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Abstract: Exercise, despite being a beneficial activity for health, can also be a source of oxidative
imbalance, which can lead to a decrease in performance. Furthermore, melatonin is an endogenous
molecule that may counteract exercise-induced oxidative stress. The aim of this study was to evaluate
the potential ergogenic and antioxidant capacity of melatonin administered for a maximal effort
test. A total of 30 rats were divided into three groups—control, exercise, and exercise + melatonin
(intraperitoneal administration of 10 mg/kg)—to assess the effects of an exhaustive incremental pro-
tocol in the two exercise groups (with and without melatonin) on the treadmill-running performance
(final speed reached), lipid and protein oxidation markers (malondialdehyde + 4-hidroxyalkenals
and carbonyl content, respectively), and cellular and mitochondrial membranes’ fluidity in skele-
tal muscle, brain, and liver tissues. Our results show an ergogenic effect of melatonin (31 ± 4 vs.
36 ± 4 cm/s), which may be due to its antioxidant properties being significantly stronger than its
protective effect when performing increasing exercise on a treadmill until exhaustion. Melatonin
reverted the membrane rigidity in the brain caused by exercise (with no effect on muscle or liver),
prevented lipid oxidation in muscle, and prevented lipid and protein oxidation in the liver. Differ-
ences between tissues’ responses to exercise and melatonin need to be investigated in the future to
elucidate other possible mechanisms that explain melatonin’s ergogenic effect.

Keywords: tissue biomarkers; lipid peroxidation; protein oxidation; membrane fluidity; ergogenic;
brain; muscle; liver

1. Introduction

Since the 1970s, it has been suggested that exercise is a cause of oxidative stress,
considering that the muscle mitochondria are the principal source of free radicals during
exercise [1,2]. However, at this moment, a lot of different sources of reactive species,
including sarcolemma enzymes, such as xanthine oxidase [3], phospholipase A [4], or
nitric oxide synthase, have been identified [5]. It is suggested that the changes in redox
balance during exercise are promoted by non-muscle sources such as phagocytes. Infiltrated
macrophages, essential to muscle repair, may release a huge amount of reactive species,
leading to oxidative damage even in healthy muscle [6,7]. As a result, oxidative stress
damage leads to early fatigue, diminishing exercise performance.

On the other hand, these free radicals have an important role as signals for adaptation
responses when they are present in low concentrations and for a short period of time.
These responses include an increase in antioxidant enzymes [8], mediated by the Keap1-
Nrf2 pathway [9], and the activation of several signaling pathways, such as nuclear factor
(NF) κB, mitogen-activated protein kinase (MAPK), and peroxisome proliferator-activated
receptor γ co-activator 1α (PGC-1α) [10]. The redox balance is crucial for correct cell
function, and maybe an antioxidant supplementation could partially interfere with the
oxidative damage caused by exercise promoting the signaling for a better adaptation.
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Melatonin (5-methoxy-N-acetyl-triptamine (aMT)) is a ubiquitous molecule synthe-
sized from the amino acid tryptophan. As a hormone, its functions include circadian
rhythm regulation (body temperature or sleep–wake cycle), but it appears that its original
function may have been to protect cells form the harmful effects of an atmosphere rich
in oxygen [11]. Its secretion varies during the lifespan: it is highest during the first to
third year and starts declining from adolescence until elderly age, when the levels are
the lowest [12]. Exercise induces the secretion of aMT, but only if it is performed during
daylight hours, as the luminosity of the daytime is the most important factor regulating
its secretion [13,14]. The intensity of exercise is also an important factor. Heavy load
exercises (over 75% of the VO2max intensity) induced an immediate increase in plasma aMT
concentration [15].

The use of melatonin as a sports supplement has gained scientific support in re-
cent years, particularly because of its ergogenic effects attributed to its antioxidant, anti-
inflammatory, and immunomodulatory properties. Melatonin’s capacity to prevent ox-
idative stress, modulate muscle damage, and mitigate inflammation induced by reactive
oxygen and nitrogen species (RONS), as well as its capacity to enhance the gene expression
of antioxidant enzymes, makes it a promising supplement for athletes [16]. Recent data
suggest its potential as an ergogenic supplement for football players because of its attenu-
ating effect in oxidative stress, inflammation, and muscle damage and due to its lack of
potential adverse effects. Nevertheless, the doses used in human studies are low (5–10 mg),
which are most commonly used to treat sleep problems. The direct effects of melatonin
supplementation on physical performance have not been demonstrated in humans [17].

Research has demonstrated that melatonin reduces biomarkers of muscle damage,
such as creatin kinase (CK) and lactate dehydrogenase (LDH); attenuates lipid peroxidation
in cell membranes; and downregulates the expression of proinflammatory enzymes, in-
cluding induced nitric oxide synthase (iNOS), cytokines IL-2, TNF-α, interferon-γ (IFN-γ),
and granulocyte-macrophage colony-stimulating factor [16]. It has also been previously
described that a single dose of aMT enhances the effects of exercise in cell adaptation
through a higher activation of PGC-1a in rats’ muscles, allowing the animals to swim for
more time at a anaerobic threshold intensity [18].

In the scenario described above, aMT appears as an endogen molecule that may
counteract the effects of oxidative stress induced by a very high-intensity exercise. So, the
aim of this study was to evaluate the potential ergogenic and oxidative stress prevention
effects of melatonin in a maximal-effort exercise protocol in rats.

2. Materials and Methods
2.1. Animals

Thirty male Sprague-Dawley rats were acquired (Harlan-Ibérica, Barcelona, Spain),
with an average weight of 321.3 ± 8.0 g and an average age of 9.5 ± 0.6 weeks. In
this work, only male rats were included to avoid any distortion by the ovarian cycle
in the response to exercise. Animals were stabled in the Support Service for Animal
Experimentation facilities of Universidad de Zaragoza, with 2 rats/cage in a room where
ambient temperature was automatically regulated to 22.0 ± 1.0 ◦C, under a 12:12 h light–
darkness cycle. Dark phase started at 8.00 a.m., and light phase at 8.00 p.m., in order to
simulate a maximum activity schedule. Water and food were available ad libitum (diet for
rodents’ maintenance was provided by RMM, Harlan-Ibérica, Barcelona, Spain). All animal
handlings and experimental procedures were performed in the morning in an isolated
thermoregulated room, prepared to simulate darkness using red light and covering natural
light entrances. Cages were placed inside opaque compartments to avoid exposure to
ambient light during transportation. All experiments were carried out in strict compliance
with European, national, and regional regulations. The study protocol was approved by
the Ethics Committee of Universidad de Zaragoza (ref. PI47/08) and the Clinical Research
Ethics Committee of Aragón (ref. CP02/2010).
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2.2. Experimental Design

The thirty animals were randomly distributed into three groups, homogeneously, with
n = 10 rats/group (according to recent similar studies [18–22]): Control group, Exercise
group, and Exercise + aMT group. Rats in the Exercise and Exercise + aMT groups carried
out a maximum ergometry until exhaustion, in which the maximum speed reached was
recorded. To perform these acute exercise tests, a single-lane rat treadmill (Panlab®, Cor-
nellà de Llobregat, Barcelona, Spain) was used, with an electrified grid at its rear end and
connected to equipment that allowed the speed to be modulated and recorded.

For Exercise + aMT group, the administration of melatonin (10 mg/kg weight) was
provided according to several authors [18,20,23]. Specifically, aMT was dissolved in <0.1%
ethanol and then diluted in NaCl solution (0.9%). Control and Exercise groups received
the same volume as vehicle (NaCl 0.9%), and Control group animals also remained at rest.
Intraperitoneal administration of both aMT and vehicle was carried out at 24 h, 16 h, 8 h
and 30 min before acute exercise test (Figure 1).
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Figure 1. Summary of the experimental design.

Regarding the groups that performed the running test (Exercise and Exercise + aMT),
immediately after finishing, each animal was euthanized by CO2 exposure before being
decapitated. Control group rats were euthanized the next day at the same time slot, fol-
lowing the same procedure. Quadriceps skeletal muscle, brain and liver were immediately
extracted and kept at −80 ◦C until the analytical procedures. This process was performed
in less than 10 minutes for each animal.

2.3. Exercise Protocol

During the week prior to the ergometric test, Exercise and Exercise + aMT animals
carried out an adaptation protocol on the treadmill for 5 days, 1 h/day. In this way, rats ran
lightly on the treadmill at a constant speed (0.10–0.12 m/s).

All ergometry tests were performed between 10 a.m. and 12 p.m. The acute exercise
test began with a speed of 0.15 m/s and a treadmill inclination of 10◦, and speed was
increased by 0.03 m/s every 3 min [24]. The maximal effort criterion used to end the
ergometry test was defined as the onset of evident fatigue, identified by the rats’ inability
to continue running on the treadmill despite the application of electrical stimulation [25].
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Initial intensity for electric stimulus was 0.2 mA (the minimum allowed by the ergometric
equipment), and the maximum intensity was limited to 0.4 mA at the end of the test.

2.4. Analytical Procedures

All the chemicals and solvents, of the highest grade available, were acquired from Sigma
(Madrid, Spain). TMA-DPH was obtained from Molecular Probes (Eugene, OR, USA).

To determine the fluidity in each tissue, it was necessary to first proceed with the
isolation of all membranes, both cellular and mitochondrial. For skeletal muscle and liver,
the procedure previously described by Graham was used [26], with slight modifications in
the brain protocol. These methods are based on successive differential centrifugations at
different speeds (×g) and times (minutes).

To sum up, the different tissues were chopped and placed in a glass homogenizer
equipped with a Teflon rotor (Heidolph RZR 2020, Schwabach, Germany). This process
was carried out by keeping the samples cold.

For both skeletal muscle and liver tissues, a buffer solution consisting of 0.02 M 4-
(2-hydroxyethyl)-piperazine-1-ethanesulfonic acid (HEPES)—0.14 M KCl (pH 7.4) was
used. The tissue homogenate was centrifuged at 1000× g for 10 min at 4 ◦C to remove
remains of solid tissue and cell nuclei. The supernatant was then centrifuged at 50,000× g
for 20 min at 4 ◦C. The pellet, which contained the membranes, was resuspended in HEPES,
homogenized and centrifuged again at 10,000× g for 10 min at 4 ◦C. After this centrifugation,
the following procedure was carried out: (1) the supernatant and the buffy coat were
resuspended and centrifuged at 50,000× g for 20 min at 4 ◦C, to obtain cell membranes;
(2) the pellet was resuspended in HEPES and centrifuged at 10,000× g for 10 min at 4 ◦C,
to obtain mitochondria membranes. Both final pellets, cell and mitochondrial membranes,
were resuspended in 0.05 M tris (hydroxymethyl)aminomethane (TRIS) (pH 7.4). The
samples were aliquoted and stored at −80 ◦C until the assays were carried out.

Regarding brain tissue, this was homogenated at 4 ◦C in 0.32 M sucrose. This ho-
mogenate was centrifuged at 1000× g for 10 min at 4 ◦C to remove remains of solid tissue
and cell nuclei. The resulting supernatant was then centrifuged at 30,000× g for 20 min
at 4 ◦C. The pellet, containing the membranes, was resuspended in Milli-Q® ultrapure
water [27,28], homogenized and centrifuged again at 8000× g for 20 min at 4 ◦C. Next,
(1) the supernatant and the buffy coat were resuspended and centrifuged at 48,000× g for
20 min at 4 ◦C, to obtain cell membranes; (2) the pellet was resuspended in Milli-Q® water
and centrifuged at 8000× g for 20 min at 4 ◦C, to obtain mitochondria membranes. Both
final pellets, cell and mitochondrial membranes, were resuspended in 0.05 M TRIS (pH 7.4).
They were distributed in aliquots and stored at −80 ◦C until further analysis.

Fluidity was monitored from triplicate determinations using TMA-DPH as fluorescent
probe. Its incorporation into the plasmatic or mitochondrial membrane and the determi-
nation of membrane fluidity were carried out according to that described elsewhere [29].
Tissue cell and mitochondrial membranes (0.5 mg protein/mL) were resuspended in 50 mM
TRIS (3 mL final volume) and mixed with TMA-DPH (66.7 nM).

After stirring vigorously on a vortex for 1 min, the preparation was incubated for
30 min at 37 ◦C. Fluorescence measurements were performed in a Perkin-Elmer LS-55
Luminescence Spectrometer equipped with a circulatory water bath to maintain the tem-
perature at 22 ± 0.1 ◦C. Excitation and emission wavelengths of 360 and 430 nm were
used, respectively. The emission intensity of vertically polarized light was recorded by an
analyzer oriented parallel (IVV) or perpendicular (IVH) to the excitation plane. A correction
factor (G) was applied to account for the optical system. Polarization (P) was calculated
using the following equation:

P =
IVV − G IVH

IVV + G IVH

An inverse relationship exists between membrane fluidity and polarization [29]; thus,
membrane fluidity is expressed as 1/P. Protein concentration was determined by the
Bradford method using bovine serum albumin as standard [30].
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The content of protein carbonyls was measured according to the method of Levine
et al. [31]. To the plasma sample, 100 µL of 50 mM TRIS buffer and 200 µL of 10 mM
2,4-dinitrophenylhydrazine (DNPH) solution were added, and the mixture was vortexed,
followed by incubation at 37 ◦C for 1 h. Ice-cold trichloroacetic acid (325 µL) was added to
the mixture. The pellet obtained after centrifugation at 3000× g for 10 min was washed
three times with 1 mL of an ethanol/ethyl acetate mixture (1:1, v:v). The last pellet was
dissolved in 6 M guanidine (700 µL) and incubated again at 37 ◦C for 15 min. After
centrifugation at 12,000× g for 10 min, the absorbance of the supernatant was measured
spectrophotometrically at 375 nm, and its concentration was expressed as µM carbonyl
groups. Guanidine was used as a blank.

MDA + 4-HDA concentrations (µM) were used as an index of the oxidative break-
down of lipids in the plasma [32]. In the assay, MDA + 4-HDA react with N-methyl-2-
phenylindole, yielding a stable chromophore with a maximum peak absorbance at 586 nm;
1,1,3,3-Tetramethoxypropane was used as the standard.

2.5. Statistical Analysis

Data were analyzed using t-Student’s test to compare means of final speed and re-
peated measures ANOVA for the other variables. When significant main effects were found,
pairwise comparisons were conducted using Tukey’s adjustments for multiple comparisons.
Effect sizes were calculated using Hedges’ g and Cohen’s d. Effect size categories were
defined as small (d = 0.2), medium (d = 0.5) and large (d ≥ 0.8). Statistical analyses were
performed using GraphPad Prism (v9.4.1.681) and SPSS (v29.0). The level of statistical
significance was set at p < 0.05 for all analyses.

3. Results

This section is divided into performance variables and oxidative damage indicators in
different tissues according to the aim of the study.

3.1. Exercise Performance

Our first aim was to evaluate the aMT administration on the performance of the
animals during a maximal effort exercise. This potential ergogenic effect is clearly shown
in Figure 2, where it can be seen that 6 out of 10 rats treated with melatonin achieved a
higher final speed than the median speed of all rats in the Exercise group (33 cm/s). In
contrast, only 1 out of 10 rats in the non-melatonin group reached higher speed at the end
of the ergometry. When both groups were compared (31 ± 4 vs. 36 ± 4 cm/s), the aMT
group reached a significantly higher speed (p = 0.0338, Hedges’ g effect size 4.68).
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Figure 2. Final speed (cm/s) reached at the end of the incremental ergometry by each animal in
group Exercise (without melatonin) and in group Exercise + aMT (animals with melatonin). * means
p < 0.05.
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3.2. Muscle Damage

To evaluate the oxidate stress prevention effects of melatonin during a maximal effort
exercise protocol in rats, markers of lipid and protein oxidative damage and markers of
membrane function were analyzed (see Methods section) in three different tissues (muscle,
brain and liver).

As shown in Figure 3a, MDA concentrations increased in muscle tissue after ex-
ercise (0.185 ± 0.065 vs. 0.275 ± 0.099 nmol/mg protein, d = 1.07). However, this ef-
fect was prevented when rats were previously administered with aMT (0.275 ± 0.099 vs.
0.080 ± 0.036 nmol/mg protein, d = 2.31). This increase in lipid peroxidation markers
was not followed by protein carbonyls. Figure 3b demonstrates that exercise led to a
non-significant increase in protein damage, and aMT did not reverse this effect.
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Figure 3. Muscle. (a) Malondialdehyde + 4 hydroxyalkenals (nM/mg proteins), (b) carbonyl content
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Focusing on membrane function, sarcolemma fluidity (Figure 3c) and mitochondrial
membrane fluidity (Figure 3d) were analyzed. The effect of aMT on sarcolemma was signif-
icant, making it more rigid (2.982 ± 0.051) compared to the Exercise group (3.042 ± 0.090)
(d = 0.83) and even to the Control group (3.270 ± 0.078) (d = 3.97). In contrast, mitochondrial
membrane fluidity remained unchanged following either exercise or aMT administration.

3.3. Brain Damage

Analyzing the effects of exercise and aMT administration, no statistically significant
effects were observed in MDA and Carbonyl concentrations, as shown in Figure 4a,b.
Although a slight decrease was observed in the aMT group compared to the Control and
Exercise group, this reduction was not significant.
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0.05 vs. Control. *** means p < 0.001 vs. Control. ### means p < 0.001 vs. Exercise.
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Regarding membrane fluidity, a significant increase was found in the group treated
with melatonin (Control: 2.813 ± 0.074 and Exercise: 2.781 ± 0.061 vs. aMT: 3.151 ± 0.095)
(Control vs. aMT d = 4.19), (Exercise vs. aMT d = 4.98) in brain cells membranes (Figure 4c).
However, no significant changes were observed in mitochondrial membranes (Figure 4d).
Exercise made the mitochondrial membranes more rigid, as expected, while the aMT
group showed a slight increase in fluidity, nearly reaching control levels, but this was
not significant.

3.4. Liver Damage

As shown in Figure 5a, MDA concentrations slightly and not significantly increased
in liver tissue after exercise, and this effect was prevented by the administration of aMT
(0.221 ± 0.035 vs. 0.051 ± 0.015 nmol/mg protein) (d = 5.84). The increase in oxidative
stress markers was higher in protein carbonyls than in MDA, increasing from 6.980 ± 0.173
to 8.960 ± 1.650 nmol/mg protein after exercise (d = 1.47) (Figure 5b). In the aMT group,
protein carbonyl levels were significantly lower (3.615 ± 1.191 nmol/mg protein) (d = 3.55).
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Regarding membrane fluidity, exercise induced an increase in the rigidity of liver
tissue cell membranes, a change that was not reversed using aMT (Figure 5c). In contrast, a
significant increase in mitochondrial membranes was observed in the group treated with
melatonin (Figure 5d).

4. Discussion

The main findings of the present study are as follows: (1) aMT administration exhibited
a clear ergogenic effect in rats performing an exhausting exercise protocol on a treadmill,
and (2) this ergogenic effect may be partially attributed to its antioxidant properties.

4.1. Running Performance

The most recent review on the influence of melatonin on exercise in humans did
not identify any ergogenic effects in the studies analyzed, although the highest dose
administered was 8 mg, and 2 × 6 mg [33]. In our study with Sprague-Dawley rats, we
selected a much higher dose compared to humans to evaluate the ergogenic potential of
melatonin, according to previous research. After reviewing the scientific literature, no
evidence of toxicological effects associated with melatonin administration specifically in rats
has been reported, even at supraphysiological doses [34]. Based on this, we administrated
four doses of 10 mg/kg body weight within 24 h. At these supraphysiological doses, a
clear ergogenic effect was observed, as shown in Figure 1, with the rats achieving a higher
speed at the end of the selected exercise protocol. Similar results were found where animals
perform other types of exercise such as swimming [35]. In that study, different doses and
exercise protocols were used, but an increase in performance duration for the exhausting
continuous exercise (with no increases in intensity) was described, with no protective effects
from tissue damage and/or inflammation. Melatonin administration was also found to be
more effective during the wakefulness period in rats. Even though melatonin enhanced
performance at any time of day compared to the Control group, the time to exhaustion was
longer when rats were more spontaneously active than other periods [36].

4.2. Effects on Skeletal Muscle

Studying the adaptive mechanisms induced by physical activity in skeletal muscle
tissue is particularly interesting, since muscle contraction is an essential requirement
for exercise. After an acute physical effort, MDA + 4-HDA concentration levels were
significantly higher in the Exercise group compared to the Control group, indicating a
marked increase in oxidation mediated by free radicals and caused by acute exercise. Similar
increases in MDA concentrations after an acute exercise protocol in the rat skeletal muscle
structure have been reported [37,38], along with increases in thiobarbituric acid reactive
substances (TBARS) [39]. Other authors, using various acute physical exercise protocols,
have also observed increases in oxidative markers in some muscles, although these changes
were not statistically significant [40,41]; some studies reported no changes [42,43]. The
most significant finding in the present study occurred in the Exercise + aMT group, since
aMT not only reduced muscle lipoperoxidation compared to the Exercise group but also
decreased it further, reaching even lower levels of standard lipoperoxidation than those
observed in the Control group. This result demonstrates that melatonin is a powerful
antioxidant against skeletal muscle lipoperoxidation caused by acute exercise. This effect
of aMT is consistent with the results presented in previous studies [44], including those
conducted in humans [45,46].

However, regarding the other oxidative stress marker (protein carbonyls), our results
do not show significant differences. The mean values of the two groups that performed
acute exercise, with and without melatonin, were very slightly higher than those of the
Control group. Nevertheless, this increase was not substantial enough to be statistically
significant due to the high standard deviation. The literature presents some discrepancies
in this regard. While most studies report significant increases in protein carbonylation
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following high-intensity acute exercise [40], when intensity is moderate-high, significance
is missing [47].

Considering the fluidity of the sarcolemma (membrane of muscle fibers), acute exercise
induced rigidity in both the Exercise and Exercise + aMT groups in comparison with the
Control group, with significant differences observed only in the administered aMT group.
TMA-DPH offers important advantages over other fluorescent markers due to its incorpora-
tion of a TMA residue, which imparts water solubility to the otherwise hydrophobic DPH
molecule. Without the TMA moiety, DPH tends to accumulate in an unstructured manner
within the core of the lipid bilayer. In contrast, the amphipathic nature of TMA-DPH allows
it to intercalate parallel to the longitudinal axis of phospholipids with its cationic residue
oriented towards the surface when added to biological membranes [48]. This property
provides a more accurate reflection of the bilayer’s phospholipid dynamics

The increased rigidity in sarcolemma in the Exercise + aMT group could be an inverse
consequence of the reduction in muscle tissue lipoperoxidation. As can be seen in Figure 3a,
melatonin produced MDA values significantly lower than those of the Exercise group, even
decreasing below the values of the Control group, though not significantly. From an antiox-
idant perspective, this could cause an opposite effect with respect to membrane fluidity,
which is mainly composed of lipids. Melatonin, precisely due to its powerful antioxidant
action on muscle lipoperoxidation, could modify the lipid composition of cell membranes,
which could consequently affect the normal fluidity dynamics of these membranes by
overstabilizing the lipids’ structure. Moreover, this apparent rigidity could be due to an
increase in the proportion of saturated vs. unsaturated lipids [49,50]. Our results are
aligned with those obtained using 5-doxyl-stearic acid (5-DS), suggesting that the rigidity
caused by acute exercise mainly affects the outermost part of the lipid bilayer [51]. Similar
results occurred in other studies where erythrocyte membranes of different animal species
were analyzed, including horses [52], dogs [53] or even rats [54]. Thus, while melatonin
demonstrates an antioxidant effect on other markers analyzed, it does not increase fluidity
levels in either the sarcolemma or the membrane of muscle fiber mitochondria. Regarding
the mitochondria membranes of the muscle fibers, no significant changes were observed.
In agreement with our results, another study measured mitochondrial fluidity in four
muscles [55], vastus external, gastrocnemius, tibialis and extensor digitorum longus, across
three groups of rats that followed strenuous exercise protocols performed on a treadmill.
While significant rigidity was noted in the mitochondrial membranes of the vastus exter-
nus and gastrocnemius, no significant changes were detected in the tibialis or extensor
digitorum longus. These results suggest that mitochondrial fluidity during high-intensity
acute exercise could be correlated with the contractile activity degree developed by the
muscle group analyzed [37–47].

To summarize the effects on quadriceps skeletal muscle, acute exercise causes signifi-
cant lipoperoxidation, which is drastically decreased by prior administration of melatonin,
even reducing levels below those of the Control group. However, this action of melatonin
has not been effective in protein oxidation. Additionally, a marked rigidity of the sar-
colemma is observed in this tissue, without melatonin returning the membrane fluidity to
its basal values. This rigidity is possibly due to the high demand for the contractile activity
of skeletal muscle tissue during physical activity performance, in addition to a possible
affectation in the sarcolemma lipid structure due to the melatonin antioxidant action in
muscle lipoperoxidation.

4.3. Effects on Brain

The brain, as a central nervous system structure, represents an important organ to
assess the toxic effects of free radicals, since it is especially vulnerable due to containing
high concentrations of polyunsaturated fatty acids, by using an enormous amount of O2
to produce ATP, and by its antioxidant enzyme scarcity. Compared with the liver, in the
rat brain, the catalase activity is 1/20, while superoxide dismutase (SOD) and glutathione
peroxidase (GPx) activity is around 1/3 [56]. In relation to oxidative stress markers both
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in lipids and proteins, no significant differences were observed in the Exercise group vs.
Control, nor the Exercise + aMT group vs. Exercise, so the aMT administration prior to
exercise performance did not generate a favorable imbalance in oxidative stress.

Regarding the values of membrane fluidity recorded, melatonin appears to perform
a fluidizing function in the membranes of brain tissue, both in cells and in intracellular
mitochondria. In cell membranes, aMT increases fluidity not only compared to the Exercise
group but also compared to the Control group. Therefore, this suggests that aMT inherently
increases the fluidity capacity of brain cells, which could serve as a preventive agent in
potential situations of oxidative damage. To date, no studies in the scientific literature
have reported on the fluidity of brain cell membranes in rats related to melatonin and
exercise. Nevertheless, in a previous study, where the effects of an acute individual
test up to exhaustion were examined in various rat central nervous system locations, no
significant changes in synaptosomes were found, except in the brainstem [57]. Attending
to mitochondria, acute exercise did not produce significant changes either, which could
be due to the fact that the central nervous tissue does not develop a great metabolic
activity as occurs with other tissues such as skeletal muscle (contractile activity) or liver
(purification and catabolism of waste products generated during muscle contraction), while
the mitochondria function in nervous tissue is limited to ensuring neurons a constant ATP
production, independent of the physical activity level. In our study, melatonin administered
before the acute test did not increase the fluidity of mitochondrial membranes compared to
the Control group, as it did with the brain cells, but it did cause an increase in the fluidity
value compared to the Exercise group (without aMT), being similar to the basal levels of
the Control group rats. This protective effect of melatonin on mitochondrial membranes in
the brain has been shown in some conditions [58,59], though not specifically in the context
of exercise.

4.4. Effects on Liver

Based on our results, no statistically significant changes were observed in liver lipoper-
oxidation in the Exercise group compared to the Control after performing acute physical
exercise. In the scientific literature, most experimental models report that acute exercise
induced marked hepatic lipid peroxidation [37,60–62]. What is remarkable is that, as oc-
curred with the results of LPO in skeletal muscle, the group of animals that performed acute
exercise after administering aMT drastically reduced LPO, even well below the standard
values of the Control group This antioxidant effect of melatonin on the liver after acute
exercise has barely been addressed in the literature, except for some studies with rats
performing swimming exercises [63].

Regarding protein carbonylation, the results present a similar trend to those shown
for lipoperoxidation, with the exception that the increase in this marker in the Exercise
group was statistically significant. While acute exercises taken to the extreme of exhaustion
also produced marked carbonylation in rat liver homogenates [62], other studies have not
detected hepatic carbonylation, despite following a maximum protocol [60,64]. On the
other hand, the aMT antioxidant effect on liver function had already been confirmed [65],
but its role as a re-balancer of oxidative stress in proteins from hepatic homogenates after
acute exercise has not been demonstrated until now. Its action is very similar to that seen in
lipoperoxidation in the same organ, reaching oxidation values in the aMT group statistically
lower than the other two groups of animals, the Control and Exercise groups.

In relation to membrane fluidity measurements, as observed in skeletal muscle, a
significant rigidity was detected in the two groups that performed acute exercise (Exercise
and Exercise + aMT) compared to the Control group. This suggests that, presumably, the
lipid and protein molecules comprising the hepatocyte membranes bilayer are affected,
regardless of whether melatonin was administered or not. In the scientific literature,
the small number of works that assess the effects of physical exercise on the liver cell
membranes fluidity is striking. Interestingly, a significant result in our study is the increase
in mitochondrial membrane fluidity values in the Exercise + aMT group compared to the
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Exercise group. This result contrasts with the rigidity observed in cell membranes within
the same tissue.

This finding aligns with previous research, where it has been observed that melatonin
interacts with the lipid bilayers of the mitochondrial membrane, enhancing the electron
transport chain and preventing functional deterioration induced by mitochondrial nitric
oxide synthase in rats [66].

On this point, while other elements as antioxidant agents, such as virgin olive oil,
sunflower oil [67] or carnitine [68], have been studied, the few studies that have analyzed
the exercise effects on liver mitochondrial membranes have also shown increased fluidity.
Therefore, the alteration suffered by the cell membranes of hepatocytes, where their fluidity
decreases, does not affect the membrane of mitochondrion, as the main organelle involved
in the energy and metabolic processes of the cell. In fact, melatonin improves its fluidity.

5. Conclusions

Our results suggest that melatonin may have an ergogenic effect in increasing exercise
on treadmill until exhaustion, since the group of animals administered aMT achieved
a significantly higher final speed compared to the group that performed the ergometry
without aMT. This action of melatonin could be due, at least in part, to its potential
antioxidant capacity and its water and lipid solubility, resulting in a possible protective
agent against damage produced during this type of exercise.

Nevertheless, the antioxidant capacity of melatonin in this protocol has only been par-
tially observed, since its effects on minimizing oxidative stress indicators varied depending
on the tissue analyzed. Melatonin was most effective against the following: (1) lipoperoxi-
dation in skeletal muscle and liver; (2) protein carbonylation only in the liver; (3) cellular
membrane rigidity in the brain and liver; and (4) mitochondrial membrane rigidity ex-
clusively in the liver, with no significant effects observed in other measurements.These
findings highlight the need to expand the range of variables analyzed in each tissue to
better evaluate melatonin’s antioxidant capacity under this type of exercise. Additional
measurements, such as total antioxidant status (TAS) or the activity of key antioxidant
enzymes (e.g., glutathione peroxidase, glutathione reductase, catalase, and superoxide dis-
mutase), could provide further insights. However, it is important to consider the limitation
posed by the amount of tissue available in each animal, which restricts the possibility of
conducting all potential measurements.

To sum up, the differences between tissues responses to exercise and melatonin ad-
ministration require further investigation. Future research should also focus on elucidating
other possible mechanisms that explain the potential ergogenic effect of aMT administra-
tion, as those suggested during the Discussion. Additionally, the limited evidence on the
toxicological effects of melatonin may be a point to evaluate the effects of its administration
in humans, including the determination of the most appropriate dose and its impact on
exercise performance.
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