestheticsmag.com/business/practice-management/article/22724492/top-10-medical-aesthetic-trends-for-2023 (accessed on 5 November 2023).
- Sethi, N.; Singh, S.; DeBoulle, K.; Rahman, E. A Review of Complications Due to the Use of Botulinum Toxin A for Cosmetic Indications. Aesthetic Plast. Surg. 2021, 45, 1210–1220. [Google Scholar] [CrossRef] [PubMed]
- Torres, S.; Hamilton, M.; Sanches, E.; Starovatova, P.; Gubanova, E.; Reshetnikova, T. Neutralizing antibodies to botulinum neurotoxin type A in aesthetic medicine: Five case reports. Clin. Cosmet. Investig. Dermatol. 2013, 7, 11–17. [Google Scholar] [CrossRef]
- Jankovic, J.; Carruthers, J.; Naumann, M.; Ogilvie, P.; Boodhoo, T.; Attar, M.; Gupta, S.; Singh, R.; Soliman, J.; Yushmanova, I.; et al. Neutralizing Antibody Formation with OnabotulinumtoxinA (BOTOX®) Treatment from Global Registration Studies across Multiple Indications: A Meta-Analysis. Toxins 2023, 15, 342. [Google Scholar] [CrossRef]
- Fabbri, M.; Leodori, G.; Fernandes, R.M.; Bhidayasiri, R.; Marti, M.J.; Colosimo, C.; Ferreira, J.J. Neutralizing Antibody and Botulinum Toxin Therapy: A Systematic Review and Meta-analysis. Neurotox. Res. 2016, 29, 105–117. [Google Scholar] [CrossRef]
- Witmanowski, H.; Błochowiak, K. The whole truth about botulinum toxin—A review. Postepy Dermatol. Alergol. 2020, 37, 853–861. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, P.; Jansen, A.; Lee, J.I.; Moll, M.; Ringelstein, M.; Rosenthal, D.; Bigalke, H.; Aktas, O.; Hartung, H.P.; Hefter, H. High prevalence of neutralizing antibodies after long-term botulinum neurotoxin therapy. Neurology 2019, 92, e48–e54. [Google Scholar] [CrossRef] [PubMed]
- Hefter, H.; Rosenthal, D.; Moll, M. High Botulinum Toxin-Neutralizing Antibody Prevalence Under Long-Term Cervical Dystonia Treatment. Mov. Disord. Clin. Pract. 2016, 3, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.I.; Jansen, A.; Samadzadeh, S.; Kahlen, U.; Moll, M.; Ringelstein, M.; Soncin, G.; Bigalke, H.; Aktas, O.; Moldovan, A.S.; et al. Long-term adherence and response to botulinum toxin in different indications. Ann. Clin. Transl. Neurol. 2021, 8, 15–28. [Google Scholar] [CrossRef]
- Hefter, H.; Brauns, R.; Ürer, B.; Rosenthal, D.; Albrecht, P. Effective long-term treatment with incobotulinumtoxin (Xeomin®) without neutralizing antibody induction: A monocentric, cross-sectional study. J. Neurol. 2020, 267, 1340–1347. [Google Scholar] [CrossRef]
- Nigam, P.K.; Nigam, A. Botulinum toxin. Indian. J. Dermatol. 2010, 55, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Samizadeh, S.; De Boulle, K. Botulinum neurotoxin formulations: Overcoming the confusion. Clin. Cosmet. Investig. Dermatol. 2018, 11, 273–287. [Google Scholar] [CrossRef]
- Solish, N.; Carruthers, J.; Kaufman, J.; Rubio, R.G.; Gross, T.M.; Gallagher, C.J. Overview of DaxibotulinumtoxinA for Injection: A Novel Formulation of Botulinum Toxin Type A. Drugs 2021, 81, 2091–2101. [Google Scholar] [CrossRef]
- Hunt, T. Amino Acid and Zinc Containing Botulinum Toxin Pharmaceutical Compositions. Published online 29 September 2005. Available online: https://patents.google.com/patent/US20050214326A1/en (accessed on 2 November 2023).
- Kim, D.; Cho, Y.B.; Seo, I. Botulinum Toxin Composition Having Prolonged Efficacy Duration. Available online: https://patents.google.com/patent/US20210077596A1/en (accessed on 3 November 2023).
- Koshy, J.C.; Sharabi, S.E.; Feldman, E.M.; Hollier, L.H.; Patrinely, J.R.; Soparkar, C.N.S. Effect of dietary zinc and phytase supplementation on botulinum toxin treatments. J. Drugs Dermatol. 2012, 11, 507–512. [Google Scholar]
- Cohen, J.L. Scientific skepticism and new discoveries: An analysis of a report of zinc/phytase supplementation and the efficacy of botulinum toxins in treating cosmetic facial rhytides, hemifacial spasm and benign essential blepharospasm. J. Cosmet. Laser Ther. 2014, 16, 258–262. [Google Scholar] [CrossRef]
- Shemais, N.; Elarab, A.E.; ElNahass, H. The effect of botulinum toxin A in patients with excessive gingival display with and without zinc supplementation: Randomized clinical trial. Clin. Oral. Investig. 2021, 25, 6403–6417. [Google Scholar] [CrossRef] [PubMed]
- Junior, H.T.; dos Santos Melo, C.; Mendes, R.R.; Santos, R.K.F. Effects of zinc supplementation on duration and action of botulinum toxin applied to face muscles: A systematic review of randomized clinical trials. J. Trace Elem. Miner. 2023, 5, 100080. [Google Scholar] [CrossRef]
Product Type | Zinc Compound | Uses | Key Benefits |
---|---|---|---|
Sunscreens | Zinc oxide (ZnO) | Sun protection | Broad-spectrum UVA–UVB protection, less chalky appearance on skin [8,9] |
Topical Creams | Zinc oxide, Zinc sulphate | Acne, eczema, dermatitis, psoriasis, wound healing | Anti-inflammatory, antibacterial, promotes wound healing, reduces sebum production [10,11,12] |
Ointments | Zinc oxide | Diaper rash, wound healing | Astringent, soothing, protective properties [11] |
Shampoos | Zinc pyrithione | Anti-dandruff | Antimicrobial, anti-inflammatory properties [12] |
Antibacterial Wound Dressings or Gels | ZnO nanoparticles | Wound dressings, antibacterial gels | Enhanced antibacterial effects, improved wound recovery [6,7] |
Composite Gels (ZnO nanoparticles with a chitosan hydrogel) | ZnO nanoparticles + Chitosan hydrogel | Chronic wound treatment, diabetic ulcers, burns | Enhanced wound healing, antimicrobial activity, maintains moist environment [13] |
Botulinum Toxin Product | Formulation Content | Stabilization Role of Zinc |
---|---|---|
Botox® (Allergan) | Botulinum toxin + human serum albumin, NaCl [42] | No zinc inclusion in current formulation |
Dysport® (Ipsen) | Botulinum toxin + human serum albumin, lactose [42] | No zinc inclusion in current formulation |
Xeomin® (Merz Pharmaceuticals) | Pure 150 kD neurotoxin + human serum albumin, sucrose [41] | No zinc inclusion in current formulation, minimal bacterial protein content |
Jeuveau® (Evolus Inc.) | Botulinum toxin type A neurotoxin complex + human serum albumin, sodium chloride [43] | No zinc inclusion in current formulation |
Daxxify® (Revance Therapeutics) | Botulinum toxin + RTP004 peptide, histidine, trehalose dihydrate, polysorbate 20 [43] | No zinc inclusion in current formulation |
MyoBloc (Elan Corporation) | Botulinum toxin type B + human serum albumin, sodium succinate, sodium chloride [42] | No zinc inclusion in current formulation |
Patent 1: Amino acid and zinc containing botulinum toxin pharmaceutical compositions | Botulinum toxin + recombinant albumin + zinc | Zinc used as a secondary stabilizer [44] |
Patent 2: Botulinum toxin composition having prolonged efficacy duration | Botulinum toxin + zinc | Zinc inclusion to extend toxin efficacy duration [45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foster, L.; Foppiani, J.A.; Xun, H.; Lee, D.; Utz, B.; Hernandez Alvarez, A.; Domingo-Escobar, M.J.; Taritsa, I.C.; Gavlasova, D.; Lee, T.C.; et al. Zinc in Dermatology: Exploring Its Emerging Role in Enhancing Botulinum Toxin Formulations and Clinical Efficacy. Curr. Issues Mol. Biol. 2024, 46, 12088-12098. https://doi.org/10.3390/cimb46110717
Foster L, Foppiani JA, Xun H, Lee D, Utz B, Hernandez Alvarez A, Domingo-Escobar MJ, Taritsa IC, Gavlasova D, Lee TC, et al. Zinc in Dermatology: Exploring Its Emerging Role in Enhancing Botulinum Toxin Formulations and Clinical Efficacy. Current Issues in Molecular Biology. 2024; 46(11):12088-12098. https://doi.org/10.3390/cimb46110717
Chicago/Turabian StyleFoster, Lacey, Jose A. Foppiani, Helen Xun, Daniela Lee, Begum Utz, Angelica Hernandez Alvarez, Maria J. Domingo-Escobar, Iulianna C. Taritsa, Dominika Gavlasova, Theodore C. Lee, and et al. 2024. "Zinc in Dermatology: Exploring Its Emerging Role in Enhancing Botulinum Toxin Formulations and Clinical Efficacy" Current Issues in Molecular Biology 46, no. 11: 12088-12098. https://doi.org/10.3390/cimb46110717
APA StyleFoster, L., Foppiani, J. A., Xun, H., Lee, D., Utz, B., Hernandez Alvarez, A., Domingo-Escobar, M. J., Taritsa, I. C., Gavlasova, D., Lee, T. C., Lin, G. J., Choudry, U., & Lin, S. J. (2024). Zinc in Dermatology: Exploring Its Emerging Role in Enhancing Botulinum Toxin Formulations and Clinical Efficacy. Current Issues in Molecular Biology, 46(11), 12088-12098. https://doi.org/10.3390/cimb46110717