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Abstract: Next-generation sequencing (NGS) has revolutionized personalized oncology care by pro-
viding exceptional insights into the complex genomic landscape. NGS offers comprehensive cancer
profiling, which enables clinicians and researchers to better understand the molecular basis of cancer
and to tailor treatment strategies accordingly. Targeted therapies based on genomic alterations identi-
fied through NGS have shown promise in improving patient outcomes across various cancer types,
circumventing resistance mechanisms and enhancing treatment efficacy. Moreover, NGS facilitates
the identification of predictive biomarkers and prognostic indicators, aiding in patient stratification
and personalized treatment approaches. By uncovering driver mutations and actionable alterations,
NGS empowers clinicians to make informed decisions regarding treatment selection and patient
management. However, the full potential of NGS in personalized oncology can only be realized
through bioinformatics analyses. Bioinformatics plays a crucial role in processing raw sequencing
data, identifying clinically relevant variants, and interpreting complex genomic landscapes. This
comprehensive review investigates the diverse NGS techniques, including whole-genome sequencing
(WGS), whole-exome sequencing (WES), and single-cell RNA sequencing (sc-RNA-Seq), elucidating
their roles in understanding the complex genomic/transcriptomic landscape of cancer. Furthermore,
the review explores the integration of NGS data with bioinformatics tools to facilitate personalized
oncology approaches, from understanding tumor heterogeneity to identifying driver mutations and
predicting therapeutic responses. Challenges and future directions in NGS-based cancer research are
also discussed, underscoring the transformative impact of these technologies on cancer diagnosis,
management, and treatment strategies.

Keywords: next-generation sequencing; whole-genome sequencing; whole-exome sequencing; RNA
sequencing; personalized treatment

1. Introduction

Cancer, a heterogeneous disease stemming from the accumulation of numerous genetic
mutations, has seen significant advancements in diagnosis, management, and treatment
through next-generation sequencing (NGS) platforms [1]. These technological innovations
have revolutionized genomics, offering insights into genome structure, function, and dy-
namics. Human and cancer genomes sequenced with NGS, particularly through initiatives
like TCGA (The Cancer Genome Atlas) and the ICGC (International Cancer Genome Con-
sortium), provide invaluable resources for understanding the molecular underpinnings
of cancer across various types [2]. NGS encompasses multiple sequencing techniques
such as whole-genome sequencing (WGS), whole-exome sequencing (WES), transcriptome
sequencing, and targeted region sequencing. WGS covers the entire genome but requires
substantial DNA samples and sequencing depth, while WES focuses on coding regions,
reducing cost and time compared to WGS. RNA sequencing (RNA-Seq) allows detection
of alternative gene-spliced transcripts, post-transcriptional modifications, gene fusion,
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mutations, and changes in gene expression. Despite having a multitude of applications,
only WGS, WES, and sc-RNA seq have been extensively used in research as well as in
clinics. Compared to traditional sequencing methods, NGS offers advantages such as high
throughput, reduced turnaround time, low-input DNA/RNA requirements, and the ability
to screen various genomic aberrations simultaneously with high accuracy and sensitivity.
Commercially available NGS platforms of some notable companies, such as Illumina, Pa-
cific Biosciences, Oxford Nanopore, Roche, Ion Torrent, and Life Technologies, each offer
unique capabilities for cancer genome analysis [3]. These platforms have been pivotal in
identifying disease-causing variants, revealing novel drug targets, and elucidating complex
biological processes in cancer development. However, NGS faces challenges in clinical
use due to issues such as sample selection, small sample sizes, and limited affordability
for patients. Integrating various variant data analysis software with NGS can provide a
comprehensive understanding of diseases like NSCLC, colorectal, ovarian, and leukemia,
potentially enhancing cancer care and patient outcomes [4]. Through the integration of
NGS technologies and powerful bioinformatics tools, researchers aim to decipher vast
amounts of data to enhance our understanding of cancer biology and develop personalized
treatment strategies. This review provides a comprehensive overview of NGS, and how its
integration with current bioinformatics tools can enhance personalized oncology treatment.

2. Next-Generation Sequencing Techniques (NGS)

The recent, remarkable progress in NGS technologies, coupled with advancements in
bioinformatics and computational methodologies for handling massive datasets, allows
clinicians to conduct in-depth analyses of numerous cancer genome profiles. This is
achieved through sequencing techniques, such as WGS, WES, and sc-RNA-Seq [5]. Figure 1
illustrates the workflow and clinical applications of the various techniques discussed above
and provides a comprehensive overview of their utility in practice.
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2.1. Whole-Genome Sequencing (WGS)

WGS in cancer research offers a deeper understanding of the cancer genome landscape.
This technique helps elucidate the functions of overlooked genomic regions by detecting
underlying carcinogenesis and enabling molecular sub-classification of cancer [5]. In WGS,
the short reads protocols mainly provide the coverage of 10× of 95% of the human genome
and the median coverage of 30× [6]. WGS involves technically straightforward processes,
where DNA is randomly fragmented and sequenced at a significant depth for both cancer
and normal genomes. Two genomes per patient are sequenced—the germline from blood
and the somatic from tumor samples. The analysis identifies single-nucleotide variants
(SNVs), small indels, and structural variants (SVs). WGS surpasses existing diagnostic tech-
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niques in accuracy and accessibility, assessing various genomic biomarkers and mutational
signatures. It outperforms hybridization probe-based methods by remaining up to date
with emerging biomarkers and therapies, enabling reanalysis for new genetic associations,
and providing germline data for cancer predisposition and pharmacogenomics [7]. WGS
also highlights limitations in detecting complex structural rearrangements, prompting
exploration of alternative methods like RNA sequencing. Additionally, it demonstrates
potential in clinical trials for analytical accuracy and timely results, emphasizing the impor-
tance of defining clinically relevant thresholds for copy number alterations.

One of the major challenges in cancer WGS lies the reliability of WGS on fresh-frozen
(FF) tissue samples due to their superior quality. FF samples are preferred because they
preserve DNA integrity, minimizing fragmentation and chemical modifications. This high-
quality DNA allows comprehensive genomic analyses, including structural variants and
copy number alterations, making FF samples ideal for detailed investigations in clinical
oncology. In contrast, the use of formalin-fixed, paraffin-embedded (FFPE) samples, which
are more commonly available in clinical settings, presents several challenges, such as DNA
fragmentation and chemical alterations caused by fixation processes. These factors can lead
to artifacts, particularly T>C/G>A variants, and make them unsuitable for complex analy-
ses. Additionally, FFPE samples tend to produce lower-quality libraries, compromising
their reliability for comprehensive genomic studies [8]. Despite these limitations, there is a
growing need for the potential value of FFPE samples in clinical genomics. To optimize
WGS outcomes from FFPE tissues, several strategies have been proposed. Utilizing FFPE
blocks that have been stored for shorter durations can help improve DNA quality. The
application of uracil-DNA glycosylase treatment can mitigate deamination-related artifacts,
while specialized extraction kits, such as the GeneRead DNA FFPE Kit, enhance both ex-
traction and library preparation processes. Moreover, innovative techniques, like Safe-Seq,
dual-barcoding, and circle sequencing, can reduce PCR errors and improve base calling
accuracy. Implementing stringent quality control measures and employing advanced bioin-
formatics tools tailored to detect FFPE-related artifacts are crucial for generating reliable
genomic data from these samples [9,10].

Recent studies underscore the clinical applicability of FFPE samples, introducing
the FFPEimpact score to assist clinicians in interpreting WGS data. This score quantifies
the extent of sequencing artifacts—specifically substitution and indel artifacts—allowing
informed interpretation and better clinical decision making [11].

Another challenge is streamlining logistics by collecting and shipping blood and tissue
samples together, alongside techniques like manual microdissection, which can maximize
the utilization of available tumor material. These improvements ultimately enhance the
accuracy and reliability of genomic analyses in clinical practice.

Additionally, handling large datasets in informatics and computational analysis re-
quires substantial computational resources. The data produced by WES are about 30 GB,
with corresponding variant files (.vcf) of about 1 GB, and are 24-fold higher than those
of targeted and exome sequencing [6]. Commercially based cloud computing systems
encounter issues like data transfer, ethics, and legal concerns, given the sensitive nature
of genomic information [12]. Substantial investments in infrastructure, such as advanced
instrumentation, skilled personnel, and high-performance computing hardware, are imper-
ative. Sustaining this level of performance demands a considerable financial commitment,
encompassing the acquisition and maintenance of sequencers, robust data storage solu-
tions, and consumables. Achieving cost-effectiveness in this endeavor may necessitate the
establishment of a large, well-funded, and centralized organization capable of managing
the significant expenses associated with infrastructure. This includes not only the initial
setup of sequencing facilities but also the ongoing operational costs, ensuring a sustainable
and efficient utilization of resources for the successful implementation of WGS in clini-
cal settings. However, full integration into clinical practice requires addressing clinical
limitations, ensuring automated pipelines, and establishing robust ethical and regulatory
frameworks. Despite the complexity and potential errors in WGS, its role in cancer research
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is crucial as it offers valuable insights into the genomic landscape and paves the way for
personalized approaches in cancer diagnosis and treatment [13]. The genomic landscape of
different cancer types using whole-genome sequencing is given in Table 1.

Table 1. Genomic landscape of different cancer types using whole-genome sequencing.

Cancer Type Sample
Size Mutation Frequency

Gene
Alteration
Pathway

Mutational
Signatures

Predictive
Biomarker References

Parathyroid
carcinoma 23 CDC73 (39.1%) PI3K/AKT/

mTOR (78.3%)

CDC73 mutant
group: signatures
1, 2, 3, 9, and 13;

wild-type CDC73:
1, 3, 5, 9, 16, 28,

and 30

[14]

Triple-
negative

breast
cancers

(TNBCs)

254
BRCA1, BRCA2,
PALB2, RAD51C

(67%)

PIK3CA/AKT1
pathway

abnormalities
(4.7%)

Mutational
signatures of a
PALB2 biallelic
altered TNBC;

RAD51C
hypermethylated

TNBC

[15]

Gastric
cancer 100 RHOA (14.3%)

diffuse-type tumors

Adherens
junction

pathway, focal
adhesions
pathways

[16]

Lung adeno-
carcinoma 230

RIT1-activating
mutations,

loss-of-function
MGA mutations,

EGFR mutations (in
female), RBM10 (in

males), F1, MET,
ERBB2, and RIT1
occurred in 13%

MAPK and
PI(3)K pathway [17]

Metastatic
colorectal

cancer
429

LINC00672 mutations
and 10 kb–1 Mb

deletions. FBXW7
(11.9%) TP53 (73.9%);
KRAS (47.3%), APC

(78.3%); PIK3CA
(15.9%); ZFP36L2

(9.8%)

-

SBS1, 8 and 41, as
well as DBS2, 4,

and 6,
SBS9/39/41,

polymerase Pol η
(associated with

therapy
resistance).

FBXW7 mutations as
a predictive

biomarker for poor
response to

EGFR-targeted
treatment

[18]

Pancreatic
cancer 100

TP53 (74%), SMAD4
(31%),

CDKN2A(35%),
ARID1A, and ROBO2.

KDM6A (18%) and
PREX2 (10%), RNF43

(10%),

BRCA pathway
Top quintile of

the BRCA
signature

Mutations in BRCA
pathway component
genes and surrogate
measures of defects

in DNA maintenance
(genomic instability

and the BRCA
mutational signature)

[19]
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Table 1. Cont.

Cancer Type Sample
Size Mutation Frequency

Gene
Alteration
Pathway

Mutational
Signatures

Predictive
Biomarker References

Ovarian
clear cell

carcinoma
15

PIK3CA (40%),
ARID1A (40%), and
KRAS (20%). Copy

number gains in
NTRK1 (33%), MYC
(40%), and GNAS
(47%) and copy

number losses in
TET2 (73%), TSC1

(67%), BRCA2 (60%),
and SMAD4 (47%)

PI3K/AKT,
TP53, and

ERBB2
pathways in

87%.
Chromatin

remodeling in
47% of OCCCs

ATR inhibitors [20]

Bladder
cancer 65

Mutated
protein-coding genes:

ZFP36L1 (12.3%),
ELF3 (9.2%);

noncoding mutations:
ERT, ADGRG6,

PLEKHS1, WDR74,
and LEPROTL1

(63%).

HRAS/KRAS,
PI3K,

FGFR1/FGFR3,
FAK, MTOR,

and
PKCB/PKCG

were altered in
23%, 22%, 17%,
8%, 7%, and 7%
of the tumors,
respectively

Signature D (8, 4,
and 31),

which was
enriched C>A

and T>A
substitutions

Mutation in
ADGRG6 enhancer [21]

Cervical
cancer 102

PIK3CA (16.7%),
FBXW7 (12.8%),

MLL3 (7.8%),
CASP8 (3.9%), and
FADD (3.9%); FAT1
(8.8%), MLL2 (5.9%),

and EP300 (5.9%).

RTK/RAS/PI(3)K,
cell cycle, and

apoptosis
pathways were
altered in 88%,
74%, and 73%

of cases,
respectively

APOBEC family
member

APOBEC3H was
expressed at

higher levels in
CC

The combination of
HPV integration and

DNA testing
had a trend towards
higher AUC value
than HPV DNA,

suggesting a better
biomarker for
cervical cancer

screening.

[22]

Papillary
renal cell

carcinoma
169

In patients with
primary tumor tissue

MET (33%), TERT
(30%), CDKN2A/B
(13%), and EGFR

(8%). In patients with
metastatic tissue

CDKN2A/B (18%),
TERT (18%), NF2

(13%), and FH (13%);
MET (7%).

SWI/SNF
complexes

(26%),
chromatin

modification
(24%), and cell

cycle regulation
(22%).

RAS/RAF
pathway (7%),
PI3K/mTOR

pathway (8%),
and DNA
damage

pathway (8%)

-
MET, CKDN2A/B,

and SWI/SNF
pathway

[23]
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Table 1. Cont.

Cancer Type Sample
Size Mutation Frequency

Gene
Alteration
Pathway

Mutational
Signatures

Predictive
Biomarker References

Liver Cancer 300

Protein-altering
mutations: TP53,
CTNNB1, ARID2,

ARID1A, RB1,
AXIN1, RPS6KA3,
SETDB1, NFE2L2,

BAP1, and HNF4A;
loss-of-function

mutations: ARID2,
ARID1A, AXIN1,

TP53, BRD7,
RPS6KA3, RB1, and

HNF4A; mutations in
the noncoding region

NEAT1 (22%) and
MALAT1 (6%)

Signature W1
(age-dependent);

signature 4
(presence of TP53

mutations,
smoking status,
co-occurrence of
the liver cancer
with bladder or
ureter cancer);
signature W5

(alcohol intake);
signature W2
(mutations in
ARID family

members);
signatures W3

and W5 (presence
of TERT promoter

mutations);
signatures W4,
W6, and W7

(strong
correlations with

dinucleotide
substitution); W4
and W6 (CC>AA

substitutions).

[24]

Hepatocellular
carcinoma

(HCC)
254

RB1 (11%), ARID1A
(10%), AXIN1 (9%),
ARID2 (8%), TERT

(47.24%)

Signature 1
(19.29%, SBS22
associated with

the plant-derived
carcinogen

aristolochic acid
(AA) with a

predominance of
A:T-to-T:A

transversions at
T/CAG

tri-nucleotide
motifs. Signature

2 SBS5 with
unknown
etiology.

Signature 3 SBS9
and associated

with
polymerase eta.

CNAs, SVs,
expression levels,

alternative
transcripts, and

fusion transcripts

[25]
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Table 1. Cont.

Cancer Type Sample
Size Mutation Frequency

Gene
Alteration
Pathway

Mutational
Signatures

Predictive
Biomarker References

AML 305

RAS/RTK Pathway
Mutations: (63%) KIT
(27%), NRAS (14.8%),
FLT3 (16.9%; 10% of
all patients harbored
an FLT3-ITD), KRAS
(5.7%), and CBL (5%)
epigenetic regulation

(45%):
ASXL2 (15.7%),

ASXL1 (12.4%), TET2
(7.9%), EZH2 (5.7%),
and KDM6A (4.2%)

RAS/RTK
signaling
pathways

-

JAK2
mutations FLT3-ITD

high,
KIT mutations

Therapeutic targets
Midostaurin,

Dasatinib, and other
RTK inhibitors

[26]

2.2. Whole-Exome Sequencing (WES)

WES is a robust NGS approach widely employed in cancer genomics, particularly
for mutation discovery in cancers like melanoma. This technique involves sequencing all
coding regions of the human genome, known as the exome, providing an unbiased and
genome-wide screening strategy. Sequencing the complete coding regions (exome) holds
promise for the uncovering of the causes of numerous rare, mainly monogenic genetic
disorders, as well as the predisposing variants in common diseases and cancers [27].

Although WES misses noncoding regions, it offers improved sequencing coverage and
depth for coding regions, enhancing sensitivity for detecting low-frequency mutations. The
initial phase of WES involves the detection of single-nucleotide variants (SNVs) and copy
number variations (CNVs). Variant calling algorithms for SNVs are employed, ranging from
standalone tools to machine learning-based pipelines. CNV detection involves comparing
the number of reads aligned to specific genomic segments. The integration of SNV and
CNV data facilitates the identification of mutations with pharmacologically druggable
alterations [28]. Notably, the variant calling and gene annotation of WES data reveal
approximately 10,000 nonsynonymous variants per individual exome, with variations
influenced by ethnicity and calling methods. This targeted approach pinpoints genetic
variants that have an impact on proteins. Given that a substantial number of known disease-
causing mutations are located within these protein-coding regions, exome sequencing
emerges as a cost-effective method. Consequently, it presents a clinically viable approach
for patient diagnostics by efficiently identifying relevant genetic variations.

In comparison to whole-genome sequencing, WES is favored for basic research and
molecular diagnostics due to its comprehensiveness, efficiency, and cost-effectiveness. It
has been instrumental in identifying recurrent mutations in melanoma [29]. WES aids in
pinpointing homologous recombination deficiency, guiding the use of PARP inhibitors, and
assessing microsatellite instability and the tumor mutation burden for selecting patients
eligible for immunotherapy. WES offers the advantage of discerning low-frequency muta-
tions that, when considered collectively, contribute to a nuanced and complex phenotypic
presentation. WES provides insights into cancer mechanisms by comparing cancer cell
DNA with normal cells, revealing germline and somatic mutations. Studies across cancer
types use WES to detect driver mutations, enhancing knowledge of cancer pathways and
aiding in therapeutic strategies, including pharmacogenetic variant identification. Intra-
family WES can pinpoint predisposing variants and uncover cancer predisposition genes,
further advancing cancer research and personalized medicine [27].

Despite its advantages, WES has limitations such as restricted CNV detection, lower
coverage compared to targeted sequencing, and challenges related to references and mini-
mal application requirements. The recognition of these limitations is crucial for advancing
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WES into clinical applications [28]. The genomic landscape of different cancer types using
WES is shown in Table 2.

Table 2. Genomic landscape of different cancer types using whole-exome sequencing.

Cancer Sample
Size Mutation Frequency Gene Alteration

Pathway
Mutational
Signatures

Predictive
Biomarker/
Therapeutic

References

Melanoma 8

BRAF, NRAS, and NF1.
Heterogeneous somatic

mutations 3–38%. MAPK pathway UVB-induced
C>T transitions

ITH may be a
prognostic
biomarker

[30]

Ovarian
clear cell

carcinoma
(OCCC)

15

PIK3CA (40%),
ARID1A (40%), and
KRAS (20%); NTRK1

(33%), MYC (40%), and
GNAS (47%); TET2
(73%), TSC1 (67%),
BRCA2 (60%), and

SMAD4 (47%).

PI3K/AKT, TP53,
and ERBB2
pathways

- - [20]

Low grade
serous

ovarian
carcinoma

(LGOS)

63

Canonical MAPK
mutant

(cMAPKm: 52%,
KRAS/BRAF/NRAS),

MAPK-associated gene
mutation

(MAPK-assoc: 27%),
and MAPK wild-type

(MAPKwt: 21%).

NOTCH pathway

COSMIC
signature SBS1,

which is
associated with

aging and
signature SBS10b,
associated with
elevated TMB.

Signature
SBS10b, a
potential

biomarker

[31]

Breast
Cancer 16

KMT2C (42%) followed
by HECTD1, LAMA3,

FLG2, UGT2B4, STK33,
BRCA2, ACP4, PIK3CA,

and DNAH8 (33%).

PI3K/AKT/mTOR
pathway,

hyperactivation
of the IL-6
pathway

C>T transitions;
mix of C>G and
C>T transitions

- [32]

Pancreatic
Cancer 21

KRAS (100%), TP53
(74%), CDKN2A (16%),

and SMAD4 (10%).

KRAS signaling,
TGF-β signaling,

chromatin
remodeling, Wnt
signaling, DNA
damage repair,
cell cycle, and

RNA processing

-
Presence of

RNF43
mutations

[33]

Inflammatory
Bowel

Disease−Associated
Colorectal
Cancers

31 TP53 (63%), APC (13%),
and KRAS (20%). WNT pathway C:G>T:A at CpG - [34]

AML with
abn(7) 60

TP53 (33%), NF1 (20%),
RUNX1 (20%), and
DNMT3A (18.3%),
DNMT3A (18.3%),

ASXL1 (11.7%), TET2
(11.7%), IDH2 (10%),
KMT2C (10%), EZH2

(8.3%), and IDH1
(8.3%).

Sig-A, with high
cosine similarities
to SBS1/SBS5 in
COSMIC (0.939)

and
SBS1/SBSblood
in normal blood

cells (0.945)

[35]
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2.3. Single-Cell RNA Sequencing (sc-RNA-Seq)

Single-cell RNA sequencing (sc-RNA-seq) has emerged as a key tool in cancer research,
significantly aiding in biomarker discovery, understanding cancer diversity, exploring drug
resistance, studying the immune microenvironment, and improving immunotherapy. This
technique allows researchers to detect differentially expressed genes (DEGs) and inter- and
intratumor heterogeneity and to identify novel cell populations, gene expression, and the
tumor microenvironment, thereby advancing immunotherapy and the identification of
potential therapeutic targets [36]. By integrating genomics, transcriptomics, epigenomics,
proteomics, and metabolomics, sc-RNA-seq offers a clearer view of transcriptome complex-
ity with less background noise and a wider range for measuring RNA expression [37,38].
Table 3 represents the transcriptomic landscape of different cancers using sc-RNA sequenc-
ing. One of the main advantages of sc-RNA-seq is its ability to characterize individual cells,
overcoming the limitations of bulk analyses. By examining tumor expression diversity,
scientists can identify different cell types (like malignant cells, T cells, and fibroblasts) and
more specific variations within these groups, known as ‘cell states’, which include differ-
ences in cell cycle and metabolic activity. Identifying these cell types and states involves
analyzing genes that are expressed at varying levels, along with genetic features, such as
copy number changes, point mutations, and fusion proteins [39].

The workflow of sc-RNA generally follows these steps: (1) isolating single cells,
(2) extracting mRNA, (3) reverse transcription and cDNA amplification, (4) preparing the
library, and (5) sequencing and analyzing the data. To isolate single cells, methods include
cell selection, random dilution, laser microdissection (LCM), fluorescence-activated cell
sorting (FACS), and microfluidic techniques. There are five main methods for sc-RNA
sequencing: (1) Droplet-based 10× Genomics Chromium, (2) SMART-Seq, (3) the Tang
method, (4) STRT-seq, and (5) CEL-seq [40]. Despite its promise, scRNA-seq faces several
limitations, including the risk of damaging cell integrity and viability during isolation
processes. The overall costs remain high due to the need to analyze large cell populations.
Integrating scRNA-seq with other genomic data presents additional challenges. Moreover,
effectively separating technical noise from biological signals is crucial for accurate analyses,
highlighting the need for advanced computational methods [41]. Establishing quality control
standards and addressing technical artifacts remain important, especially as data analyses
become more complex in larger studies. The ongoing focus on sc-RNA-seq in tumor research
underscores the need for collaborative data-sharing platforms. Centralized repositories are
essential for handling large datasets, particularly in cancer studies, enabling easier access
based on cell conditions rather than just sequence data. As bioinformatics and computa-
tional methods improve and the global sharing of sc-RNA-seq data increases, significant
advancements in personalized medicine will become more attainable. Future efforts should
emphasize refining bioinformatics pipelines, enhancing single-cell resolution technologies,
and developing robust methods for comprehensive multi-omics analyses [37,42].

Table 3. Transcriptomic landscape of different cancer types using sc-RNA sequencing.

Cancer Single cells Transcriptomic Landscape References

Breast Cancer

27,028 (primary
tissue), 69,768

(axillary lymph
nodes)

- Breast Cancer Stem Cells (BCSCs): Identified as
CD44+/ALDH2+/ALDH6A1+.
- Heterogeneity: Inter- and intratumor variation linked to
103 gene downregulations.
- Metastasis Genes: PTMA, STC2, CST3, RAMP3.
- CNV Clusters: Cluster_4 showed high mutation rates
associated with lymph node metastasis.
- Immune Interactions: NECTIN2-TIGIT interactions promote
immune escape.
- Key DEGs in TNBC: B2M, CD52, PTMA, GZMK.

[43]
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Table 3. Cont.

Cancer Single cells Transcriptomic Landscape References

Lung Cancer 220,716

- Heterogeneity: Distinction between AT2 and basal cell types.
Fibroblast and NE key cell types that distinguish two tumor
subtypes from their adjacent tissues.
- Key Driver Genes: EGFR, KRAS, BRAF, ERBB2, MET.
Potential Therapeutic Targets: Specific subclones of AT2 and
basal cells.
- Prognosis: Better PFS and ORR with targeted therapies.

[44]

Pancreatic Ductal
Adenocarcinoma

(PDAC)
6236

- Heterogeneity: Notable intertumor variation.Tumorigenicity:
Cancer stem cells as primary drivers.
- Pathways: Enrichment in IL6/JAK/STAT3,
PI3K/AKT/MTOR, TGF-β signaling.
Gene expression: High expression during PDAC (EPCAM,
KRT19, MUC1, CEACAM6).
- Key Drivers: VEGF/VEGFR, HIF2, and P53 signaling
pathway, MMP7, TSPAN8, MSLN, LAMC2, KLK6, and LY6D.
- Genes Involved in Tumor Progression: MUC1
and CEACAM6.

[45]

Colorectal Cancer
(CRC) 9120

- DEGs: Lower expression of enterocyte (CA1, CA2) and
endocrine markers (PYY, GCG); metallothionein family genes
(MT1H and MT1G), higher expression of LY6E, FXYD5, TGFBI.
- Metastasis: Upregulation of EKC/KEOPS.
- Key Mutations: KRAS mutations in actively dividing tumors.
- Potential Therapeutic targets: PPAR inhibitors,
WNT inhibitors.

[46]

HBV-associated
Hepatocellular

Carcinoma (HCC)
>1000

- Heterogeneity: Intertumor heterogeneity more prominent
than the intratumor due to the cells clustering together
according to similarities of global transcriptomic profile, LCSC
markers, inferred CNV status, and RTK expression.
- Prognosis: Poor outcomes linked to high TAM markers.
- Drug Resistance: Intratumor heterogeneity leads to resistance
against RTK inhibitors.
- Potential Therapeutic Targets: TIGIT–NECTIN2 axis.

[47]

Acute Myeloid
Leukemia (AML) 91,772

- Potential Targets: Enhanced interaction between HLA-F,
HLA-E, HLA-C, and B/CD8 + T/HSC-Prog/plasma in NK cells.
- Recurrence Risk: Associated with CD4+ Tregs.
- Gene Expression: Overexpression of inflammatory response
genes, CD14+ monocytes, hyperactive BATF.
- Signaling Pathways: Increased activity in T cell subsets of
CD4+ and CD8+ T cell signaling pathways related to TNFA,
NFKB, hypoxia, KRAS, MTORC1, and other hallmark gene sets
in AML patients using GSVA and GSEA.
- Progression: Associated with an increase in the number of
CD14+ monocytes and monocyte-DCs as the CNVs changed.
- Heterogeneity: CNV and intercellular interaction networks in
HSC-Prog cells. HSC-Prog exhibits great heterogeneity in
chromosomal structure.

[48]

3. NGS for Personalized Oncology

NGS holds the added advantage of providing a more comprehensive picture of the
cancer landscape and uncovering cancer development pathways.

3.1. Tumor Heterogeneity

Cancer development involves the gradual accumulation of somatic genomic alterations
during clonal evolution, creating opportunities for selective advantages and intratumor
heterogeneity [43]. Tumor heterogeneity presents substantial obstacles in the clinical under-
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standing and management of cancer. Differences can emerge even among tumors sharing
the same histologic subtype, leading to diverse therapeutic outcomes in patients. The intri-
cate nature of tumor heterogeneity significantly impacts responses to treatment, disease
recurrence, and, ultimately, patient survival [49]. For instance, in gastric adenocarcinoma,
Wong et al. (2014) used WGS to uncover intricate intratumor heterogeneity in TP53 inacti-
vation mechanisms. Two distinct processes, involving TP53 mutations with copy loss and
homozygous loss, were observed within the same tumor [50]. Similarly, Morrison et al.
(2014) noted prevalent TP53 mutations in bladder cancer, which contributed to increased
nucleotide-level intertumor heterogeneity due to early clonal expansion and insufficient
DNA repair processes [51]. Zhang et al., 2013 addressed the significance of intratumor
genetic heterogeneity using WGS, particularly in the context of treatment resistance and
the potential development of targeted therapies for resistant and metastatic tumor cells
in head and neck squamous cell carcinoma. Notably, only a slight majority of the genes
with somatic point mutations were shared across all the tumor samples, underscoring
the significance of understanding intratumor heterogeneity for accurate biomarker iden-
tification. The degree of heterogeneity enabled the estimation of clonal expansion and a
timeline for tumor development, revealing a branching evolutionary process with potential
implications for early tumor detection [52]. Leong et al. (2019) emphasized CNV as a
major influencer of genomic heterogeneity in lung cancer [53], but Ishaque et al. (2018)
proposed additional mechanisms involving chromosome 4 amplifications and the roles
of PDGFRA, KIT, KDR, and REST in promoting proliferation and suppressing metastasis.
Notably, PDGFRA and KDR play crucial roles in enhancing metastatic potential, highlight-
ing the complex interplay driving tumor heterogeneity [54]. In epithelial ovarian cancer,
Lee et al. (2015) revealed the late-stage divergence of metastatic clones and primary tumor
clusters in both ovaries, demonstrating diverse intratumor heterogeneity [55]. Ho et al.
(2021) employed scRNA-Seq in HBV-associated hepatocellular carcinoma (HCC) patients,
revealing significant intra- and intertumor heterogeneity. The co-existence of intra- and
intertumor heterogeneity, particularly the presence of rare subclones, may contribute to
the failure of targeted therapies in HCC [47]. Similarly, Wu et al. (2017) utilized single-cell
WES in colorectal adenoma and cancer samples, revealing their monoclonal origins, shared
mutations in signaling pathways, and the emergence of intratumor heterogeneity, with non-
random mutations accumulating in the GPCR, PI3K-Akt, and FGFR pathways [56]. Xu et al.
(2021) explored breast cancer lymph node metastasis through scRNA-Seq, revealing inter-
and intratumor heterogeneity [43]. Bao et al. (2020) focused on triple-negative breast cancer
(TNBC), identifying extensive heterogeneity at the single-cell level, with a subset of cells
expressing epithelial–mesenchymal transition (EMT), stemness, and angiogenesis, which
potentially contribute to TNBC aggressiveness [57].

All these high-resolution approaches not only aid in unraveling the molecular under-
pinnings of treatment resistance and disease progression but also facilitate the discovery of
novel biomarkers and therapeutic targets. Consequently, NGS has become indispensable
in the quest to tailor personalized treatment strategies that can effectively address the
challenges posed by both inter- and intratumor heterogeneity, ultimately improving patient
outcomes in the clinical setting.

3.2. Targeted Therapy

Targeted therapies transform cancer treatment by focusing on specific molecules
and proteins involved in tumor growth. Advances in genetic testing and NGS allow the
identification of unique genetic abnormalities, enabling personalized treatment strategies.
For example, KRAS mutations, which are present in 33% of colorectal cancers, play a
crucial role in early progression to carcinoma, impacting treatment decisions and rendering
certain therapies ineffective [58]. Similarly, BRAF, NRAS, and KIT, in the case of melanoma,
have led to the development of targeted therapies, which are particularly effective against
tumors harboring BRAF mutations [59]. Drug resistance is frequently associated with the
mTORC1 pathway, which is vital for cell metabolism and growth, suggesting that targeting
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this pathway could enhance treatment efficacy [60]. In the case of non-small cell lung
cancer (NSCLC), TP53 mutations are common and linked to aggressive disease and poor
outcomes [61]. These mutations, along with changes in other tumor suppressor genes,
like NF1 and RB1, complicate treatment. Targeting these pathways offers new therapeutic
options, such as gene therapies using p53 and MDA-7/IL-24 to induce cancer cell death.
There is also potential for research focusing on kinase inhibitors and the inhibition of p73-
dependent growth [62]. WES has shown a genetic landscape in pancreatic carcinoma, which
suggests potential therapeutic targets, including BRAF and PIK3CA mutations, alterations
in DNA repair, and chromatin remodeling pathways [63]. Additionally, the carcinoma of
unknown primary site (CUP) samples showed clinically relevant genomic alterations for
personalized treatment strategies, particularly in the RTK/Ras/mitogen-activated protein
kinase pathway [64]. Using NGS, inflammatory breast cancer (IBC) exhibited clinically
significant genetic alterations (CRGA) in genes like TP53, MYC, ERBB2, FGFR1, BRCA2,
and PTEN. This information guides personalized treatment, transitioning from traditional
chemotherapy to more targeted therapies, potentially enhancing efficacy and minimizing
side effects [65]. In clinically advanced prostate tumors, NGS identified genetic alterations
in key pathways, highlighting potential biomarkers for targeted therapies in androgen axis
inhibitor-resistant tumors [66]. In a study by Bahceci et al. (2023) on craniofacial ossifying
fibromas (OF), recurrent focal copy number gains and pathogenic mutations in the CDC73
gene were identified, showing the rarity of MDM2 amplification in OF, which is crucial
for distinguishing low-grade osteosarcoma from OF and emphasizes the role of activator
protein 1 (AP-1) transcription factors in the pathogenesis of juvenile trabecular OF [67].
In gastric cancer, RHOA mutations suggest targeted therapeutic interventions [16], while
in papillary thyroid cancer, EML4–ALK translocations and TRAPP oncogene mutations
provide opportunities for personalized treatment [68]. These studies collectively emphasize
the utility of NGS in uncovering clinically relevant genetic alterations to inform targeted
therapeutic strategies in diverse cancer types.

3.3. Resistance Mechanisms

The challenge of overcoming resistance to cancer drugs persists due to the intrinsic
heterogeneity within genetically unstable tumors. Addressing this complexity necessitates
a holistic understanding of genetic, epigenetic, transcriptomic, and proteomic modifica-
tions [69]. NGS can help identify mutations that lead to drug resistance. This information
can guide the selection of alternative treatments or combination therapies to overcome
resistance. For instance, in breast cancer patients, WES has uncovered the potential mech-
anisms underlying resistance to Herceptin and tyrosine kinase inhibitor (TKI) therapies.
Specifically, high C>T mutations, significant differences in transition-to-transversion (TiTv)
ratios, and microsatellite instability-high (MSI-H) status may indicate resistance to Her-
ceptin. Conversely, a similar mutation profile with the absence of MSI-H may suggest
resistance to TKIs. Moreover, mutations in APOB are found in patients resistant to both
Herceptin and TKI treatments [70]. Similarly, Turajlic et al. (2014) explored the intricate
genetic landscape contributing to drug resistance in melanoma patients exhibiting inherent
resistance to vemurafenib. The study also revealed the potential efficacy of a combined
approach utilizing AKT and MEK inhibitors. Notably, the presence of BRAFV600E, coupled
with a GNAQ mutation (A>C, p.Q209P) and a PTEN frame-shift deletion, was linked
to heightened AKT activity, supporting a promising, synergistic treatment combination
capable of blocking tumor growth [71]. In a parallel pursuit, Patch et al. (2015) elucidated
mechanisms of chemoresistance in recurrent, high-grade serous carcinoma (HGSC). Fusion
events in ABCB1 were identified, correlating with elevated expression and drug resistance.
The study also shed light on the reversion of BRCA1 and BRCA2 germline alleles as a
potential pathway for resistance evolution. Molecular subtype switching and stromal
reactions were implicated in the influencing of drug resistance in HGSC [72]. Ross et al.
(2013) observed an unexpectedly high frequency of genomic alterations that influenced
targeted therapy selection for HGSC. Notably, TP53 mutations were present in over 85% of
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high-grade serous carcinomas, while NF1 mutations were found in 14% of cases, exclusively
in tumors positive for TP53 mutation. Due to NGS, the identification of alterations in the
mTOR/ PI3K pathway and members of the EGFR family suggests potential clinical utility
for inhibitors of the mTOR/PI3K pathway [73].

Miyamoto et al. (2015) contributed to the understanding of acquired drug resistance
in castration-resistant prostate cancer (CRPC) patients treated with enzalutamide, an an-
drogen receptor (AR) inhibitor. Single-cell RNA sequencing of circulating tumor cells
(CTCs) highlighted heterogeneity among the CTCs within and across patients, indicating
differences from the primary tumor specimens. The study suggested that noncanonical Wnt
signaling is implicated in antiandrogen resistance, potentially acting through an alternative
pathway to AR abnormalities [74].

Wang et al. (2020) employed scRNA sequencing to investigate mantle cell lymphoma
(MCL). Their findings revealed high cellular heterogeneity and a common origin for identi-
fied cell clusters. Malignant B cells, especially type I B cells, exhibited increased prolifera-
tion, implying a role in immune escape and drug resistance [37]. These studies collectively
emphasize the critical role of NGS in pharmacogenomics for the treatment of various
cancers. The integration of these findings into therapeutic strategies holds promise for
more effective cancer interventions.

3.4. Prognosis and Predictive Biomarkers

NGS technologies are an indispensable tool for refining prognostic assessments and
tailoring therapeutic strategies in the complex landscape of cancer. Itamochi et al. (2017)
highlighted the significance of WGS in predicting the prognosis for ovarian clear cell car-
cinoma (OCCC). Frequent mutations in ARID1A and PIK3CA and the activation of the
PI3K/Akt and RTK/Ras signaling pathways could serve as favorable prognostic indicators
for OCCC patients [75]. The integration of NGS with liquid biopsies, which analyze circulat-
ing tumor DNA (ctDNA), provides real-time insights into tumor dynamics, enabling early
cancer diagnosis and the monitoring of treatment responses. A study by Marchetti et al.
(2014) integrated NGS with liquid biopsies to monitor EGFR mutations in NSCLC patients.
There were EGFR mutations in 84% of the analyzed patients, demonstrating the effective-
ness of CTC analysis for real-time mutation detection and its potential in personalizing
treatment [76]. Zhang et al. (2023) employed NGS techniques for both circulating tumor
DNA (ctDNA) testing and tissue sequencing; the researchers detected mutations in key
genes, such as TP53, RB1, and PTEN, and the dynamic somatic mutation profile of extensive-
stage small-cell lung cancer (ES-SCLC). The correlation between ctDNA levels and tumor
burden, identified through NGS, emerged as a crucial prognostic indicator, providing
real-time information on disease progression and treatment response [77]. Yamada et al.
(2018) identified novel dysregulated long noncoding RNAs (lncRNAs) in colorectal cancer.
Among these, CRCAL-3 and CRCAL-4 were highlighted for their functional significance in
cell cycle regulation. The study suggests that these lncRNAs, particularly CRCALs, could
potentially serve as early biomarkers for colorectal cancer detection [78].

Ho et al. (2012) compared liver cancer gene expression using RNA-Seq, reveal-
ing the upregulation of inflammation, chemoresistance, and lipid metabolism genes in
CD90+CSCs. Lipid metabolism and specific genes, like APOE, APOC1, ESM-1, PLVAP,
and GPC3, in CD90+CSCs suggested roles in proliferation, angiogenesis, and potential
therapeutic targets [79].

3.5. Identification of Driver Mutations

Cancer cells undergo numerous genetic changes, but only a subset, known as driver
mutations, plays a significant role in cancer progression. Identifying these driver mutations
can be challenging due to the high diversity of mutations and tissue types in tumors [80].
However, recent studies have highlighted the potential of NGS platforms to detect known
driver mutations that are clinically relevant for guiding treatment decisions. In a study by
Cifola et al. (2013), WES and SNP array profiling on six melanoma cell lines from metastatic
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patients confirmed well-known melanoma driver mutations, such as BRAFV600E and
NRASQ61R, while also discovering novel mutations in genes tied to critical signaling
pathways involved in melanoma, including the MAPK and glutamate pathways [29]. The
identification of these driver mutations using NGS is particularly crucial in addressing
the genetic and environmental variations across different ethnic groups and geographic
regions, which contribute to disparities in cancer risk and treatment outcomes. For instance,
variations in driver mutations can differ among populations due to genetic diversity,
while environmental factors like diet, healthcare policies, and economic disparities further
influence these differences. One example is the CGP study, which utilized NGS in tumor
samples from 306 Chinese lung cancer patients. This study revealed significant differences
in driver mutations between Asian and Caucasian populations. In the Chinese cohort,
the most frequently mutated genes were EGFR, TP53, ALK, and KRAS. Compared to
the dataset of The Cancer Genome Atlas (TCGA), EGFR mutations were more common
in the Chinese group, while KRAS mutations were found in only 9.8% of the Chinese
adenocarcinoma patients, significantly lower than in Caucasians. The NGS approach
identified clinically actionable alterations in 7.2% of the patients that routine tests missed,
highlighting the potential for more targeted treatments. These alterations often involved
genes like PIK3CA, ROS1, and MET, some of which were linked to resistance to EGFR
TKIs [81]. Similarly, another study identified significant variations in polygenic risk scores
(PRS) across diverse ancestry groups, including Arabs, Persians, and South Asians. This
variation advocates for personalized cancer strategies while also raising ethical concerns
around genetic testing. Individuals from the Arabian Peninsula had the lowest mean
PRS for colorectal cancer, while those of African ancestry had the highest for prostate
cancer. Interestingly, no individuals of Arabian Peninsula origin carried known breast or
ovarian cancer variants, suggesting a potentially lower genetic risk in this subgroup. In
contrast, variants associated with breast cancer were prevalent among Qataris of Persian
origin [82]. These studies highlighted the need for an inclusive approach to cancer research
and treatment that considers ethnic and population-specific genomic differences. By
integrating genetic insights with socioeconomic factors, we can better address health
disparities in cancer outcomes.

4. Data Analysis and Bioinformatics Tools

The exponential growth of data generated by NGS necessitates advanced computa-
tional and bioinformatics expertise for effective management, analysis, and interpretation.
This increase in data has led to significant advancements in NGS bioinformatics, driven
largely by improvements in computational hardware and the development of sophisti-
cated algorithms and software applications. These advancements support all stages of
data processing, from initial raw data handling to in-depth analysis and clinical variant
interpretation [83]. NGS bioinformatics is typically divided into three main analysis phases:
primary, secondary, and tertiary. While the overarching goals of these analyses remain
consistent across different NGS platforms, each platform—particularly the two leading
commercial second-generation systems, Illumina and Ion Torrent—has its own unique
features and requirements. The computational analysis of NGS data comprises several
critical steps, including the processing of raw sequencing data, mapping reads to the human
reference genome, post-processing alignments, and variant calling. Each step is essential
for obtaining meaningful insights from the data. However, there is considerable analytical
diversity in the tools employed, whether they are published methods or proprietary solu-
tions, as well as in their specific parameter settings. This flexibility enables researchers to
customize their analyses to suit the unique characteristics of their datasets, including the
incorporation of cancer-specific variant calling and annotation [84]. These bioinformatics
resources play a crucial role in enhancing our understanding of the molecular mechanisms
underlying tumorigenesis and progression, while also aiding in the identification of poten-
tial therapeutic targets. By using these tools, researchers can accelerate the discovery of
insights that are vital for advancing cancer treatment and improving patient outcomes [85].
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Table 4 summarizes these computational tools used by various studies for genome profiling
in cancer treatment.

Table 4. Computational tools used for data analysis for genome profiling in cancer treatment.

Computational Tools/Web Servers/Databases Description References

FastQc To assess the quality of sequencing runs

[28,84,86–89]

Alfred and Qualimap To assess the mapping quality

Bwa-mem; Bowtie2 Alignment of raw reads to reference genome

STAR and HISAT Aligners for RNA sequencing data

minimap2 Aligner for mapping long-read sequencing

SAMtools (v. 1.3.1), mpileup, and platypus Manipulation in the SAM/BAM/CRAM format

MuTect, VarScan2, SomaticSniper, Strelka, and
FreeBayes, SigMA, CHORD, PathAI, AcornHRD,
VarDict, qSNP, MuSE, Platypus, and CaVEMan.

Variant calling for single-nucleotide variants (SNVs) and
short insertions/deletions (indels)

Pindel, DELLY, Meerkat, and LUMPY Detection of structural variants

CNVnator, CNV-Seq, CoNIFER, ExomeCNV, Cnvkit,
EXCAVATOR, HMZDelFinder, CLAMMS, WISExome,

saasCNV, GSA, QDNAseq, and NxClinical
Detection of copy number variants (CNVs)

COSMIC, dbSNP, gnomAD ClinVar VEP ANNOVAR,
SnpEff, and Funcotator. Annotation of variants (SNVs, indels, CNVs)

ContEst, ART-DeCO, and Conpair
To assess cross-individual contamination by estimating

the probability of contamination based on the allele
fraction of homozygous polymorphisms

DeTiN To avoid erroneous filtering of true SNVs

High-performance computing cluster, consisting of 5
nodes running the SLURM workload manager

Accelerates analyses by distributing jobs across nodes
and ensuring reproducibility by storing sequencing data,

genome references, aligner indexes, annotations,
genomic databases, and analysis tools in a central

location

VCFtools NGS-pipe, VariantTools, vcfr, myVCF,
SMuRF, Cake, and NeoMutate

Integrated tools filter the false-positive hits and provide
a platform for customized variant calling pipelines for

research objectives

Mutalisk and SigMA Mutational signatures

MutSig2CV, dNdScv, and MutPanning Identification of cancer driver mutations

BRACAnalysisCDx Detection of germline mutations of the BRCA genes to
identify homologous recombination deficiency (HRD)

HRDetect Identifies the presence of homologous recombination
repair mechanism mutations

GATK-Mutect2, which is based on MuTect and
GATK-HaplotypeCaller To determine the tumor mutational burden (TMB)

MANTIS, MSIseq, MSISensor, Msings, and MOSAIC Microsatellite instability (MSI)

CloneFinder, MACHINA, Treeomics, and LICHeE Tumor heterogeneity

Galaxy Open-source web platform with several analysis tools

LOGpc, GENT2, PROGgeneV2, SurvExpress,
PRECOG, and Oncomine. Web servers based on mRNA data for survival analyses

[85]cBioPortal and MethSurv Web servers based on DNA data for prognosis analyses

TRGAted and TCPAv3.0 Web servers based on protein data for survival analyses



Curr. Issues Mol. Biol. 2024, 46 12542

Table 4. Cont.

Computational Tools/Web Servers/Databases Description References

Catalogue of Somatic Mutations in Cancer (COSMIC),
Genomics of Drug Sensitivity in Cancer, The Cancer
Genome Atlas (TCGA) data portal, DNA-Mutation
Inventory to Refine and Enhance Cancer Treatment

(DIRECT), My Cancer Genome Atlas Genetics
Oncology, and cBio Cancer Genomics Portal

Cancer-specific databases for clinical interpretation of
tumor variants [90]

Recently, artificial intelligence (AI) has been playing an increasingly significant role
in personalized medicine, due to the increasing availability of large cancer datasets. With
deep learning (DL) techniques, AI is emerging as an impressive tool for biomedical data
analysis. The integration of multi-omics data with clinical information enhances biomarker
identification and prognostic accuracy, facilitating a more nuanced understanding of can-
cer [91]. AI algorithms can synthesize data from diverse platforms, including genomics,
epigenomics, transcriptomics, proteomics, metabolomics, pathomics, and radiomics, en-
abling precise identification of cancer subtypes. This multifaceted approach provides
robust tools for predicting cancer prognosis and treatment responses [92]. For instance,
Champion et al. (2018) developed AMARETTO, an algorithm that integrates multiple
molecular data sources to identify a network of pan-cancer driver genes through the com-
bination of copy number variations, DNA methylation, and gene expression data [93].
Yuan et al. (2022) demonstrated the potential of a deep learning model, ResNet3D + SVM
classifier, for predicting peritoneal carcinomatosis in colorectal cancer [94]. In the context of
triple-negative breast cancer, Azzouz et al. (2021) employed a machine learning algorithm
to address treatment heterogeneity among subtypes [95]. Additionally, Jiao et al. (2020)
utilized a deep learning classifier to distinguish 24 major tumor types based on patterns
of somatic mutations detected through WGS, achieving impressive accuracy rates of 91%
on held-out tumor samples and 88% and 83% on independent primary and metastatic
samples, respectively [96]. For whole-exome sequencing, Sun et al. (2019) introduced
the genome deep learning (GDL) method, employing a deep neural network model to
identify cancer risk by analyzing genomic variations. This GDL model effectively dif-
ferentiates between 12 types of healthy and cancerous tissues based on point mutations
in WES data [97]. Moreover, Zhang et al., 2023 analyzed the bulk of scRNA sequencing
data, by using the tumor-infiltrating immune cell (TIIC)-associated signature based on a
total of 26 machine learning (ML) algorithms. The TIIC signature score showed superior
performance to 168 previously established signatures in lung adenocarcinoma and showed
a prognostic value that can forecast genomic change, chemotherapeutic drug susceptibility,
and—most significantly—immunotherapeutic response [98]. Despite these advancements,
challenges remain in the field of AI in oncology. Issues such as data heterogeneity, the
need for standardization across datasets, and the interpretability of complex models pose
significant hurdles. Furthermore, ethical considerations regarding patient privacy, data
security, and algorithmic bias must be addressed to ensure equitable outcomes [91,92].

5. Challenges and Opportunities

The integration of NGS into cancer treatment presents significant challenges and
controversial findings that complicate its clinical application. For instance, the SHIVA trial
highlights the limitations of off-label targeted therapies, which failed to demonstrate a
clear benefit over standard treatments when solely relying on molecular alterations [99].
Additionally, tumor heterogeneity presents challenges; both intertumor and intratumor
variability complicate biomarker identification, which is crucial for developing and admin-
istering molecular targeted therapies based on single tumor biopsy specimens. The use of
circulating tumor cells (CTCs) or circulating tumor DNA (ctDNA) could potentially address
this issue by providing a broader perspective on overall tumor heterogeneity [100,101].
Sample quality also poses substantial obstacles to the successful application of NGS, as
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smaller specimens often lead to failures due to insufficient tumor content or compromised
DNA quality. The sensitivity of NGS for SNVs is around 5% to 10% [102–104], and FFPE
samples often show higher artifact rates compared to fresh tissues, with systematic error
rates of 4% to 6% [105]. A study by Al-Kateb et al. (2015) investigates the factors affecting
NGS success in cancer tissue specimens, revealing that 22.5% of 1528 analyzed samples
failed, primarily due to pre-analytical issues such as insufficient tissue (INST) and low
DNA integrity (INS-DNA), which accounted for about 94% of the failures. The key factors
contributing to INST failures include shorter time from tissue collection to NGS analysis,
higher tumor heterogeneity, and lower viability. The findings underscore the importance of
larger tissue samples for effective analysis [106]. Techniques like overlapping paired-end
reads [107] and random nucleotide tags (unique identifiers or UIDs) [108] have been de-
veloped to improve variant detection accuracy and sensitivity. While NGS performs well
for SNVs and small indels, its effectiveness for structural variants (SVs) and copy number
variations (CNVs) is less robust, particularly in repetitive genomic regions [109,110]. CNV
analyses can yield false positives ranging from 10% to 89% [111], underscoring the need for
refined detection methods. Access to clinical trials poses another hurdle; strict eligibility
criteria and geographical limitations often prevent many patients from participating in
potentially beneficial studies; this creates significant challenges in the gathering of suffi-
ciently large populations to conduct randomized controlled trials for each cancer subtype
identified by NGS. The first precision medicine randomized controlled trial indicated no
significant improvement in patient outcomes when therapies were matched to molecular
profiles. Therefore, the integration of biomarkers, molecular tests, and targeted drugs
necessitates concurrent development and thorough investigation to realize the full poten-
tial of personalized medicine [112]. Moreover, the oncologists’ comfort and familiarity
with interpreting genomic data, alongside patient preferences and financial considerations,
can limit the potential benefits of NGS. Actionable mutations identified through NGS do
not consistently lead to corresponding therapies, with only a small percentage of patients
receiving treatments tailored to their molecular profiles. Various databases exist for ge-
nomic data, but they often lack comprehensiveness and accuracy, especially regarding
rare variants [113,114]. Integrating genomic data into clinical practice presents challenges
for smaller healthcare institutions, requiring updates to operational processes, training,
and technology. This complexity is aided by large publicly accessible databases, such as
COSMIC (Catalogue of Somatic Mutations in Cancer), the UCSC Cancer Genomics Browser,
and cBioPortal [115].

Despite these challenges, the positive aspects of NGS deserve recognition. The
MOSCATO 01 trial found that high-throughput genomic analyses identified actionable alter-
ations in a significant proportion of patients, with some experiencing improved progression-
free survival [116]. These findings suggest that, while NGS faces numerous hurdles, it
holds promise for the enhancement of treatment strategies in select patient populations.
Addressing the multifaceted barriers surrounding NGS implementation—ranging from
regulatory policies to insurance coverage—is essential for unlocking its full potential in
precision medicine and improving outcomes in oncology.

6. Conclusions

NGS has emerged as a transformative tool in cancer research, offering unparalleled
insights into the genomic landscape of the disease. By detecting previously unexplored
mutations and providing a comprehensive understanding of genomic alterations, NGS
facilitates the molecular sub-classification of cancer and enhances our knowledge of un-
derlying carcinogenesis. Despite its technical complexities and computational demands,
NGS outperforms traditional diagnostic techniques in accuracy, enabling the identification
of various genomic biomarkers and mutational signatures. However, challenges such as
availability and financial investments remain significant hurdles in the widespread adop-
tion of NGS in clinical settings. Achieving cost-effectiveness and seamless integration into
clinical practice requires a concerted effort involving the establishment of robust ethical
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and regulatory frameworks, automated analysis pipelines, and sustained financial support.
Despite these challenges, the role of NGS in cancer research cannot be overstated. Its
ability to provide valuable insights into the genomic landscape of cancer holds promise
for personalized approaches in cancer diagnosis and treatment. Continued advancements
in technology, bioinformatics, and data analysis methodologies will further enhance the
utility of NGS, ultimately improving patient outcomes in the fight against cancer.
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