Comprehensive Safety Assessment of Lacticaseibacillus paracasei subsp. paracasei NTU 101 Through Integrated Genotypic and Phenotypic Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Growth Conditions
2.2. Taxonomic Identification Through Phenotypic and Genotypic Analysis
2.3. Gene Prediction and Annotation
2.4. Antibiotic Susceptibility Assay and Resistance Genes Prediction
2.5. Analysis of Biogenic Amine
2.6. Hemolytic Activity Assay
2.7. Mucin Degradation Activity
2.8. Translocation on Intestinal Epithelial Cells
2.9. D/L-Lactic Acid Production
2.10. Bile Salt Hydrolase Activity
2.11. Repeated-Dose 90-Day Oral Toxicity Study in Rats
3. Results and Discussions
3.1. WGS, Taxonomic Identification, and Annotation Results
3.2. Antibiotic Resistance
3.3. Biogenic Amines Production
3.4. Virulence Factor and Hemolysis Activity
3.5. Mucin Degradation and Intestinal Mucosal Barrier
3.6. D/L-Lactic Acid Production and Bile Salts Hydrolase Activity
3.7. Repeated-Dose 90-Day Oral Toxicity Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naidu, A.S.; Bidlack, W.R.; Clemens, R.A. Probiotic spectra of lactic acid bacteria (LAB). Crit. Rev. Food Sci. Nutr. 1999, 39, 13–126. [Google Scholar] [CrossRef] [PubMed]
- Saxelin, M.; Rautelin, H.; Salminen, S.; Mäkelä, P.H. Safety of commercial products with viable Lactobacillus strains. Infect. Dis. Clin. Pract. 1996, 5, 331–335. [Google Scholar] [CrossRef]
- Sanders, M.E.; Klaenhammer, T.R.; Ouwehand, A.C.; Pot, B.; Johansen, E.; Heimbach, J.T.; Marco, M.L.; Tennilä, J.; Ross, R.P.; Franz, C.; et al. Effects of genetic, processing, or product formulation changes on efficacy and safety of probiotics. Ann. N. Y. Acad. Sci. 2014, 1309, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Pariza, M.W.; Gillies, K.O.; Kraak-Ripple, S.F.; Leyer, G.; Smith, A.B. Determining the safety of microbial cultures for consumption by humans and animals. Regul. Toxicol. Pharmacol. 2015, 73, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization/World Health Organization (FAO/WHO). Probiotics in Food. Health and Nutritional Properties and Guidelines for Evaluation. Guidelines for the Evaluation of Probiotics in Food. Report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food. 2002. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/382476b3-4d54-4175-803f-2f26f3526256/content (accessed on 4 August 2024).
- Marteau, P. Safety aspects of probiotic products. Näringsforskning 2001, 45, 22–24. [Google Scholar] [CrossRef]
- EFSA. EFSA statement on the requirements for whole genome sequence analysis of microorganisms intentionally used in the food chain. EFSA J. 2021, 19, 6506. [Google Scholar] [CrossRef]
- Riesco, R.; Trujillo, M.E. Update on the proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 2024, 74, 3. [Google Scholar] [CrossRef]
- Lin, F.M.; Chiu, C.H.; Pan, T.M. Fermentation of a milk–soymilk and Lycium chinense Miller mixture using a new isolate of Lactobacillus paracasei subsp. paracasei NTU 101 and Bifidobacterium longum. J. Ind. Microbiol. Biotechnol. 2004, 31, 559–564. [Google Scholar] [CrossRef]
- Liu, C.F.; Hu, C.L.; Chiang, S.S.; Tseng, K.C.; Yu, R.C.; Pan, T.M. Beneficial preventive effects of gastric mucosal lesion for soy−skim milk fermented by lactic acid bacteria. J. Agric. Food Chem. 2009, 57, 4433–4438. [Google Scholar] [CrossRef]
- Hung, S.C.; Tseng, W.T.; Pan, T.M. Lactobacillus paracasei subsp. paracasei NTU 101 ameliorates impaired glucose tolerance induced by a high-fat, high-fructose diet in Sprague-Dawley rats. J. Funct. Foods 2016, 24, 472–481. [Google Scholar] [CrossRef]
- Lee, B.H.; Lo, Y.H.; Pan, T.M. Anti-obesity activity of Lactobacillus fermented soy milk products. J. Funct. Foods 2013, 5, 905–913. [Google Scholar] [CrossRef]
- Tsai, T.Y.; Dai, R.Y.; Tsai, W.L.; Sun, Y.C.; Pan, T.M. Effect of fermented milk produced by Lactobacillus paracasei subsp. paracasei NTU 101 on blood lipid. Taiwan J. Agric. Chem. Food Sci. 2012, 50, 33–40. [Google Scholar] [CrossRef]
- Tsai, Y.T.; Cheng, P.C.; Fan, C.K.; Pan, T.M. Time-dependent persistence of enhanced immune response by a potential probiotic strain Lactobacillus paracasei subsp. paracasei NTU 101. Int. J. Food Microbiol. 2008, 128, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Na, G.H.; Yim, D.J.; Liu, C.F.; Lin, T.H.; Shih, T.W.; Pan, T.M.; Lee, C.L.; Koo, Y.K. Lactobacillus paracasei subsp. paracasei NTU 101 prevents obesity by regulating AMPK pathways and gut microbiota in obese rat. Biochem. Biophys. Res. Commun. 2024, 731, 150279. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.F.; Shih, T.W.; Lee, C.L.; Pan, T.M. The beneficial role of Lactobacillus paracasei subsp. paracasei NTU 101 in the prevention of atopic dermatitis. Curr. Issues Mol. Biol. 2024, 46, 2236–2250. [Google Scholar] [CrossRef]
- Chen, C.L.; Liou, J.M.; Lu, T.M.; Lin, Y.H.; Wang, C.K.; Pan, T.M. Effects of Vigiis 101-LAB on a healthy population’s gut microflora, peristalsis, immunity, and anti-oxidative capacity: A randomized, double-blind, placebo-controlled clinical study. Heliyon 2020, 6, e04979. [Google Scholar] [CrossRef]
- Lin, T.H.; Shih, T.W.; Lin, C.H. Effects of Lactocaseibacillus paracasei subsp. paracasei NTU 101 on gut microbiota: A randomized, double-blind, placebo-controlled clinical study. J. Sci. Food Agric. 2024. [Google Scholar] [CrossRef]
- Tseng, W.T.; Shih, T.W.; Liu, S.H.; Pan, T.M. Safety and mutagenicity evaluation of Vigiis 101 powder made from Lactobacillus paracasei subsp. paracasei NTU 101. Regul. Toxicol. Pharmacol. 2015, 71, 148–157. [Google Scholar] [CrossRef]
- EFSA. Guidance on the characterisation of microorganisms used as feed additives or as production organisms. EFSA J. 2018, 16, 5206. [Google Scholar] [CrossRef]
- Murigneux, V.; Roberts, L.W.; Forde, B.M.; Phan, M.D.; Nhu, N.T.K.; Irwin, A.D.; Harris, P.N.A.; Paterson, D.L.; Schembri, M.A.; Whiley, D.M.; et al. MicroPIPE: Validating an end-to-end workflow for high-quality complete bacterial genome construction. BMC Genom. 2021, 22, 474. [Google Scholar] [CrossRef]
- ISO 10932:2010; Milk and Milk Products—Determination of the Minimal Inhibitory Concentration (MIC) of Antibiotics Applicable to Bifidobacteria and Non-Enterococcal Lactic acid Bacteria (LAB). International Organization for Standardization: Geneva, Switzerland, 2010.
- EFSA. Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J. 2012, 10, 2740. [Google Scholar] [CrossRef]
- Sang, X.; Li, K.; Zhu, Y.; Ma, X.; Hao, H.; Bi, J.; Zhang, G.; Hou, H. The impact of microbial diversity on biogenic amines formation in grasshopper sub shrimp paste during the fermentation. Front. Microbiol. 2020, 11, 782. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Bi, J.; Li, X.; Zhang, G.; Hao, H.; Hou, H. Contribution of microorganisms to biogenic amine accumulation during fish sauce fermentation and screening of novel starters. Foods 2021, 10, 2572. [Google Scholar] [CrossRef]
- Eerola, S.; Hinkkanen, R.; Lindfors, E.; Hirvi, T. Liquid chromatographic determination of biogenic amines in dry sausages. J. AOAC Int. 1993, 76, 575–577. [Google Scholar] [CrossRef]
- Casarotti, S.N.; Carneiro, B.M.; Todorov, S.D.; Nero, L.A.; Rahal, P.; Penna, A.L.B. In vitro assessment of safety and probiotic potential characteristics of lactobacillus strains isolated from water buffalo mozzarella cheese. Ann. Microbiol. 2017, 67, 289–301. [Google Scholar] [CrossRef]
- Buxton, R.; American Society for Microbiology. Blood Agar Plates and Hemolysis Protocols. 2005. Available online: https://asm.org/getattachment/7ec0de2b-bb16-4f6e-ba07-2aea25a43e76/protocol-28 (accessed on 7 August 2024).
- Zhou, J.S.; Gopal, P.K.; Gill, H.S. Potential probiotic lactic acid bacteria Lactobacillus rhamnosus (HN001), Lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019) do not degrade gastric mucin in vitro. Int. J. Food Microbiol. 2001, 63, 81–90. [Google Scholar] [CrossRef]
- Fatmawati, N.N.D.; Goto, K.; Mayura, I.P.B.; Nocianitri, K.A.; Ramona, Y.; Sakaguchi, M.; Matsushita, O.; Sujaya, I.N. Caco-2 cells monolayer as an in-vitro model for probiotic strain translocation. Bali Med. J. 2020, 9, 137–142. [Google Scholar] [CrossRef]
- Kim, T.; Mondal, S.C.; Jeong, C.R.; Kim, S.R.; Ban, O.H.; Jung, Y.H.; Yang, J.; Kim, S.J. Safety evaluation of Lactococcus lactis IDCC 2301 isolated from homemade cheese. Food Sci. Nutr. 2022, 10, 67–74. [Google Scholar] [CrossRef]
- Dashkevicz, M.P.; Feighner, S.D. Development of a differential medium for bile salt hydrolase-active Lactobacillus spp. Appl. Environ. Microbiol. 1989, 55, 11–16. [Google Scholar] [CrossRef]
- ISO/IEC 17025:2005; General Requirements for the Competence of Testing and Calibration Laboratories. International Organization for Standardization: Geneva, Switzerland, 2005.
- Parks, D.H.; Imelfort, M.; Skennerton, C.T.; Hugenholtz, P.; Tyson, G.W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015, 25, 1043–1055. [Google Scholar] [CrossRef]
- Parks, D.H.; Chuvochina, M.; Waite, D.W.; Rinke, C.; Skarshewski, A.; Chaumeil, P.A.; Hugenholtz, P. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 2018, 36, 996–1004. [Google Scholar] [CrossRef] [PubMed]
- Ciufo, S.; Kannan, S.; Sharma, S.; Badretdin, A.; Clark, K.; Turner, S.; Brover, S.; Schoch, C.L.; Kimchi, A.; DiCuccio, M. Using average nucleotide identity to improve taxonomic assignments in prokaryotic genomes at the NCBI. Int. J. Syst. Evol. Microbiol. 2018, 68, 2386–2392. [Google Scholar] [CrossRef] [PubMed]
- Meier-Kolthoff, J.P.; Göker, M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 2019, 10, 2182. [Google Scholar] [CrossRef] [PubMed]
- Shin, E.; Paek, J.J.; Lee, Y. Antimicrobial resistance of seventy lactic acid bacteria isolated from commercial probiotics in Korea. J. Microbiol. Biotechnol. 2023, 33, 500–510. [Google Scholar] [CrossRef]
- Chen, J.F.; Hsia, K.C.; Kuo, Y.W.; Chen, S.H.; Huang, Y.Y.; Li, C.M.; Hsu, Y.C.; Tsai, S.Y.; Ho, H.H. Safety assessment and probiotic potential comparison of Bifidobacterium longum subsp. infantis BLI-02, Lactobacillus plantarum LPL28, Lactobacillus acidophilus TYCA06, and Lactobacillus paracasei ET-66. Nutrients 2024, 16, 126. [Google Scholar] [CrossRef]
- Alcock, B.P.; Raphenya, A.R.; Lau, T.T.Y.; Tsang, K.K.; Bouchard, M.; Edalatmand, A.; Huynh, W.; Nguyen, A.L.V.; Cheng, A.A.; Liu, S.; et al. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2019, 48, D517–D525. [Google Scholar] [CrossRef]
- Yerushalmi, H.; Lebendiker, M.; Schuldiner, S. EmrE, an Escherichia coli 12-kDa multidrug transporter, exchanges toxic cations and H+ and is soluble in organic solvents. J. Biol. Chem. 1995, 270, 6856–6863. [Google Scholar] [CrossRef]
- Barbieri, F.; Montanari, C.; Gardini, F.; Tabanelli, G. Biogenic amine production by lactic acid bacteria: A review. Foods 2019, 8, 17. [Google Scholar] [CrossRef]
- FDA GRN 429; Lactobacillus casei Strain Shirota. Food and Drug Administration: Silver Spring, MD, USA, 2012. Available online: https://www.fda.gov/food/food-ingredients-packaging/generally-recognized-safe-gras (accessed on 23 September 2024).
- Markusková, B.; Lichvariková, A.; Szemes, T.; Koreňová, J.; Kuchta, T.; Drahovská, H. Genome analysis of lactic acid bacterial strains selected as potential starters for traditional Slovakian bryndza cheese. FEMS Microbiol. Lett. 2018, 365, 23. [Google Scholar] [CrossRef]
- Li, C.H.; Chen, T.Y.; Wu, C.C.; Cheng, S.H.; Chang, M.Y.; Cheng, W.H.; Chiu, S.H.; Chen, C.C.; Tsai, Y.C.; Yang, D.J.; et al. Safety evaluation and anti-inflammatory efficacy of Lacticaseibacillus paracasei PS23. Int. J. Mol. Sci. 2023, 24, 724. [Google Scholar] [CrossRef]
- Hirano, R.; Kume, A.; Nishiyama, C.; Honda, R.; Shirasawa, H.; Ling, Y.; Sugiyama, Y.; Nara, M.; Shimokawa, H.; Kawada, H.; et al. Putrescine production by Latilactobacillus curvatus KP 3-4 isolated from fermented foods. Microorganisms 2022, 10, 697. [Google Scholar] [CrossRef] [PubMed]
- Khazaal, S.; Al Safadi, R.; Osman, D.; Hiron, A.; Gilot, P. Investigation of the polyamine biosynthetic and transport capability of Streptococcus agalactiae: The non-essential PotABCD transporter. Microbiology 2021, 167, 12. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wen, X.; Wen, Z.; Chen, S.; Wang, L.; Wei, X. Evaluation of the biogenic amines formation and degradation abilities of Lactobacillus curvatus from chinese bacon. Front. Microbiol. 2018, 9, 1015. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zou, D.; Ruan, L.; Wen, Z.; Chen, S.; Xu, L.; Wei, X. Evaluation of the biogenic amines and microbial contribution in traditional chinese sausages. Front. Microbiol. 2019, 10, 872. [Google Scholar] [CrossRef]
- Stefanovic, E.; McAuliffe, O. Comparative genomic and metabolic analysis of three Lactobacillus paracasei cheese isolates reveals considerable genomic differences in strains from the same niche. BMC Genom. 2018, 19, 205. [Google Scholar] [CrossRef]
- EFSA. Scientific opinion on risk based control of biogenic amine formation in fermented foods. EFSA J. 2011, 9, 2393. [Google Scholar] [CrossRef]
- Mah, J.H.; Park, Y.K.; Jin, Y.H.; Lee, J.H.; Hwang, H.J. Bacterial production and control of biogenic amines in Asian fermented soybean foods. Foods 2019, 8, 85. [Google Scholar] [CrossRef]
- Atiya, A.M.; Eric, P.; Roger, S.; Agneta, Y. Polyamines in foods: Development of a food database. Food Nutr. Res. 2011, 55, 5572. [Google Scholar] [CrossRef]
- Goldstein, E.J.C.; Tyrrell, K.L.; Citron, D.M. Lactobacillus species: Taxonomic complexity and controversial susceptibilities. Clin. Infect. Dis. 2015, 60, S98–S107. [Google Scholar] [CrossRef]
- FDA GRN 736; Lactobacillus casei subsp. paracasei Lpc-37. Food and Drug Administration: Silver Spring, MD, USA, 2018. Available online: https://www.fda.gov/media/125422/download (accessed on 23 September 2024).
- M’hamed, A.C.; Ncib, K.; Merghni, A.; Migaou, M.; Lazreg, H.; Snoussi, M.; Noumi, E.; Mansour, M.B.; Maaroufi, R.M. Characterization of probiotic properties of Lacticaseibacillus paracasei L2 isolated from a traditional fermented food “lben”. Life 2023, 13, 21. [Google Scholar] [CrossRef]
- Chokesajjawatee, N.; Santiyanont, P.; Chantarasakha, K.; Kocharin, K.; Thammarongtham, C.; Lertampaiporn, S.; Vorapreeda, T.; Srisuk, T.; Wongsurawat, T.; Jenjaroenpun, P.; et al. Safety assessment of a nham starter culture Lactobacillus plantarum BCC9546 via whole-genome analysis. Sci. Rep. 2020, 10, 10241. [Google Scholar] [CrossRef]
- Abe, F.; Muto, M.; Yaeshima, T.; Iwatsuki, K.; Aihara, H.; Ohashi, Y.; Fujisawa, T. Safety evaluation of probiotic bifidobacteria by analysis of mucin degradation activity and translocation ability. Anaerobe 2010, 16, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, D.; Singh, R.; Tyagi, A.; Rashmi, H.M.; Batish, V.K.; Grover, S. Assessing safety of Lactobacillus plantarum MTCC 5690 and Lactobacillus fermentum MTCC 5689 using in vitro approaches and an in vivo murine model. Regul. Toxicol. Pharmacol. 2019, 101, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Glover, J.S.; Ticer, T.D.; Engevik, M.A. Characterizing the mucin-degrading capacity of the human gut microbiota. Sci. Rep. 2022, 12, 8456. [Google Scholar] [CrossRef] [PubMed]
- Kowlgi, N.G.; Chhabra, L. D-lactic acidosis: An underrecognized complication of short bowel syndrome. Gastroenterol. Res. Pract. 2015, 2015, 476215. [Google Scholar] [CrossRef]
- Bang, W.Y.; Chae, S.A.; Ban, O.H.; Oh, S.; Park, C.; Lee, M.; Shin, M.; Yang, J.; Jung, Y.H. The in vitro and in vivo safety evaluation of Lactobacillus acidophilus IDCC 3302. Microbiol. Biotechnol. Lett. 2021, 49, 39–44. [Google Scholar] [CrossRef]
- Sulemankhil, I.; Parent, M.; Jones, M.L.; Feng, Z.; Labbé, A.; Prakash, S. In vitro and in vivo characterization and strain safety of Lactobacillus reuteri NCIMB 30253 for probiotic applications. Can. J. Microbiol. 2012, 58, 776–787. [Google Scholar] [CrossRef]
- FDA GRN 1013; Lactobacillus rhamnosus DSM 33156. Food and Drug Administration: Silver Spring, MD, USA, 2021. Available online: https://www.fda.gov/media/155445/download (accessed on 23 September 2024).
- FDA GRN 856; Bifidobacterium animalis ssp. lactis BB-12. Food and Drug Administration: Silver Spring, MD, USA, 2019. Available online: https://www.fda.gov/media/134330/download (accessed on 23 September 2024).
- Solieri, L.; Bianchi, A.; Mottolese, G.; Lemmetti, F.; Giudici, P. Tailoring the probiotic potential of non-starter Lactobacillus strains from ripened parmigiano reggiano cheese by in vitro screening and principal component analysis. Food Microbiol. 2014, 38, 240–249. [Google Scholar] [CrossRef]
- Liong, M.T.; Shah, N.P. Bile salt deconjugation ability, bile salt hydrolase activity and cholesterol co-precipitation ability of Lactobacilli strains. Int. Dairy J. 2005, 15, 391–398. [Google Scholar] [CrossRef]
- Zhang, W.Y.; Wu, R.N.; Sun, Z.H.; Sun, T.S.; Meng, H.; Zhang, H.P. Molecular cloning and characterization of bile salt hydrolase in Lactobacillus casei Zhang. Ann. Microbiol. 2009, 59, 721–726. [Google Scholar] [CrossRef]
- Elkins, C.A.; Moser, S.A.; Savage, D.C. Genes encoding bile salt hydrolases and conjugated bile salt transporters in Lactobacillus johnsonii 100-100 and other Lactobacillus species. Microbiology 2001, 147, 3403–3412. [Google Scholar] [CrossRef] [PubMed]
Resistance Target | Phenotypic Analysis | Genotypic Analysis | |||||
---|---|---|---|---|---|---|---|
MIC (mg/L) | Susceptibility of NTU 101 b | CARD | ResFinder | AMRfinderPlus | |||
Cut-Off Value a | NTU 101 | BCRC 12248T | |||||
Ampicillin | 4 | 2 | 1 | S | N.D. e | N.D. | N.D. |
Vancomycin | n.r. c | - | - | - d | N.D. | N.D. | N.D. |
Gentamicin | 32 | 4 | 4 | S | N.D. | N.D. | N.D. |
Kanamycin | 64 | 64 | 64 | S | N.D. | N.D. | N.D. |
Streptomycin | 64 | 64 | 64 | S | N.D. | N.D. | N.D. |
Erythromycin | 1 | 0.5 | 0.25 | S | N.D. | N.D. | N.D. |
Clindamycin | 4 | 0.5 | 0.25 | S | N.D. | N.D. | N.D. |
Tetracycline | 4 | 4 | 2 | S | N.D. | N.D. | N.D. |
Chloramphenicol | 4 | 8 | 8 | R | N.D. | N.D. | N.D. |
Disinfecting agents | |||||||
Benzalkonium chloride | - | - | - | - | Strict (qacJ) | N.D. | - |
Fermented Medium | Group a | Biogenic Amines (ppm) b | |||||||
---|---|---|---|---|---|---|---|---|---|
HIS | TYR | PUT | TRP | PHE | CAD | SPD | SPR | ||
MRS | B | N.D. c | 2.76 ± 0.14 | N.D. | 16.13 ± 0.70 | 3.66 ± 0.67 | 2.49 d | 11.97 ± 0.54 | 3.67 ± 0.17 |
S | N.D. | 2.83 ± 0.05 | N.D. | 13.83 ± 0.09 | 3.25 ± 0.09 | 4.18 ± 0.17 | 8.41 ± 0.23 | 3.33 | |
Skim milk | B | N.D. | N.D. | N.D. | N.D. | N.D. | 2.78 ± 0.17 | N.D. | N.D. |
S | N.D. | N.D. | N.D. | N.D. | N.D. | 3.11 ± 0.36 | N.D. | N.D. | |
Low-fat milk | |||||||||
Sample 1 | B | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. |
S | N.D. | N.D. | N.D. | N.D. | N.D. | 2.68 ± 0.08 | N.D. | N.D. | |
Sample 2 | B | N.D. | 12.09 ± 11.03 | N.D. | N.D. | N.D. | 2.20 | N.D. | N.D. |
S | N.D. | 25.26 ± 19.19 | 4.54 | N.D. | N.D. | 2.85 | N.D. | N.D. | |
Sample 3 | B | N.D. | N.D. | N.D. | N.D. | 2.65 | N.D. | 2.73 ± 0.12 | 12.42 ± 7.44 |
S | N.D. | N.D. | N.D. | N.D. | 3.79 | N.D. | 2.78 ± 0.02 | 22.47 ± 9.58 | |
Soymilk | |||||||||
Sample 1 | B | N.D. | N.D. | 5.61 ± 0.60 | 10.68 ± 1.28 | N.D. | 2.70 ± 0.09 | N.D. | N.D. |
S | N.D. | N.D. | N.D. | 7.36 ± 2.06 | N.D. | 3.36 ± 0.36 | N.D. | N.D. | |
Sample 2 | B | 6.83 ± 1.04 | N.D. | 4.91 | 13.60 ± 1.39 | N.D. | 2.29 ± 0.47 | N.D. | N.D. |
S | 3.07 ± 1.79 | N.D. | N.D. | N.D. | N.D. | 2.56 ± 0.11 | N.D. | N.D. | |
Sample 3 | B | 2.91 ± 0.27 | 4.18 | N.D. | 6.60 ± 1.97 | N.D. | 3.11 ± 0.57 | 8.78 ± 5.96 | N.D. |
S | 2.89 ± 0.05 | 12.73 ± 1.44 | N.D. | N.D. | N.D. | 2.57 ± 0.16 | 9.33 ± 4.51 | N.D. | |
Sample 4 | B | 2.33 | 2.40 ± 0.12 | N.D. | N.D. | N.D. | N.D. | 9.03 ± 0.20 | N.D. |
S | 2.44 | 2.39 ± 0.16 | N.D. | N.D. | N.D. | N.D. | 8.08 ± 0.30 | N.D. |
Biogenic Amine | Enzyme of Decarboxylation | KEGG Entry | Annotated Protein ID | BLASTp Hit/Putative Conserved Domain |
---|---|---|---|---|
Histamine | Histidine decarboxylase | K01590 | Not found | |
Tyramine | Tyrosine decarboxylase | K01592, K18933, K22329, K22330 | Not found | |
Putrescine | L-ornithine decarboxylase | K01581 | PGAP_000721 | L-ornithine decarboxylase/PRK13578 (ornithine decarboxylase; provisional) |
Agmatinase | K01480 | Not found | ||
Tryptamine | L-tryptophan decarboxylase | K01593, K22433 | Not found | |
2-phenylethylamine | Phenylalanine decarboxylase | K22427 | Not found | |
L-tryptophan decarboxylase | K01593 | Not found | ||
Agmatine | Arginine decarboxylase | K01583, K01584, K01585, K02626 | Not found | |
Cadaverine | L-lysine decarboxylase | K01582 | PGAP_000762 | TIGR00730 family Rossman fold protein (putative lysine decarboxylases)/PpnN (nucleotide transport and metabolism) |
D-ornithine/D-lysine decarboxylase | K23385 | Not found | ||
Spermidine | Spermidine synthase | K00797, K24034 | Not found | |
Carboxynorspermidine decarboxylase | K13747 | Not found | ||
Spermine | Spermine synthase | K00802 | Not found |
Hemolysis Type a | |||
---|---|---|---|
No. | Strain | Aerobic Condition | Anaerobic Condition |
1 | L. paracasei subsp. paracasei NTU 101 | α | γ |
2 | L. paracasei subsp. paracasei BCRC 17002 | α | γ |
3 | L. paracasei subsp. paracasei BCRC 12248T | α | γ |
4 | L. paracasei subsp. paracasei BCRC 14023 | α | γ |
5 | L. rhamnosus BCRC 16000 | α | γ |
6 | S. aureus BCRC 12154 | β | β |
VFDB Predicted | BLAST Result | ||
---|---|---|---|
Predicted Protein ID | VF Category | Function | BLASTp Hits a/Putative Conserve Domain |
PGAP_000462 | VFG038907 | Hemolysin III | Hemolysin III family protein [Lacticaseibacillus paracasei]/YqfA |
PAGP_000832 | VFG038902 | Hemolysin A | Hemolysin family protein [Lacticaseibacillus paracasei]/TlyC |
PAGP_001231 | VFG038900 | Hemolysin A | Hemolysin family protein [Lacticaseibacillus paracasei]/TlyC |
PSM | PSMG | ||||
---|---|---|---|---|---|
No. | Strain | Mucin Degradation | Colony Formation | Mucin Degradation | Colony Formation |
1 | L. paracasei subsp. paracasei NTU 101 | − a | − b | − | − |
2 | L. paracasei subsp. paracasei BCRC 17002 | − | − | − | − |
3 | L. paracasei subsp. paracasei BCRC 12248T | − | − | − | − |
4 | L. paracasei subsp. paracasei BCRC 14023 | − | − | − | + |
5 | L. rhamnosus BCRC 16000 | − | − | − | + |
6 | S. enterica subsp. enterica BCRC 10747 | − | + | − | + |
CAZy Family | Predicted Protein ID | Corresponding Enzyme a |
---|---|---|
GH2 | PGAP_001529 | β-galactosidase [EC 3.2.1.23] |
GH20 | PGAP_001643 | β-N-acetylhexosaminidase [EC 3.2.1.52] |
Endo-beta-N-acetylglucosaminidase [EC 3.2.1.96] | ||
β-galactosidase [EC 3.2.1.23] | ||
GH29 | PGAP_000883 PGAP_002109 | α-L-fucosidase [EC 3.2.1.51] |
GH33 | Not found | |
GH35 | PGAP_001638 | β-galactosidase [EC 3.21.23] |
β-fucosidase [EC 3.2.1.-] | ||
Glycosidases group [EC 3.2.1.38] | ||
GH95 | Not found |
Dose | ||||
---|---|---|---|---|
Control | Low Dose (500 mg/kg) | Medium Dose (1000 mg/kg) | High Dose (2000 mg/kg) | |
Male | ||||
WBCs (103/μL) | 11.9 ± 2.3 | 11.4 ± 2.1 | 12.1 ± 1.6 | 11.1 ± 2.2 |
RBCs (106/μL) | 9.7 ± 0.5 | 9.8 ± 0.8 | 9.6 ± 0.4 | 9.9 ± 0.6 |
HB (g/dL) | 16.9 ± 0.5 | 16.9 ± 0.9 | 16.6 ± 0.8 | 17.1 ± 1.2 |
HCT (%) | 49.8 ± 1.2 | 49.6 ± 2.8 | 48.8 ± 1.9 | 50.3 ± 3.5 |
MCV (fL) | 51.4 ± 2.2 | 50.7 ± 2.6 | 50.6 ± 1.5 | 50.8 ± 2.7 |
MCH (pg) | 17.4 ± 0.6 | 17.3 ± 0.8 | 17.2 ± 0.4 | 17.3 ± 0.8 |
MCHC (g/dL) | 33.9 ± 0.4 | 34.0 ± 0.5 | 34.1 ± 0.8 | 34.1 ± 0.6 |
PLT (103/μL) | 955.2 ± 118.7 | 1026.1 ± 118.9 | 1040.4 ± 121.8 | 1043.0 ± 121.6 |
Neutrophils (%) | 23.2 ± 7.3 | 24.6 ± 9.4 | 22.9 ± 5.2 | 23.0 ± 8.0 |
LYMPHs (%) | 69.1 ± 7.6 | 68.4 ± 10.4 | 69.8 ± 5.4 | 70.5 ± 7.9 |
Monocytes (%) | 6.2 ± 1.1 | 5.3 ± 1.3 | 5.5 ± 1.0 | 5.2 ± 0.7 * |
Eosinophils (%) | 1.3 ± 0.3 | 1.6 ± 0.5 | 1.5 ± 0.6 | 1.1 ± 0.4 |
Basophils (%) | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.3 ± 0.1 | 0.2 ± 0.1 |
PT (s) | 14.9 ± 3.2 | 14.1 ± 1.5 | 13.0 ± 2.7 | 13.5 ± 2.1 |
Female | ||||
WBCs (103/μL) | 8.8 ± 2.0 | 8.1 ± 2.2 | 8.6 ± 2.0 | 7.6 ± 1.0 |
RBCs (106/μL) | 8.9 ± 0.3 | 9.0 ± 1.1 | 9.0 ± 0.5 | 8.9 ± 0.6 |
HB (g/dL) | 16.2 ± 0.8 | 16.5 ± 1.6 | 16.3 ± 1.0 | 16.4 ± 0.9 |
HCT (%) | 47.6 ± 2.0 | 48.5 ± 4.3 | 48.0 ± 2.5 | 48.3 ± 2.2 |
MCV (fL) | 53.8 ± 2.1 | 53.9 ± 2.4 | 53.4 ± 1.4 | 54.3 ± 2.1 |
MCH (pg) | 18.3 ± 0.7 | 18.3 ± 0.6 | 18.1 ± 0.3 | 18.4 ± 0.5 |
MCHC (g/dL) | 34.0 ± 0.6 | 34.0 ± 0.5 | 33.9 ± 0.6 | 33.8 ± 0.8 |
PLT (103/μL) | 1017.4 ± 91.4 | 1011.8 ± 174.0 | 1026.4 ± 156.6 | 902.6 ± 96.4 |
Neutrophils (%) | 14.0 ± 2.4 | 15.3 ± 3.9 | 13.1 ± 3.1 | 13.3 ± 3.8 |
LYMPHs (%) | 79.2 ± 2.6 | 78.4 ± 4.9 | 80.3 ± 5.3 | 80.6 ± 3.7 |
Monocytes (%) | 5.2 ± 1.0 | 4.9 ± 1.3 | 5.0 ± 2.3 | 4.6 ± 1.0 |
Eosinophils (%) | 1.3 ± 0.5 | 1.2 ± 0.4 | 1.2 ± 0.5 | 1.2 ± 0.3 |
Basophils (%) | 0.3 ± 0.1 | 0.3 ± 0.1 | 0.3 ± 0.2 | 0.2 ± 0.1 |
PT (s) | 9.7 ± 0.2 | 9.6 ± 0.2 | 9.7 ± 0.1 | 9.6 ± 0.2 |
Dose | ||||
---|---|---|---|---|
Control | Low Dose (500 mg/kg) | Medium Dose (1000 mg/kg) | High Dose (2000 mg/kg) | |
Male | ||||
Glucose (mg/dL) | 242.5 ± 27.2 | 242.9 ± 51.3 | 229.5 ± 39.8 | 259.8 ± 51.3 |
BUN (mg/dL) | 15.6 ± 2.1 | 14.1 ± 1.7 | 14.8 ± 1.1 | 15.4 ± 1.2 |
Creatinine (mg/dL) | 0.70 ± 0.07 | 0.67 ± 0.05 | 0.67 ± 0.05 | 0.68 ± 0.04 |
AST (U/L) | 97.4 ± 21.4 | 83.1 ± 8.3 | 90.1 ± 18.5 | 111.7 ± 50.0 |
ALT (U/L) | 44.2 ± 22.0 | 34.7 ± 4.3 | 36.5 ± 7.8 | 58.2 ± 42.8 |
Total protein (g/dL) | 6.7 ± 0.3 | 6.9 ± 0.2 | 6.6 ± 0.2 | 6.8 ± 0.4 |
Albumin (g/dL) | 4.6 ± 0.2 | 4.6 ± 0.1 | 4.5 ± 0.1 | 4.6 ± 0.2 |
ALP (U/L) | 95.5 ± 21.0 | 93.0 ± 20.8 | 94.6 ± 21.7 | 105.9 ± 25.1 |
γ-GT (U/L) | <2.0 | <2.0 | <2.0 | <2.0 |
Cholesterol (mg/dL) | 67.4 ± 11.0 | 72.4 ± 13.3 | 61.9 ± 11.3 | 64.6 ± 12.2 |
Triglyceride (mg/dL) | 49.8 ± 15.2 | 61.6 ± 26.4 | 47.1 ± 22.9 | 61.0 ± 28.5 |
Calcium (mg/dL) | 12.3 ± 0.7 | 13.4 ± 0.3 * | 13.1 ± 0.4 * | 13.6 ± 0.6 * |
Phosphorus (mg/dL) | 10.7 ± 0.8 | 10.3 ± 0.7 | 10.8 ± 0.9 | 11.7 ± 1.8 |
Sodium (meq/L) | 145.5 ± 1.0 | 146.2 ± 1.2 | 146.1 ± 1.4 | 144.3 ± 3.0 |
Potassium (meq/L) | 7.1 ± 0.9 | 6.7 ± 0.7 | 7.3 ± 1.3 | 8.0 ± 2.3 |
Chloride (meq/L) | 102.6 ± 1.3 | 101.0 ± 1.4 * | 101.9 ± 1.7 | 100.0 ± 0.9 * |
Globulin (g/dL) | 2.1 ± 0.2 | 2.2 ± 0.2 | 2.1 ± 0.2 | 2.2 ± 0.2 |
Total bilirubin (mg/dL) | <0.04 | <0.04 | <0.04 | <0.04 |
Female | ||||
Glucose (mg/dL) | 206.6 ± 52.6 | 206.8 ± 44.5 | 183.5 ± 55.4 | 203.0 ± 71.6 |
BUN (mg/dL) | 15.3 ± 1.5 | 15.0 ± 2.1 | 15.4 ± 1.2 | 16.4 ± 1.7 |
Creatinine (mg/dL) | 0.83 ± 0.05 | 0.77 ± 0.05 * | 0.76 ± 0.05 * | 0.77 ± 0.05 * |
AST (U/L) | 108.2 ± 38.0 | 130.4 ± 91.6 | 97.8 ± 26.5 | 116.1 ± 40.9 |
ALT (U/L) | 36.9 ± 11.1 | 36.2 ± 15.2 | 37.2 ± 20.2 | 38.7 ± 12.7 |
Total protein (g/dL) | 7.9 ± 0.4 | 7.8 ± 0.6 | 7.6 ± 0.5 | 7.8 ± 0.5 |
Albumin (g/dL) | 6.0 ± 0.4 | 5.8 ± 0.5 | 5.7 ± 0.6 | 5.9 ± 0.5 |
ALP (U/L) | 30.6 ± 7.8 | 32.7 ± 5.1 | 36.0 ± 11.2 | 29.2 ± 4.3 |
γ-GT (U/L) | <2.0 | <2.0 | <2.0 | <2.0 |
Cholesterol (mg/dL) | 80.0 ± 19.7 | 81.1 ± 9.0 | 70.2 ± 13.4 | 78.6 ± 15.2 |
Triglyceride (mg/dL) | 43.2 ± 13.8 | 49.7 ± 23.0 | 32.0 ± 15.7 | 39.8 ± 18.7 |
Calcium (mg/dL) | 13.4 ± 0.6 | 14.0 ± 0.5 * | 13.7 ± 0.3 | 14.2 ± 0.6 * |
Phosphorus (mg/dL) | 9.9 ± 0.8 | 10.3 ± 1.4 | 10.0 ± 1.2 | 10.3 ± 1.1 |
Sodium (meq/L) | 145.0 ± 0.9 | 145.7 ± 1.3 | 145.6 ± 1.5 | 144.9 ± 1.4 |
Potassium (meq/L) | 9.2 ± 1.3 | 8.7 ± 2.0 | 9.3 ± 1.7 | 9.0 ± 1.3 |
Chloride (meq/L) | 103.8 ± 1.5 | 103.3 ± 1.5 | 102.9 ± 1.7 | 101.8 ± 1.5 * |
Globulin (g/dL) | 2.0 ± 0.2 | 2.0 ± 0.2 | 1.9 ± 0.3 | 1.8 ± 0.2 |
Total bilirubin (mg/dL) | <0.04 | <0.04 | <0.04 | <0.04 |
Dose | ||||
---|---|---|---|---|
Item (g) | Control | Low Dose (500 mg NTU 101/kg) | Medium Dose (1000 mg NTU 101/kg) | High Dose (2000 mg NTU 101/kg) |
Male | ||||
Body weight (before) | 218.0 ± 8.7 | 218.0 ± 8.0 | 217.8 ± 7.6 | 217.7 ± 7.7 |
Body weight (after) b | 538.1 ± 49.8 | 543.9 ± 27.1 | 535.1 ± 39.3 | 519.6 ± 41.5 |
Testis | 3.478 ± 0.316 | 3.454 ± 0.289 | 3.474 ± 0.417 | 3.550 ± 0.282 |
Adrenal gland | 0.057 ± 0.009 | 0.060 ± 0.010 | 0.060 ± 0.007 | 0.058 ± 0.006 |
Spleen | 0.739 ± 0.107 | 0.807 ± 0.153 | 0.873 ± 0.130 * | 0.845 ± 0.120 |
Kidney | 3.7171 ± 0.351 | 4.072 ± 0.715 | 4.032 ± 0.366 | 4.070 ± 0.525 |
Heart | 1.693 ± 0.175 | 1.780 ± 0.170 | 1.677 ± 0.118 | 1.743 ± 0.133 |
Brain | 2.101 ± 0.080 | 2.182 ± 0.088 | 2.147 ± 0.122 | 2.224 ± 0.068 * |
Liver | 14.475 ± 1.696 | 15.360 ± 2.948 | 14.978 ± 1.360 | 15.416 ± 2.054 |
Female | ||||
Body weight (before) | 172.8 ± 9.2 | 172.8 ± 9.2 | 172.7 ± 8.7 | 172.7 ± 8.7 |
Body weight (after) b | 253.2 ± 12.5 | 263.3 ± 22.6 | 266.2 ± 19.9 | 253.3 ± 16.9 |
Ovary | 0.094 ± 0.025 | 0.087 ± 0.016 | 0.083 ± 0.020 | 0.087 ± 0.017 |
Adrenal gland | 0.068 ± 0.018 | 0.066 ± 0.015 | 0.063 ± 0.015 | 0.066 ± 0.009 |
Spleen | 0.492 ± 0.057 | 0.537 ± 0.125 | 0.511 ± 0.085 | 0.499 ± 0.087 |
Kidney | 2.228 ± 0.145 | 2.294 ± 0.379 | 2.170 ± 0.139 | 2.214 ± 0.287 |
Heart | 1.039 ± 0.080 | 1.043 ± 0.065 | 0.992 ± 0.093 | 1.004 ± 0.117 |
Brain | 1.998 ± 0.074 | 2.140 ± 0.353 | 1.991 ± 0.059 | 1.986 ± 0.070 |
Liver | 8.963 ± 0.751 | 8.673 ± 0.782 | 7.992 ± 0.456 * | 8.442 ± 0.960 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.-T.; Chao, W.-Y.; Lin, C.-H.; Shih, T.-W.; Pan, T.-M. Comprehensive Safety Assessment of Lacticaseibacillus paracasei subsp. paracasei NTU 101 Through Integrated Genotypic and Phenotypic Analysis. Curr. Issues Mol. Biol. 2024, 46, 12354-12374. https://doi.org/10.3390/cimb46110734
Chen C-T, Chao W-Y, Lin C-H, Shih T-W, Pan T-M. Comprehensive Safety Assessment of Lacticaseibacillus paracasei subsp. paracasei NTU 101 Through Integrated Genotypic and Phenotypic Analysis. Current Issues in Molecular Biology. 2024; 46(11):12354-12374. https://doi.org/10.3390/cimb46110734
Chicago/Turabian StyleChen, Chieh-Ting, Wen-Yu Chao, Chih-Hui Lin, Tsung-Wei Shih, and Tzu-Ming Pan. 2024. "Comprehensive Safety Assessment of Lacticaseibacillus paracasei subsp. paracasei NTU 101 Through Integrated Genotypic and Phenotypic Analysis" Current Issues in Molecular Biology 46, no. 11: 12354-12374. https://doi.org/10.3390/cimb46110734
APA StyleChen, C. -T., Chao, W. -Y., Lin, C. -H., Shih, T. -W., & Pan, T. -M. (2024). Comprehensive Safety Assessment of Lacticaseibacillus paracasei subsp. paracasei NTU 101 Through Integrated Genotypic and Phenotypic Analysis. Current Issues in Molecular Biology, 46(11), 12354-12374. https://doi.org/10.3390/cimb46110734