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Abstract: The pathogen of COVID-19, SARS-CoV-2, has caused a severe global health crisis. So
far, while COVID-19 has been suppressed, the continuous evolution of SARS-CoV-2 variants has
reduced the effectiveness of vaccines such as mRNA-1273 and drugs such as Remdesivir. To uphold
the effectiveness of vaccines and drugs prior to potential coronavirus outbreaks, it is necessary
to explore the underlying mechanisms between biomolecules and nanodrugs. The experimental
study reported that acrylamide fragments covalently attached to Cys145, the main protease enzyme
(Mpro) of SARS-CoV-2, and occupied the substrate binding pocket, thereby disrupting protease
dimerization. However, the potential mechanism linking them is unclear. The purpose of this work is
to complement and validate experimental results, as well as to facilitate the study of novel antiviral
drugs. Based on our experimental studies, we identified two acrylamide fragments and constructed
corresponding protein-ligand complex models. Subsequently, we performed molecular dynamics
(MD) simulations to unveil the crucial interaction mechanisms between these nanodrugs and SARS-
CoV-2 Mpro. This approach allowed the capture of various binding conformations of the fragments
on both monomeric and dimeric Mpro, revealing significant conformational dissociation between the
catalytic and helix domains, which indicates the presence of allosteric targets. Notably, Compound 5
destabilizes Mpro dimerization and acts as an effective inhibitor by specifically targeting the active
site, resulting in enhanced inhibitory effects. Consequently, these fragments can modulate Mpro’s
conformational equilibrium among extended monomeric, compact, and dimeric forms, shedding
light on the potential of these small molecules as novel inhibitors against coronaviruses. Overall,
this research contributes to a broader understanding of drug development and fragment-based
approaches in antiviral covalent therapeutics.

Keywords: SARS-CoV-2 Mpro; acrylamide fragments; molecular dynamics simulation; novel antiviral
drugs; molecular mechanism

1. Introduction

The coronavirus family has given rise to three significant epidemics: Severe Acute Res-
piratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and the ongoing
Coronavirus Disease 2019 (COVID-19) pandemic [1]. COVID-19 has caused a global health
crisis, characterized by an unprecedented rate of mortality, infection, and transmission, par-
ticularly affecting unvaccinated elderly individuals [2]. Symptoms range from mild, such
as fever, cough, and shortness of breath, to severe cases that lead to pneumonia and even
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death [3]. SARS-CoV-2, the causative agent of COVID-19, shares a high degree of genetic
homology with SARS-CoV, demonstrating alarming transmissibility, a heightened risk of
reinfection, and a reduction in vaccine efficacy against emerging variants. SARS-CoV-2,
a single-stranded, crown-shaped, positive sense RNA virus, expresses two polyproteins,
pp1a and pp1ab, encoded by genomic RNA and subsequently cleaved by main protease
(Mpro) or papain-like protease (PLpro) [4,5]. Recent research has highlighted the ongoing
evolution of SARS-CoV-2, with new variants such as Omicron leading to changes in trans-
mission dynamics and reduced drugs or vaccine effectiveness [6–8]. These developments
emphasize the need for updated therapeutic approaches and adaptive vaccine strategies to
address these evolving threats [9,10]. The continuous evolution of SARS-CoV-2 mutants
reduced the efficacy of nucleoside analog, GS-5734 (remdesivir), MK-4482 (known previ-
ously as EIDD-2801) [11], and vaccines for Moderna (mRNA-1273) and Pfizer-BioNTech
(BNT162b2) [12], thereby causing intense attention to develop effective antiviral drugs and
vaccines to combat COVID-19. However, traditional vaccine development and de novo
drug design processes are both time-consuming and costly. Besides, the clinical availability
of new drugs remains uncertain. In the face of the growing impact of COVID-19, the
concept of drug repurposing, encompassing strategies such as repositioning, re-profiling,
or rediscovery, emerges as a pragmatic approach to identifying potential therapeutics [13].
Within the realm of drug discovery, Compounds can be categorized as covalent or non-
covalent, with the former presenting several advantages, including enhanced biochemical
efficiency, target specificity, safety, and reduced drug resistance [14]. Consequently, most
studies have concentrated on covalent drug discovery.

In the quest for effective antiviral drugs, structural and biochemical research on SARS-
CoV-2 represents a promising avenue, offering insights into its mechanisms and means
of regulating protein activity, thereby accelerating antiviral drug development. Research
shows that Mpro from coronavirus functions as a symmetric homodimer. This homodimer
consists of two protomers, designated as chains A and B, with each protomer consisting of
three domains (I, II, and III) connected by long-loop regions [15,16]. Domains I and II belong
to the barrel fold and are located in the catalytic site of Mpro, and domain III comprises an α-
helical domain. Mpro plays a pivotal role in cleaving precursor polyproteins into individual,
functional, mature, non-structural polypeptides responsible for the production of critical
structural proteins, including the nucleocapsid protein (N), membrane glycoprotein (M),
small envelope glycoprotein (E), and spike protein (S) [17]. The spike protein serves as the
entry point for SARS-CoV-2 into host cells, mediating binding with angiotensin-converting
enzyme-2 (ACE2) and initiating the infection process [18]. Notably, previous studies
indicate that only the dimeric form is active in the biological medium, highlighting the
importance of Mpro dimerization in its function [19]. Particularly, Mpro stands as an ideal
drug target for the treatment of COVID-19 and the control of SARS-CoV-2 infection.

As a complement and validation to the experimental report, we have constructed
molecular models of two covalent fragment structures (Compounds 2 and 5) in Table 1.
Among seven fragments, these two fragments have exceptional inhibitory potency [20].
Compounds 2 and 5 were selected for detailed study based on experimental analyses.
In vitro assays demonstrated that these two Compounds exhibited the lowest half-maximal
inhibitory concentrations (IC50 = 10–20 µM) among the acrylamide fragments tested. Ad-
ditionally, size-exclusion chromatography (SEC) was performed to analyze the molecular
weight distribution of the Mpro-ligand complexes. The results showed that Compound 2
eluted in a dimeric form, while Compound 5 eluted predominantly as a monomer. This
suggests that Compound 5 may induce a more significant disruption of Mpro dimerization,
a key factor in its activity. Therefore, these two fragments were selected for further compu-
tational study. The covalent fragments share a common thiazole motif, which underpins
their binding mechanism. The thiazole rings with sulfur atoms can interact with the active
site cysteine (Cys145) in Mpro dimers or monomers. Despite their shared thiazole core
and methylene linker, these fragments exhibit both similarities and differences. In terms
of similarity, both fragments feature cysteine-reactive chemical groups that functionalize
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their core scaffolds, conferring the same 1,3-thiazole core and methylene linker. Alkyl
acrylamide displays low off-target reactivity and limited reactivity with glutathione, while
trifluoromethyl and cyclohexane fragments possess weaker electron density, minimizing
interactions with the protein. Diverging from these similarities, Fragment 5, with its bulky
benzene moiety, expands the substrate binding pocket, influencing neighboring regions.
Especially in contrast to trifluoromethyl fragments, the benzene ring on Fragment 5 is able
to form π-π stacks interaction with residue His of the target protein, thereby enhancing
the stability of the protein-ligand complex. These variations in pharmacophores account
for the differing inhibitory effects of these fragments on enzyme activity. Electrophiles on
these fragments maintain a high level of pharmacological safety, owing to their widespread
clinical application [21]. Furthermore, their intrinsic reactivity promotes protein modifi-
cation and reduces false positives and negatives. The acrylamide “warhead” component
is a vital feature in clinically approved covalent drugs. Emphasizing the importance of
selectivity and reactivity, as well as mild electrophilic reactivity, it can collectively minimize
the risk of non-specific reactivity and associated toxicity [22,23]. Collectively, acrylamide
fragments offer the potential to influence intermediate states of SARS-CoV-2 Mpro by
covalently targeting the active site cysteine, also providing valuable insights for rational
fragment-based drug design and discovery against coronaviruses.

Table 1. Molecular structure of Compound 2 and Compound 5 [20].

System Compound 2 Compound 5

Molecular structure
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In this study, we explore the underlying mechanisms of two acrylamide fragments 
targeting Mpro through computational chemistry methods. We aim to provide important 
theoretical support and a molecular-level understanding of the inhibition mechanism by 
acrylamide fragments, which can accelerate the development of novel drugs based on 
acrylamide scaffolds. For example, Yu et al. designed and synthesized a series of novel 5-
cyano-2,4,6-substituted pyrimidine derivatives based on acrylamide fragments. They ex-
plored the effects of the electronic properties and substitution positions of different Com-
pounds on antitumor activity [24], demonstrating that our findings could similarly guide 
the rational design of new small-molecule drugs targeting viral proteases, building upon 
fragment-based approaches. We analyzed their ability to disrupt Mpro dimerization and 
trapped their transient conformation among extended, compact, and active states. Further 
analysis of simulated data confirmed that these two acrylamide fragments align with pre-
vious studies, confirming the utility of acrylamide moieties in several clinically approved 
drugs. It is worth noting that there are already existing inhibitors and early fragment-
based drug design studies in this domain, such as penicillin, omeprazole (a proton pump 
inhibitor), and acetylsalicylic acid (aspirin) [25,26]. Early fragment-based drug design 
studies have laid a foundation for our research, providing crucial insights into the feasi-
bility of targeting viral proteases [27]. These studies serve as vital precedents, guiding our 
approach toward the development of potential COVID-19 therapeutics. Therefore, this 
work is helpful in designing potential anti-coronavirus drugs. 

2. Materials and Methods 
Preparation of Mpro and Ligands: The three-dimensional structure of SARS-CoV-2 

Mpro utilized in the simulations was obtained from PDB code 7WYP, with a crystal 
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In this study, we explore the underlying mechanisms of two acrylamide fragments
targeting Mpro through computational chemistry methods. We aim to provide important
theoretical support and a molecular-level understanding of the inhibition mechanism by
acrylamide fragments, which can accelerate the development of novel drugs based on
acrylamide scaffolds. For example, Yu et al. designed and synthesized a series of novel
5-cyano-2,4,6-substituted pyrimidine derivatives based on acrylamide fragments. They
explored the effects of the electronic properties and substitution positions of different
Compounds on antitumor activity [24], demonstrating that our findings could similarly
guide the rational design of new small-molecule drugs targeting viral proteases, building
upon fragment-based approaches. We analyzed their ability to disrupt Mpro dimerization
and trapped their transient conformation among extended, compact, and active states.
Further analysis of simulated data confirmed that these two acrylamide fragments align
with previous studies, confirming the utility of acrylamide moieties in several clinically
approved drugs. It is worth noting that there are already existing inhibitors and early
fragment-based drug design studies in this domain, such as penicillin, omeprazole (a proton
pump inhibitor), and acetylsalicylic acid (aspirin) [25,26]. Early fragment-based drug
design studies have laid a foundation for our research, providing crucial insights into the
feasibility of targeting viral proteases [27]. These studies serve as vital precedents, guiding
our approach toward the development of potential COVID-19 therapeutics. Therefore, this
work is helpful in designing potential anti-coronavirus drugs.

2. Materials and Methods

Preparation of Mpro and Ligands: The three-dimensional structure of SARS-CoV-
2 Mpro utilized in the simulations was obtained from PDB code 7WYP, with a crystal
resolution of 2.30 Å (https://www.rcsb.org/3d-view/7WYP, accessed on 16 February
2022). Additionally, an apo-enzyme structure (unliganded SARS-CoV-2 Mpro dimer) was
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used to explore how Mpro dimerization is disrupted by modification with Compound
5 [20]. The Mpro dimer consists of two chains, A and B, with each chain representing a
monomeric Mpro containing 300 and 305 residues, respectively. For the monomeric system,
chain B was used for simulation. Each Mpro structure was optimized using the amber99sb-
ildn force field in GROMACS 2021.3 [28] to obtain the most stable conformation as the
starting structure. For the ligands, the structure files of the acrylamide fragments were
first generated using GaussView 6.0 software (Version 6.0, Roy Dennington, Todd A. Keith,
and John M. Millam, Semichem Inc., Shawnee Mission, KS, USA, 2016). Subsequently,
geometry optimization was performed using Gaussian 16 [29], with the functional basis set
B3LYP/6-31G*.

Construction of Initial Protein-Ligand Complex: AutoDock 1.5.7 was first employed
to conduct molecular docking studies, confirming the binding interaction of the alkene
carbon of acrylamide with the catalytic cysteine residue Cys145, which is a well-defined
binding site. Subsequently, Packmol was utilized to generate the initial configuration for
molecular dynamics simulations of the Mpro-antiviral drug complex [30].

Molecular Dynamics Simulations: Molecular dynamics (MD) simulations were con-
ducted using GROMACS 2021.3 to study the inhibition mechanism between the protein
and ligand. The topology for the enzyme was generated using the GROMACS command
pdb2gmx, employing the amber99sb-ildn force field, which handles standard amino acids
within the protein without requiring additional modifications. Also, the TIP3P water model
was used for the protein topologies. For the ligand (acrylamide fragments), Sobtop 1.0
(Tian Lu, Sobtop 1.0 (dev5), http://sobereva.com/soft/Sobtop (accessed on 15 September
2024)) was employed to generate the force field parameters. While GAFF defines bond and
angle parameters, these may differ from those derived via high-quality Hessian matrices,
particularly for unusual bonding patterns. When generating GROMACS topology files with
Sobtop, unrecognized GAFF atom types are assigned UFF types, with missing parameters
calculated from the Hessian, potentially reducing the accuracy of force field parameters.
The final topology files do not contain atomic charges, which are computed separately
using the RESP method in Multiwfn [31]. For more accurate topologies, potential energy
surface (PES) scans of the dihedral angles could be performed to obtain refined parameters,
although this is time-consuming. Importantly, building the topology for the ligand and the
enzyme involved constructing a molecular model with a covalent bond between the alkene
carbon of acrylamide and the sulfur of Cys145, followed by optimization in Gaussian and
calculating atomic charges using Multiwfn. Cys145 was defined as a new CYU residue
(deprotonated Cys145) in amber99sb-ildn/aminoacids.rtp, with updated atomic charges.
The topology for Mpro was then generated using the pdb2gmx command, ensuring Cys145
was in its deprotonated state.

In the MD simulation, the pH was set to a neutral state (pH 7), consistent with
physiological conditions, to accurately model protein-ligand interactions. Specifically, all
ionizable acidic residues, such as Asp and Glu, were modeled in their deprotonated forms.
Basic residues, including Lys, Arg, and His, were maintained in their protonated states, with
His residues represented as HIE. Regarding Cys145, it was treated in its deprotonated form
to realistically represent its covalent bond with the ligand’s acrylamide moiety, aligning
with the experimental conditions.

Each system was independently run, and energy minimization was performed using
the steepest descent algorithm for 1000 steps to ensure a well-relaxed starting structure.
The temperature was maintained at 300 K, and the pressure was set at 1 atm. Van der
Waals (VDW) interactions were treated using a switch function with a cutoff distance
of 1.4 nm. The Particle Mesh Ewald (PME) method was applied to handle long-range
electrostatics with a cutoff of 1.2 nm and a Fourier grid spacing of 1.2 nm. Before performing
production MD simulations, each system underwent NVT and NPT simulations to reach
a pre-equilibrated state. The NVT ensemble was simulated for 5 ns using the v-rescale
algorithm and Berendsen thermostat. The NPT ensemble for 5 ns was carried out with
positional restraints on the complexes. The restraints on the complexes were removed in
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normal MD simulation for 300 ns. Where computational resources allowed, longer pre-
equilibration simulations and production MD runs were also considered. All simulation
snapshots were visualized using the VMD program [32].

Analyses of Structural Dynamics: Principal Component Analysis (PCA) was con-
ducted using GROMACS 2021.3 software, specifically employing the “gmx covar” and
“gmx anaeig” modules. Before PCA was performed, the trajectory underwent periodic
correction to eliminate any periodic boundary effects, and translational and rotational
motions were removed using the -fit rot+trans option. The PCA process involved reducing
the 3N Cartesian coordinates of the molecular dynamics simulation trajectory to construct
a covariance matrix, followed by the calculation of its eigenvalues and eigenvectors to
describe the main molecular motions, referred to as the principal components. The two
largest eigenvectors were selected as the primary components (PC1 and PC2). Additionally,
the parameters describing the conformational free energy changes—RMSD and radius of
gyration—were projected onto the first two principal components to capture the character-
istics of the conformational changes. Besides, the molecular mechanics Poisson-Boltzmann
Surface Area (MM-PBSA) [33] method was employed to calculate the relative binding free
energies of the acrylamide fragments to Mpro. The binding free energy is described as
∆Gbind = ∆H − T∆S, where ∆H = ∆Eelec + ∆EvdW + ∆Gpolar + ∆Gnon-polar. Here, Eelec and
EvdW represent the electrostatic and van der Waals energies, while Gpolar and Gnon-polar
represent the solvation energies. The final 10 ns of the equilibrated trajectories were selected
for the MM-PBSA calculations. MM-PBSA calculations were based on 10 ns of equilibrated
trajectories with periodic boundary corrections, and the final binding free energy analysis
was performed using the gmx_MMPBSA_ana tool.

The analyses of root mean square deviation (RMSD), root mean square fluctuation
(RMSF), and radius of gyration were performed using GROMACS. The RMSD was cal-
culated based on the entire protein backbone to capture the overall structural dynamics
and conformational changes throughout the simulation. The RMSF analysis utilized the
complete dynamics trajectory, enabling an assessment of fluctuations for each atom or
residue over the entire simulation period, thereby providing a comprehensive view of the
protein’s dynamic behavior and flexibility. For the radius of gyration, the analysis also
included the entire protein, allowing for an accurate evaluation of overall compactness and
structural dynamics throughout the simulation.

Various software tools were used for visualization and comprehensive analysis, in-
cluding VMD 1.9.3 and PyMOL 4.5.0 (https://en.wikipedia.org/wiki/PyMOL, accessed
on 12 March 2024) for molecular visualization. Python 3.7.9 scripts were employed for
custom data processing and analysis. Additionally, Origin 2024 and Excel were used for
graphical representation and statistical analysis of the results. To further minimize ran-
domness and errors, we conducted two additional independent 300ns MD simulations,
and the analyses demonstrated consistency in the conclusions drawn from all three MD
simulations. The relevant molecular data have been incorporated into the Supplementary
Materials (Supplementary Tables S1–S3).

3. Results and Discussion
3.1. Exploring the Transient States of Dimeric and Monomeric SARS-CoV-2 Mpro upon Binding
with Different Acrylamide Fragments

To elucidate the inhibitory mechanisms and binding affinity of acrylamide fragments
(Compound 5 and Compound 2) on SARS-CoV-2 Mpro, we captured the transient structures
of dimeric and monomeric Mpro covalently bound to Compound 5 and Compound 2
(Figure 1). Crystallography of the monomeric Mpro linked to Compound 5 and Compound
2 reveals their binding models to the catalytic domain (barrel fold) and substrate binding
site. Compound 2 and Compound 5 covalently attach to the active site cysteine Cys145,
situated within the cleft between domain I and domain II of the barrel fold. The loop-
loop interaction is responsible for the contact between the C-terminal and N-terminal.
An abundance of literature revealed that the C- and N-terminal domains play pivotal

https://en.wikipedia.org/wiki/PyMOL
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roles in the maturation, dimerization, and enzyme activity of Mpro [34–36]. It is observed
that Compound 2 bound to Mpro caused slighter displacement and rotation of the C-
terminal and N-terminal, while Mpro with Compound 5 showed an obvious upward
rotation of about 180◦ and twisting motion at the C-terminal domain (Figure 1a). Notable
conformational changes occurred at 180 ns (Figure 2), leading to global backbone alterations
that resulted in the disruption of the α-helical domain and the antiparallel barrel fold,
further destroying the secondary structure of the protein. The root mean square fluctuation
(RMSF) value of monomeric Mpro bound to Compound 5 is larger than that bound to
Compound 2, with average values of 0.174 nm and 0.159 nm, respectively. In particular,
residues 90–100, 218–222, and 300–305 fluctuate widely (Figure S1b), suggesting unstable
configurations. By contrast, Compound 2 linked to monomeric Mpro and the C-terminal
finger of the -helical domain exhibited about 30 swings relative to the monomeric Mpro
without ligands, which partly released the constraints of the C-terminal of Mpro. It is worth
noting that the binding of the acrylamide fragments did not induce a fully conformational
change to the independent fold units (-helical or -barrel). Notably, Mpro with Compound
5 caused striking structure fluctuation and destruction. Hence, Compound 5 may be a
potential allosteric inhibitor.
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Figure 1. (a) Transient structural conformation of SARS-CoV-2 monomeric Mpro bound to Com-
pounds 2 and 5. Transient conformation of SARS-CoV-2 dimeric Mpro modified by (b) Compound
5 and (c) Compound 2. Superposition of the compact state, active protomer of the dimer, and the
extended Mpro, colored navy blue and red. Light blue and pink represent the active dimeric Mpro
without Compounds. Red arrow indicates the position of the small molecule at the active site.
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Compound 5, covalently connected with active site cysteine of dimeric Mpro, was
colored navy blue and red, and the purified structure of dimeric Mpro without small drugs
was colored light blue and pink. In Figure 1b, the structure of dimeric Mpro is superimposed
on each corresponding protomer part. The structure of the protein gradually expanded
when bound to Compound 5 and Compound 2. There was a distinct disorder that occurred
in the extreme C-terminal region of Mpro linked to Compound 5, suggesting conformational
changes in several residues. As a direct comparison of the structural changes, the size of
the motions induced by Compound 5 is larger than Compound 2, which indicates that
Compound 5 would disrupt the stability of Mpro conformation. Mpro with Compound 2
has a more stable configuration. The RMSF profiles further verified the results: the average
value of RMSF for Mpro with Compound 5 is larger than that of Compound 2, which are
0.176 nm and 0.162 nm (Figure S1a), respectively. Additionally, although Compound 5 and
Compound 2 bound to dimeric Mpro all rendered the progressive increase of distance and
angle between the C-terminal and N-terminal domains with simulation time, Compound 5
showed the most significant distance enhancements (Figure S2a,b). This correlated with
the rotation angle and transient structure of monomeric Mpro discussed above. In essence,
both catalytic and α-helical domains apparently shift from the active dimer Mpro to the
protomer of dimeric Mpro, then to the compact monomer Mpro, and finally to the extended
monomer Mpro. Hence, we speculated that Compound 5 bound to Mpro disrupted the
loop-loop interactions between the C-terminal and N-terminal domains, leading to loss of
contact with its own C-terminal domain. These observations indicate that Compound 5 can
stabilize the monomeric extended conformation and prevent the formation of the compact
monomer and active dimer Mpro, thereby serving as an allosteric enzyme inhibitor. In
contrast, the transient conformation of dimeric Mpro bound to Compound 2 differs from
bound to Compound 5. The catalytic domain and helix domain surrounding Compound
2 exhibited slight expansion to accommodate the trifluoromethyl thiazole moiety. The
amplitude of the upward movement of β-turn on inactive dimer Mpro connected with
Compound 2 was smaller compared to that connected with Compound 5 (Figure 1c).
Moreover, the distance and angle between the N-terminal and C-terminal domains remain
relatively stable, which are lower than bound to Compound 5 (Figure S2a,b), suggesting
that the dimerization of dimeric Mpro connected with Compound 2 was partially impaired.

3.2. Structural Stability of the Acrylamide Fragments Target SARS-CoV-2 Mpro

To assess the dynamic processes and binding stability of acrylamide fragments on
SARS-CoV-2 Mpro, we utilized the root mean square deviation (RMSD) to track con-
formational stability during the 300 ns simulation. Typically, RMSD serves as a metric
for dimerization stability, providing insights into the kinetics between biomolecules and
nanodrugs [37]. We estimated the RMSD of the protein backbone of all these systems
(Figure 2). The equilibrium period was 160–300 ns. The RMSD of dimeric Mpro with any
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Compound maintained a constant value (~0.25–0.37 nm) from 100 ns to the end of the MD
simulation (Figure 2a). Obviously, the average RMSD values for Mpro with Compound
2 experienced a larger fluctuation compared to Mpro without any Compound, with a
value of 0.26 ± 0.04 nm, indicating that Compound 2 caused comparative instability of
the geometric structure of Mpro. In contrast, the average RMSD values of Mpro with
Compound 5 was ~0.35 ± 0.05 nm, suggesting Compound 5 aggravates the instability
of global conformation. Figure 2b shows the average RMSD values of monomeric Mpro
maintained at ~0.35 ± 0.05 nm after 30 ns, and the average RMSD values for both Mpro
with Compound 2 and Mpro with Compound 5 were 0.34 ± 0.05 nm and 0.37 ± 0.05 nm,
respectively. This result induced by Compound 5 was consistent with dimeric Mpro and
emphasized that Compound 5 would cause structure variations and transformations. No-
tably, the RMSD of active dimeric units showed less fluctuation compared to the Mpro
monomer, indicating decreased stability of the monomeric Mpro structure relative to the
dimeric one. This suggested Compound 5 could influence the stability of the target protein,
especially for monomeric Mpro, thereby inducing significant conformational fluctuations
and potentially disrupting the dimerization of active Mpro. Comparatively, the significant
fluctuation of RMSD on monomeric Mpro compared to dimeric Mpro suggests that these
fragments exhibited a stronger allosteric effect on monomeric Mpro than on dimeric Mpro.

To further evaluate both intrinsic and mutation-induced flexibility of active site
residues, we also calculated the root mean square deviation (RMSD) for all amino acid
residues within Mpro. The RMSD plots exhibited similar fluctuation patterns with varying
magnitude across the simulated systems (see Figure 3). In this representation, red denotes
highly active amino acid residues, blue indicates fewer active residues, and white falls
between these two extremes. The redder the color, the more intense the displacement. On
the active site cysteine, Mpro had much more active amide acid residues compared to Com-
pound 2, further confirming that Compound 5 exhibited a higher allosteric effect, thereby
inducing structure dissociation (Figure 3a,b). Furthermore, the orientation of one monomer
of dimer Mpro turned back, which aligned with the analysis of transient conformation for
Compound 5 linked to monomeric Mpro (Figure 1a). Figure 3c,d illustrates the average
RMSD per residue of monomeric Mpro covalently linked to Compound 2 and Compound
5. As shown in Table 2, the RMSD results for both monomeric and dimeric forms of the pro-
teins interacting with Compound 2 and Compound 5 show that the values are close when
compared, indicating similar structural stability. However, by considering the standard
error of the mean (SEM), which reflects the variability in RMSD across different residues,
we can better understand the fluctuations. For Compound 2, the RMSD of the monomer is
0.147 with an SEM of 0.030, while for the dimer, it is 0.139 with an SEM of 0.032. Similarly,
for Compound 5, the monomeric RMSD is 0.197 (SEM = 0.033), and the dimeric form has
an RMSD of 0.184 (SEM = 0.016). These SEM values highlight the inherent fluctuations
in RMSD across different residues, with the dimeric forms of both Compounds showing
slightly lower variability in comparison to their monomeric counterparts. This suggests
that while the overall structural deviations between monomeric and dimeric forms are
comparable, the stability of individual residues varies more significantly in the monomeric
forms. Particularly, the significant difference suggested that dimeric Mpro with Compound
5 experienced notably unstable fluctuation, further indicating that acrylamide 5 likely
contributes to dimerization disruption.

Table 2. The average RMSD and SEM of amino acid residue of protein in both dimeric and
monomeric Mpro.

RMSD/nm Dimer Monomer SEM (Dimer) SEM (Monomer)

Compound 2 0.139 0.147 0.032 0.030
Compound 5 0.184 0.197 0.016 0.033



Curr. Issues Mol. Biol. 2024, 46 12855Curr. Issues Mol. Biol. 2024, 46, FOR PEER REVIEW 9 
 

 

 
Figure 3. RMSD of each residue on dimeric Mpro covalently attached to (a) Compound 2 and (b) 
Compound 5, and RMSD of each residue on monomeric Mpro covalently bound with (c) Compound 
2 and (d) Compound 5. The blue amino acid residues represent those with the smallest motion am-
plitude, while the red residues correspond to those with the largest motion amplitude. 

Table 2. The average RMSD and SEM of amino acid residue of protein in both dimeric and mono-
meric Mpro. 

RMSD/nm Dimer Monomer SEM (Dimer) SEM (Monomer) 
Compound 2 0.139 0.147 0.032 0.030 
Compound 5 0.184 0.197 0.016 0.033 

3.3. Hydrogen Bond and Conformation Analysis for Acrylamide Fragments Covalently Con-
nected with Active Site Cysteine of Mpro 

To explore the underlying mechanism of interaction between acrylamide fragments 
and SARS-CoV-2 Mpro, we predicted the binding configurations and relevant residue 
changes in both dimeric and monomeric Mpro. Further analysis of the affinity between 
biomolecules and nanomedicine was crucial in understanding their binding patterns and 
interaction details. Research has shown that the affinity of protein-drugs was driven by π-
π stacks interaction, as well as weaker interactions such as hydrogen bonds and salt 
bridges, with a distance cutoff of 0.350 nm and an angle cutoff of 30° [38]. Hydrogen bonds 
play a significant role in stabilizing interactions within biological molecules [39]. Also, 
hydrogen bond occupancy was used to assess binding effects during molecular simulation 
[40]. For Compound 2, a direct hydrogen bond was formed between oxygen 8 in the car-
bonyl group and the side chain nitrogen of Gly143. The hydrogen bond had a distance of 
0.288 nm and an occupancy of 41.72% (Figure 4a), suggesting the potential electron trans-
fer, which could influence the catalytic activity of acrylamide fragments. In contrast, Com-
pound 5 exhibited an average hydrogen bond distance of 0.179 nm and an occupancy of 
89.42%, indicating a stronger hydrogen bond formation with Glu166 (Figure 4b). Besides, 
the preference for π-π stacks and hydrophobic interactions via the aromatic ring (His41) 
and nonpolar side chains of the protein likely contributed to more stable binding interac-
tion between Compound 5 and Mpro, undirectedly leading to the unfolding and dissoci-
ation of SARS-CoV-2 Mpro. 

Figure 3. RMSD of each residue on dimeric Mpro covalently attached to (a) Compound 2 and (b) Com-
pound 5, and RMSD of each residue on monomeric Mpro covalently bound with (c) Compound 2 and
(d) Compound 5. The blue amino acid residues represent those with the smallest motion amplitude,
while the red residues correspond to those with the largest motion amplitude.

3.3. Hydrogen Bond and Conformation Analysis for Acrylamide Fragments Covalently Connected
with Active Site Cysteine of Mpro

To explore the underlying mechanism of interaction between acrylamide fragments
and SARS-CoV-2 Mpro, we predicted the binding configurations and relevant residue
changes in both dimeric and monomeric Mpro. Further analysis of the affinity between
biomolecules and nanomedicine was crucial in understanding their binding patterns and
interaction details. Research has shown that the affinity of protein-drugs was driven by π-π
stacks interaction, as well as weaker interactions such as hydrogen bonds and salt bridges,
with a distance cutoff of 0.350 nm and an angle cutoff of 30◦ [38]. Hydrogen bonds play a
significant role in stabilizing interactions within biological molecules [39]. Also, hydrogen
bond occupancy was used to assess binding effects during molecular simulation [40]. For
Compound 2, a direct hydrogen bond was formed between oxygen 8 in the carbonyl group
and the side chain nitrogen of Gly143. The hydrogen bond had a distance of 0.288 nm and
an occupancy of 41.72% (Figure 4a), suggesting the potential electron transfer, which could
influence the catalytic activity of acrylamide fragments. In contrast, Compound 5 exhibited
an average hydrogen bond distance of 0.179 nm and an occupancy of 89.42%, indicating a
stronger hydrogen bond formation with Glu166 (Figure 4b). Besides, the preference for π-π
stacks and hydrophobic interactions via the aromatic ring (His41) and nonpolar side chains
of the protein likely contributed to more stable binding interaction between Compound 5
and Mpro, undirectedly leading to the unfolding and dissociation of SARS-CoV-2 Mpro.

For acrylamide fragments covalently bonded to active site residue Cys145 of Mpro,
we found Compound 5 anchored to the sulfur atoms of residue Cys145 and remained
stable in the hydrophobic cavity within the catalytic domain (barrel fold). Especially,
Compound 5 and Compound 2 exhibited similar binding patterns, enclosing themselves
in a cavity formed by residues such as Cys145, Glu166, Gly143, and His41 (Figure 4a,b),
whereby amino acids within 0.50 nm of the active site cysteine Cys145 were susceptible
to Compounds 5 or 2. These fragments interfered with the stability of Mpro by forming
weak interaction and hydrophobic interaction with active site cysteine and surrounding
amino acids, especially in the vicinity of the catalytic domain of Mpro. Most importantly,
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the catalytic dyad (comprising His41 and Cys145) within the barrel fold played a critical
role. Residue Cys145, acting as a potent nucleophile, interacts with the amide backbone of
the fragments, facilitating the formation of the oxyanion hole during the transition state,
which is electrostatically stabilized [41]. The trifluoromethyl thiazole moiety of Compound
2 and the benzothiazole moiety of Compound 5 formed π-stacking interactions with the
side chain of His41, further stabilizing these fragments (Figure 4a–d). With a distance
of just 0.18 nm between the sulfur atom and the carbon atom in Cys145, the binding
configuration 9 was likely influenced by the spatial positioning of the acrylamide fragments.
Moreover, Compound 5 exhibited a unique inhibitory mechanism with its hydrophobic
benzothiazole group and the exposed cyclopropane group. These features enlarged the
substrate binding pockets and created space for the benzothiazole moiety, consequently
affecting the surrounding residues. These results revealed that the structural stability of
protein fragments was primarily driven by the strength of hydrogen bonds, followed by
π-π stacks interactions, and then hydrophobic interactions between the fragments and
Mpro. This evidence shows the destabilization of dimeric Mpro following covalent bonding
with these two acrylamides, particularly Fragment 5.
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In the case of Compound 2-Mpro monomer complexes, the absence of hydrogen bonds
between the fragments and Mpro monomers pointed to π-π stacks and hydrophobic forces
as the primary stabilizing factors. These interactions inhibited the transition of the Mpro
monomer into the protomer of the dimer (inactive dimer), as illustrated in Figure 4c,d. It
was also noted that the stable binding of Compounds to dimeric Mpro led to a decrease
in the total number of hydrogen bonds in Mpro homodimers (Figure S3a), as well as in
monomeric Mpro (Figure S3b). Mpro connected with Compound 5 also had a significant
decrease than when linked to Compound 2. This suggested that the initial helical confor-
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mation of the protein was seriously disrupted when bound to Compound 5. Furthermore,
this evidence supported the above analysis that dimerization was partially impaired when
bound to Compound 2, which emphasized the crucial role of strong hydrogen bonds in
small drugs-Mpro dimer complexes for maintaining active conformation.

3.4. The Interactions Between Mpro Protomers at Boundaries

Ionic bonds, or salt bridges, are electrostatic interactions between negatively charged
oxygen atoms of acidic residues and positively charged nitrogen atoms of basic residues
when they are within 0.50 nm of each other [42]. Analyzing the statistical salt bridge
interaction of inter-chain A-B at the boundary provides an effective strategy for exploring
the conformational changes of Mpro [43]. For a detailed structural analysis, we divided
dimeric Mpro into upper (α-helical domain) and lower regions (catalytic domain) con-
nected with Compound 2 (Figure 5a,c) or Compound 5 (Figure 5b,d). Compared with
the conformational interaction of α-helical domains of dimeric Mpro at boundaries, the
protomers bound much more tightly when connected with Compound 2 than when linked
to Compound 5 (Figure 5a,b). Besides, the binding distance among interaction amino acid
pairs of Mpro connected with Compound 2 is lower than with Compound 5, especially in
the catalytic domain (Figure 5c,d). This suggests that Mpro with Compound 5 has a pro-
found allosteric effect, whereby Compound 5 exhibited a higher allosteric target, causing a
significant disruption of dimerization, thereby leading to better inhibitory enzyme activity.
Moreover, the plots of global conformational interaction for interaction amino acid pairs
were a supplement for catalytic domains and α-helical domains of dimeric Mpro at the
boundaries (Figure S4a,b).
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Furthermore, a salt bridge network was initially formed at the dimerization interface
(Figure S5a,b). Further analysis of the binding distance of amino acid pairs confirmed
that Compound 5 induced considerable dissociation of the catalytic or α-helical domain of
Mpro. In Figure S5a,b, the α-helical domain of dimeric Mpro contains two weak hydrogen
bonds and salt bridges between residue Glu14 and Lys12 of chain A-B bound to Compound
2. In contrast, there were no weak interactions in the catalytic domain of Mpro linked to
Compound 5. The average distances between interaction amino acid pairs for Glu14-Lys12,
Arg4-Glu288, and Arg4-Glu290 of chain A-B in Mpro with Compound 2 were 0.366 nm,
0.403 nm; 0.921 nm, 0.543 nm; and 0.743 nm, 0.317 nm, respectively (Figure S5a). However,
in Mpro with Compound 5, the corresponding average distances were 0.677 nm, 0.447 nm;
1.266 nm, 0.817 nm; and 1.065 nm, 0.807 nm (Figure S5b). The distance difference indicated a
shift in inter-chains of Mpro, thereby leading to partial impairment of dimerization of Mpro
with Compound 5. Also, the catalytic dyad of Mpro, which was closer to the acrylamide
fragments, is more easily disturbed in terms of spatial position. Notably, compared with
Compound 2, Compound 5 bound to dimeric Mpro resulted in a greater reduction in the
number of salt bridges at boundaries (Figure S6a), and the contact distance among key
residues of chain A-B increased more significantly (Figure S6b). This suggests that there is
a greater displacement movement between dimeric units. These observations suggest that
acrylamide fragments can disrupt the dimerization of Mpro, causing substantial distortion
in the orientation and distance between the N-terminal and C-terminal domains, especially
protein linked to Compound 5. Therefore, Compound 5 exhibited a better binding affinity
with SARS-CoV-2 Mpro compared to Compound 2. Therefore, Compound 5 had a stronger
inhibitory effect against Mpro and can be considered an allosteric inhibitor.

3.5. Comparison of Inhibitory Effect of Acrylamide Fragments on Mpro

To evaluate the inhibitory efficacy of acrylamide fragments on Mpro, we conducted a
comprehensive analysis of various structural properties, including radius of gyration (Rg),
solvent-accessible surface area (SASA), and interaction energy, for both Mpro dimers and
monomers during 300 ns simulation. Non-bonded interactions, specifically van der Waals
interaction and electrostatic energy measured in terms of Coulomb and Lennard-Jones
(LJ) potential functions, play a pivotal role in interaction energy [43]. We observed that
the interaction energy between Mpro dimers and Compound 2 decreased to an average
value of −160.62 ± 43.92 KJ/mol. Conversely, Mpro linked with Compound 5 exhibited
lower binding free energy, with an average value of −252.74 ± 46.56 KJ/mol. Besides, this
interaction energy decreased even more dramatically, reaching a value of −407.65 KJ/mol
at 260 ns (Figure 6a). To further quantify the binding affinities of the fragments on Mpro, the
calculations of binding free energies were performed using the last 10 ns of MD trajectories.
The binding free energy values of Mpro-Compound 2 were found to be −74.74 KJ/mol,
whereas, for Mpro-Compound 5 complex, it was −182.22 KJ/mol. Further MM-PBSA
analysis indicated that Compound 5 binding reduced the interaction energy between Mpro
monomers to 405.04 kJ/mol, compared to 445.46 kJ/mol for Compound 2. In contrast, the
Mpro dimer without any Compound binding had an interaction energy of −487.64 kJ/mol.
These results suggest that covalent bonding with either Compound 2 or Compound 5
weakens the affinity between Mpro monomers, with Compound 5 having a particularly
destabilizing effect on the dimeric complex. Throughout the simulation, Compound 5
induces progressive destabilization at the dimer interface, leading to partial dissociation of
the Mpro dimer. This structural disruption may contribute to a reduction in the catalytic
activity of Mpro (Table 3).

Additionally, we calculated the solvent-accessible surface area (SASA) to assess the
extent of expansion of the Mpro dimer volume. The average SASA values for Mpro
bound to Compound 2 and Compound 5 were 270.11 ± 3.15 nm2 and 272.24 ± 5.95 nm2,
respectively (Figure 6b). This suggests that Compound 2 caused a slighter expansion in the
Mpro dimer. Moreover, we used the radius of gyration (Rg) to evaluate the compactness of
Mpro after acrylamide fragments covalently bound to the active site residue Cys145 in both
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Mpro dimers and monomers. The average Rg value for dimeric Mpro with Compound 5
was 2.60 ± 0.01 nm, while it was slightly lower for dimeric Mpro with Compound 2, at
2.57 ± 0.01 nm, indicating that Mpro dimer with Compound 5 is less compact compared
to Mpro with Compound 2 (Figure 6c). Similarly, we analyzed the Rg values of Mpro
monomers, where the average Rg value for monomeric Mpro bound to Compound 2
was 2.19 ± 0.02 nm, while there was a slight increase for monomeric Mpro bound to
Compound 5, with an average Rg value of 2.23 ± 0.03 nm (Figure 6d). These results
confirmed Mpro connected with Compound 5 had a looser conformation compared to
that connected with Compound 2. Particularly, Mpro dimers are less compact than Mpro
monomers. This indicated that the initial protein helical conformation is disrupted by the
binding of acrylamide fragments. Therefore, Compound 5 specifically targeted the dimeric
Mpro, locking it in its monomeric form. These findings further indicate that Compound 5
is a potential allosteric inhibitor for the enzyme and could be a promising drug candidate
against COVID-19 or viruses resembling coronavirus.
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Table 3. MM-PBSA values of different Mpro systems.

System Binding Free Energy (KJ/mol)

Mpro-Compound 2 −74.74
Mpro-Compound 5 −182.22

Monomers chainA-chainB under Compound 5 −405.46
Monomers chainA-chainB under Compound 2 −445.04

Monomers chainA-chainB without ligand −487.64

The molecular electrostatic potential (ESP) [44] and average local ionization energy
(ALIE) maps for Compound 2 and Compound 5 provide insight into their potential interac-
tions with SARS-CoV-2 Mpro. In the ESP maps (Figure 7a,b), blue regions indicate areas
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of negative electrostatic potential, where the electron density is high, while red regions
represent positive potential, indicating electron-deficient areas. For Compound 5, negative
charge density is concentrated around oxygen, nitrogen, and sulfur atoms, while positive
charge density is mainly located near the cyclopropane and adjacent portions, with the
aromatic ring appearing neutral. This distribution suggests stronger nucleophilic potential
in Compound 5, enhancing its affinity for electrophilic interactions with Mpro. For Com-
pound 2, negative charge density is concentrated around the oxygen and trifluoromethyl
groups, with the rest of the molecule showing positive charge density. The introduction of
the thiazole ring in Compound 5 increases the electrophilicity of the molecule, which may
further contribute to its enhanced binding affinity. In the ALIE maps (Figure 7c,d), blue
areas indicate regions where electrons are weakly bound and more likely to participate
in reactions. Compound 5 displays larger blue regions and more cyan spheres (indicat-
ing ALIE minima), suggesting that it has more reactive sites and a greater likelihood of
undergoing electrophilic attacks. In contrast, Compound 2 shows fewer reactive areas.
These differences indicate that Compound 5 has a stronger binding potential and reactivity
compared to Compound 2, supporting its superior inhibitory ability against Mpro.
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Figure 7. (a,b) Electrostatic surface potential (ESP) analysis for different Compounds. (c,d) Average
local ionization energy (ALIE) mapped onto the van der Waals surface of the Compounds. The
blue regions, indicating weaker electron density, suggest higher reactivity of the electrons in the
acrylamide fragments, making these areas more susceptible to electrophilic reactions.

3.6. Determination of Structure Variation of SARS-CoV-2 Mpro upon PCA-Based 2D
Free-Energy Surfaces

A Gibbs free energy landscape (FEL) [45,46] was used to explore the global structure
dynamics changes of Mpro bound to Compound 2 and Compound 5 on the conformational
space. Two principal components analysis (PCA) referencing PC1 and PC2 reaction co-
ordinates reflect the principal modes of structural variation, which were obtained from
C atomic fluctuation. It is observed that the collective motion of Mpro connected with
Compound 2 is located on two main energy basins, E1 and E2, representing different
conformational stability of Mpro Compounds (Figure 8a). They signify that the structure of
Mpro is clustered into two clusters (Figure S7a). The color of E1 is dark blue than the color
of E2, which suggests steady conformation. The twisting motion of the structure of Mpro
with Compound 2 occurs in the E2 subspace. Also, the magnitude of motion along PC1 is
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comparable to the size of PC2 at 1 5 KJ/mol. In comparison to Compound 2, the structure
fluctuations of Mpro with Compound 5 navigate a broader conformation space, with the
configurations primarily distributed in six energy basins, from E1 to E6 (Figure 8b). Notably,
Mpro with Compound 5 caused a clear separation of the structures into six clusters (Figure
S7b), demonstrating global conformations of Mpro that generated evident deviation from
each other. Hence, the fewer the clusters, the less flexible the protein, and the structure
distribution and flexibility of Mpro with Compound 2 is confined to a small conformational
space. Furthermore, E4 has the highest energy values of 12 15.6 KJ/mol compared to the
other five energy wells, suggesting significant torsion and displacement, thereby possibly
disrupting the secondary structures of Mpro and influencing the enzyme activity. Notably,
PC1 shows larger movement of the thumb on structure variation.
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corresponding to Mpro complexed with (c) Compound 2 and (d) Compound 5, respectively.

Furthermore, the corresponding covariance matrices (also called dynamics cross-
correlation maps—DCCM) were built to describe the mean-square deviations in atomic
coordinates from their mean position [47] or the coupled linear motion correlations be-
tween their pairwise fluctuations [48]. The native values represent relative motions, and the
positive values represent synchronous movements. The larger the positive value, the more
unstable the conformation. In cross-correlation maps (CCij), Mpro bound to Compound
5 generates more coupled motions between residues (Figure 8c) compared to that bound
to Compound 2 (Figure 7d), which indicates obvious instability of the Mpro structure.
Particularly, residues 201 through 213 of the helix of Mpro with Compound 5 show the
most coupled motions (Figure 8d), and some residues in the domain play a pivotal role
in maintaining the activity of the main protease, demonstrating the instability of the helix
domain. The secondary structure of Mpro with Compound 5 has transformed from a helix
into a coil, which indicates a non-secondary structure area (Figure S7d). By contrast, the
secondary structure of Mpro with Compound 2 has changed from helix to turn partly
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(Figure S7c). These results were consistent with the 2D free energy surface and the interac-
tion energy analysis (Figure 6a). Therefore, the binding of Compound 5 exhibited greater
inhibitory function on SARS-CoV-2 Mpro.

Overall, the MD simulation results are consistent with the experimental findings,
further confirming that Compound 5 causes the main protease to elute as a monomer, while
Compound 2 causes the main protease to elute as a dimer. Compared with traditional
active-site inhibitors, the mechanism in our study involves acrylamide fragments targeting
the active-site cysteine Cys145 and occupying the substrate-binding pocket, leading to
conformational distortions. These distortions affect the active site and surrounding re-
gions, inducing transitions between different conformational states (active dimer, inactive
compact dimer, and extended monomer), ultimately disrupting dimerization by releas-
ing the constraints between the C-terminal and N-terminal regions of Mpro. However,
C-terminal and N-terminal regions play a pivotal role in the dimerization and enzyme
activity of SARS-CoV-2 Mpro. Therefore, allosteric inhibitors such as Compound 5 may
offer certain advantages; they can induce conformational changes at sites distant from
the active site, potentially reducing the emergence of drug resistance, as these sites are
less prone to mutations under selective pressure. Additionally, by targeting alternative
regions, allosteric inhibitors could complement the effects of active-site inhibitors, possibly
enhancing therapeutic efficacy [49–51]. Additionally, the molecular-level mechanism of
the antiviral effect of the acrylamide fragment is revealed, showing that Compound 5
disrupts the secondary structure of the protease, significantly affecting its dimerization
and impairing viral activity, implying substantial opportunities for the development of
benzothiazole core Compounds.

4. Conclusions

In this study, we identify a set of novel nanodrugs against SARS-CoV-2 Mpro, then
construct dimeric and monomeric Mpro structures with two different Compounds to
explore their underlying inhibitory mechanism of interaction from the molecular level. The
two nanodrugs trapped distinct binding conformation of Mpro from an active dimeric to
an inactive monomeric state. Complemented with previously reported experiments [20],
these results confirmed that acrylamide fragments destabilized the dimerization of Mpro.
Particularly, we determined the therapeutics with the covalent mechanism of acrylamide
fragments from the molecular level. Besides, compared with Compound 2, Compound
5 exhibits a superior inhibitory efficacy when targeting Mpro, whether with monomers
or dimers. The substitution of trifluoromethyl and methane with aromatic benzene and
cyclohexane moieties, respectively, is suggested to be responsible for the enhanced binding
potential of Compound 5. The binding ability is driven by a larger number of hydrogen
bonds and salt bridges between Compound 5 and key residues around the catalytic cysteine
(Cys145), such as Glu166 and Gly143. Especially, we observed that acrylamide fragments
covalently bound to catalytic cysteine Cys145 would disrupt the interaction between
the catalytic domain and the helix domain, leading to gradual dissociation of protein
structure, thereby inhibiting the autocleavage of Mpro and suppressing enzyme activity.
The continuous dissociation of N- and C-terminals on monomeric Mpro interfered with the
enzyme maturation from the early stage. Therefore, the acrylamide fragment is specific to
the monomeric Mpro, inhibiting the transformation of monomeric to dimeric Mpro.

The current work may shed light on the substantial potential for the development
of small molecular drugs with acrylamide warheads, especially Compound 5. Most im-
portantly, our study reveals an allosteric target by elucidating binding-induced structural
conformational changes, and the theoretical complement for experiments provided more
precise predictions for acrylamide fragments inhibiting Mpro. Our data offers detailed
insights into the molecular inhibition mechanism of acrylamide fragments, complementing
the available literature on fragment-based drug design targeting Mpro. Recently, various
structural modifications to acrylamide warheads resulted in fluorinated acrylamide and
cyano-acrylamide warheads, among others [52]. These small molecules have been widely
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applied in kinase inhibitors and antiviral drugs. Their therapeutic effects and targeting
mechanisms demonstrate the positive impact of acrylamide warheads on drug develop-
ment. Overall, our findings contribute to this growing body of knowledge by providing
a molecular-level understanding of acrylamide’s role in inhibiting viral proteases, which
could guide and accelerate the rational design of more effective Mpro inhibitors.
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//www.mdpi.com/article/10.3390/cimb46110765/s1. Figure S1: RMSF profiles of Mpro bound
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Mpro connected with Compound 2 and Compound 5; Figure S3: (a) Hydrogen bonds between chain
A and B of dimeric Mpro bound to Compound 2 and Compound 5. (b) Hydrogen bonds between
monomeric Mpro and Compound 2 or Compound 5; Figure S4: Global interaction patterns of amino
acid pairs of dimeric Mpro connected with (a) Compound 2 and (b) Compound 5; Figure S5: The
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Compound 2 and Compound 5 at boundary. (b)The contact distances (nm) among interacting amino
acid pairs of dimeric Mpro linked to Compound 2 and Compound 5 at the boundaries; Figure S7:
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