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Abstract: The increased prevalence of obesity with several other metabolic disorders, including
diabetes and non-alcoholic fatty liver disease, has reached global pandemic proportions. Lifestyle
changes may result in a persistent positive energy balance, hastening the onset of these age-related
disorders and consequently leading to a diminished lifespan. Although suggestions have been raised
on the possible link between obesity and the gut microbiota, progress has been hampered due to the
extensive diversity and complexities of the gut microbiota. Being recognized as a potential biomarker
owing to its pivotal role in metabolic activities, the dysregulation of the gut microbiota can give
rise to a persistent low-grade inflammatory state associated with chronic diseases during aging.
This chronic inflammatory state, also known as inflammaging, induced by the chronic activation
of the innate immune system via the macrophage, is controlled by the gut microbiota, which links
nutrition, metabolism, and the innate immune response. Here, we present the functional roles of
prebiotics, probiotics, synbiotics, and postbiotics as bioactive compounds by underscoring their
putative contributions to (1) the reduction in gut hyperpermeability due to lipopolysaccharide (LPS)
inactivation, (2) increased intestinal barrier function as a consequence of the upregulation of tight
junction proteins, and (3) inhibition of proinflammatory pathways, overall leading to the alleviation
of chronic inflammation in the management of obesity.

Keywords: obesity; inflammation; functional foods; adipose tissue; metabolic disease; probiotics;
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1. Introduction

The issue of obesity is multifaceted and extremely complex, as it increases the preva-
lence of type 2 diabetes mellitus (T2DM), cardiovascular diseases, non-alcoholic fatty
liver disease, and related diseases, and has now emerged as a serious worldwide health
concern [1,2]. According to the World Obesity Atlas, in America, obesity prevalence among
children and adolescents is likely to rise from 2020 to 2035, notably among boys, where
the incidence is forecast to rise from 20% to 33%. Both men and women are likely to
experience an increase in the prevalence of obesity over the same 15-year period, with
almost half of all adults (47% to 49%) predicted to be affected by the disease by 2035 [3].
Globally, more than 4 billion people are projected to be affected by 2035 (BMI ≥ 25 kg/m2),
reflecting over 50% of the world’s population compared to 2.6 billion in 2020, with the
prevalence of obesity anticipated to rise from 14% to 24% in the population during the
same period. Environmental variables, genetics, and energy imbalance—a state in which
energy intake exceeds energy expenditure—can all have an impact on body weight [1]. The
aging process is correlated with an augmentation in abdominal white adipose tissue (WAT)
and the deposition of fat in skeletal muscle, significantly impacting insulin sensitivity [4,5].
Alterations in the lifestyle of the elderly, particularly as they transition into retirement, may
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induce a chronic positive energy balance, resulting in excess fat tissue accumulation. This
condition accelerates the onset of age-related diseases [6]. It is increasingly evident that
an obese state is associated with a diminished lifespan and health consequences akin to
those observed in advanced aging [7]. Additionally, several studies have linked chronic
inflammation to obesity and obesity-associated diseases [8–10].

The gut microbiota, consisting of approximately 100 trillion bacteria, colonizes the hu-
man intestine and plays a pivotal role in metabolic processes by producing many enzymes
essential for extracting energy from the host’s diet and facilitating energy deposition in fat
stores [11–13]. This functionality is contingent upon maintaining a delicate equilibrium
between potentially pathogenic bacteria and many nonpathogenic microorganisms that
contribute to overall health [14]. The commensal bacteria inhabiting the gut offer the advan-
tages of functioning as an auxiliary organ, actively participating in cellulose digestion, and
enhancing the development and maturation of both the intestinal and systemic immune
systems [15]. The host’s immune system and metabolic pathways can be influenced by
the gut microbiota in response to food preferences and energy requirements because of
its flexibility and adaptability [16]. This dynamic relationship is essential to immunity
and metabolism and has a major influence on optimal health. Age-related alterations
may lead to systemic inflammaging, which might affect the makeup of the gut microbiota
due to its continuous contact with organs and tissues, which, in turn, alters intestinal
immune responses [17,18]. Research indicates variations in the composition of intestinal
flora between lean and overweight rodents and humans [19–21], while various datasets
from diverse sources have substantiated a causative association between gut microbiota
and obesity [12,19,22,23].

Probiotics, prebiotics, synbiotics, and postbiotics, such as short-chain fatty acids (SC-
FAs) and muramyl dipeptide, have been shown to have a significant impact on metabolic
function [24]. Nonetheless, there is a significant study gap on the functional involvement of
these components in the alleviation of chronic inflammation in the context of obesity manage-
ment. Hence, this review explores the functional roles of prebiotics, probiotics, synbiotics, and
postbiotics, with a focus on their overall effects on gut microbiota, functioning as bioactive
compounds in the alleviation of chronic inflammation in obesity and related diseases.

2. Gut Microbiota, Inflammation, and Obesity
2.1. The Gut Microbiota

The human gut microbiota, a complex ecosystem consisting of up to 100 trillion
microorganisms, engages in a largely symbiotic relationship with its host [25]. This diverse
microbial community, collectively termed the microbiome, harbors at least 150 times
more genes than the human genome itself [25]. Analyses based on 16S rRNA-targeted
sequencing reveal that fecal samples from healthy individuals predominantly harbor two
major bacterial phyla, namely the Gram-negative Bacteroidetes consisting of the genera
Bacteroides, Prevotella, Parabacteroides, and Alistipes and the Gram-positive Firmicutes made
up of the Faecalibacterium prausnitzii, Eubacterium rectale, and Eubacterium hallii species in
addition to numerous low-abundance species [26,27].

Notably, the gut microbiota exhibit remarkable microbial and genetic diversity, with
specific bacterial species associated with distinct gastrointestinal regions. Bacterial density
steadily increases from the proximal to the distal portions of the gastrointestinal tract [27].
The stomach harbors the lowest abundance, with approximately 101 microbial cells per gram
of content. This number rises to 103 in the duodenum, 104 in the jejunum, and 107 in the
ileum and culminates at 1012 cells per gram in the colon [28]. Consequently, the large intestine
houses over 70% of the body’s microorganisms, which have a symbiotic relationship with the
host and exert a substantial influence on the overall well-being of the host [29].

Healthy aging comprises limiting age-related health problems in older people by
avoiding or delaying chronic diseases, even though the chance of various ailments grows
with age due to the loss of tissue structure and physiological function [30,31]. This under-
scores the critical role that these variables play in age-related morbidity [30]. Aging and
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health status affect biological parameters, with the human microbiota being a dynamic
indication that is modified by factors such as nutrition, lifestyle, and immunological re-
sponse [32]. The varying composition of the gut microbiota in older adults reflects their
current and previous health situations [30].

The gut microbiota is essential for development and adult homeostasis, and alterations
have been associated with inflammatory and metabolic problems in adults, including in-
flammatory bowel disease and obesity [20,33–35]. While the gut microbiota remains stable
and individual-specific in healthy adults, there is a significant fluctuation in older individ-
uals compared to younger people [36,37]. Immunosenescence, which is characterized by
persistent NF-kB-mediated inflammation and the loss of naïve CD41 T cells, is one facet of
the aging process [38]. Intestinal homeostasis is significantly influenced by gut microbiota,
and immunosenescence is linked to the persistent activation of the innate and adaptive
immune systems [39,40].

Commensal bacteria control an innate immune response and accelerate the host’s re-
sponse to enteric infections [41] by increasing baseline pro-inflammatory IL-1β production,
which exerts a protective effect in assisting gut pathogen clearance and neutrophil recruit-
ment by stimulating the expression of endothelial adhesion molecules [42]. Additionally,
natural Killer (NK) T cells are regulated by commensal bacteria that can express both T
cell receptors and NK cell receptors, which help to maintain homeostasis, and promote the
release of inflammatory cytokines, including TNF-α, IFN-γ, IL-2, IL-4, IL-13, IL-17A, IL-21,
and inhibit excessive inflammatory response [43,44].

Correlations between certain microbiota elements and an increase in pro-inflammatory
cytokines, such as serum TNF-α, IL-6, IL-8, and the C-reactive protein (CRP), have thus
demonstrated this relationship in the elderly [35]. Additionally, mitogens and LPSs cause
macrophages to secrete more IL-6 and IL-8, which alters macrophage activity [30]. Age-
related dysregulation brought on by gut microbiota dysbiosis may weaken the intestinal
barrier and cause the release of microbial products that raise pro-inflammatory factors like
TNF-α, interferons, IL-6, and IL-1 [45]. This, in turn, may contribute to a chronic low-grade
inflammatory state linked to chronic diseases [18,46–48].

2.2. Obesity and Related Diseases

Obesity, defined as an abnormal or excessive accumulation of fat, has reached global
pandemic proportions [49]. The current clinical practice for identifying overweight and
obese individuals relies primarily on body mass index (BMI) [50]. Accordingly, based on
established BMI classifications, values between 25 and 29.9 kg/m2 classify individuals as
overweight, while a value exceeding 30 kg/m2 indicates obesity [51]. Obesity primarily
arises from an energy imbalance, where caloric intake exceeds expenditure, which leads
to the storage of excess energy, such as fat and glycogen, in subcutaneous adipose tissue
(SAT) and organs [52,53]. However, adipose tissue itself exhibits functional heterogeneity,
comprising distinct depots with specialized roles [54].

Adipose tissue is classified into WAT and brown adipose tissue (BAT), distinguished
by variations in morphology, anatomical position, developmental patterns, and metabolic
functions [55]. WAT serves as a key endocrine organ, storing energy in the form of triglycerides
and secretes adipokines, while BAT, characterized by multilocular adipocytes and UCP-1
expression, actively contributes to energy expenditure through non-shivering thermogenesis,
playing a role in regulating body temperature and providing protection against obesity [56].
WAT is categorized into two primary depots, visceral WAT (VAT) and SAT, both of which
are extensively examined for their correlation with the development of related diseases [57].
Despite accounting for just 1% to 2% of total fat, BAT is indispensable for maintaining
homeostasis and has a beneficial impact on blood glucose levels [58]. Obese and diabetic
individuals have smaller BATs and less activity than those with a normal BMI [59].

Adipose tissue in individuals exhibiting overweight or obesity is intricately associated
with a chronic, low-grade inflammatory state, characterized by the heightened infiltration
of macrophages of the M1 or ‘classically activated’ phenotype from the circulation into adi-
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pose tissue, leading to adipose tissue inflammation through the release of pro-inflammatory
cytokines (TNF-α, IL-6, IL-8), while the balance of anti-inflammatory cytokines (IL-4, IL-10,
IL-13, IL-19) from adipocytes tends to decrease with weight gain, favoring the heightened
production of pro-inflammatory adipokines [60–62]. Adipose tissue not only releases
adipokines (leptin, adiponectin, visfatin, resistin) and constituents of the extracellular
matrix to modulate interconnected pathways but also undergoes hyperplasia and hyper-
trophy due to excess fat accumulation, altering the secretome, releasing metabolites, and
subsequently influencing the surrounding microenvironment [63,64].

An elevated level of proinflammatory adipokine leptin, in conjunction with an in-
crease in the levels of the hepatocyte growth factor (HGF), plasminogen activator inhibitor-1
(PAI-1), resistin, TNF-α, IL-1β, IL-6, and monocyte chemoattractant protein-1 (MCP-1),
accompanied by a simultaneous decrease in adiponectin, contribute to the metabolic syn-
drome, which is characterized by glucose intolerance, insulin resistance, central obesity,
dyslipidemia, hypertension, heightened cardiovascular disease risk, and increased suscepti-
bility to cancer [8–10]. Increased serum levels of free fatty acids (FFAs) in obese individuals
promote vascular endothelial growth factor A (VEGF-A) and vimentin expression through
peroxisome proliferator-activated receptor gamma (PPARγ) upregulation, contributing to
tumor growth, insulin resistance, and hepatic steatosis. At the same time, the concomitant
overexpression of TNF-α and leptin inhibits insulin receptor activation, inducing resistance
in the muscle, liver, islet α-cells, and adipose tissue, leading to T2DM [65,66].

2.3. Low-Grade Chronic Inflammation: Linking Gut Microbiota and Obesity

Obesity is characterized by changes in the abundant ratios of the dominating phyla.
While some research implies that obese individuals have a higher Firmicutes to Bac-
teroidetes ratio, the consistency of this observation and its reliability as a biomarker remains
uncertain [67–69]. Furthermore, obesity-linked low-grade inflammatory states may be ag-
gravated by microbiota-associated inflammatory processes [69]. Seven aging pillars that
form an interconnected network that converge at inflammation have been identified [70],
with dysfunction in one pillar leading to inflammation and subsequently impacting other
pillars [18]; this event is now referred to as inflammaging, defined as a “chronic, ster-
ile (occurring in the absence of infection and primarily driven by endogenous signals),
low-grade inflammation that occurs during aging” [18]. This chronic inflammatory state,
characterized by the innate immune system via macrophage activation and regulated by
the gut microbiota, results in the production of inflammatory products [18,71].

Previous research demonstrated that a 4-week high-fat (HF) diet resulted in a two-to-
threefold increase in plasma LPS levels, which is comparable to the effects observed during
the subcutaneous infusion of LPSs in mice, leading to insulin resistance and obesity [72]. LPSs,
a powerful activator of Toll-like receptor 4 (TLR4), are found in Gram-negative bacteria [73].
Hence, changes in gut microbiota composition, known as intestinal dysbiosis, may contribute
to a persistent low-grade inflammatory response in obesity. Since LPSs contain lipid A,
they can translocate across the intestinal mucosa via tight junctions or with chylomicron
facilitation. Given that lipoproteins play a crucial role in the absorption and transport of
dietary triglycerides, this mechanism may serve as an initiating factor for inflammation,
potentially contributing to the commonly observed insulin resistance in obesity [72,74].

As a member of the TLR family, TLR4 is found in many different types of cells, in-
cluding macrophages. It recognizes pathogen-associated molecular patterns (PAMPs) and
initiates a complicated cell signaling pathway that, when bound by LPSs, activates inflam-
matory response, and triggers the release of cytokines provided by the KEGG pathway
in Figure 1 [13,75,76]. Additionally, TLR4 has been linked to the inflammatory response
associated with increased intestinal permeability in circumstances such as diet-induced
obesity (DIO), which leads to insulin resistance and metabolic imbalance [13]. Further-
more, elevated LPS levels are associated with increased intestinal permeability, driven
by the reduced expression of vital tight junction proteins like zonula occludens-1 (ZO-1),
claudin, and occludin, leading to a compromised epithelial barrier that facilitates the entry
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of bacterial components from the intestinal lumen into the circulation, potentially initiating
inflammation and insulin resistance in humans and animals [77,78].
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Figure 1. LPSs activate TLR4, signaling a chain reaction that releases inflammatory cytokines. TLRs,
which are homologs of Toll in Drosophila, are present on the membranes of innate immune cells in
humans (e.g., macrophages and dendritic cells) and are activated by membrane components from
Gram-positive or Gram-negative bacteria. When TLRs detect pathogens, they immediately activate
innate immunity, causing the generation of proinflammatory cytokines and increasing the expression
of costimulatory molecules. As shown above, TLR signaling networks include a MyD88-dependent
pathway that rapidly activates NF-kB and MAPK, resulting in the generation of proinflammatory
cytokines, while the MyD88-independent pathway is linked to delayed NF-kB and MAPK activation,
resulting in the stimulation of IFN-beta, IFN-inducible genes, and dendritic cell maturation. Green
box represents organism-specific pathways; +p = phosphorylation [76].

2.4. Short-Chain Fatty Acids (SCFAs)

The fermentation of non-digestible carbohydrates in the cecum and colon by the gut
microbiota produces SCFAs, such as acetate, propionate, and butyrate, demonstrating
metabolic cooperation among the bacterial community, where the collective role of the
entire community is emphasized, and absorbed SCFAs in the intestine occur via passive
diffusion via monocarboxylate transporter 1 (MCT1) [79]. SCFA, particularly butyrate, is a
primary source of energy for colonic epithelial cells, promoting cell proliferation and differ-
entiation [80,81], whereas acetate and propionate play separate roles in cholesterol/fatty
acid precursor and gluconeogenesis, respectively [82]. While other bacterial by-products,
such as conjugated linoleic acids and bile acids, and gases, including methane and hydro-
gen sulfide, have metabolic regulatory activities, they play limited roles in mammalian
physiology in comparison to SCFA’s dominant effect [83,84].

Butyrate and acetate are essential for maintaining epithelial barrier function by influ-
encing tight-junction protein expression (zonulin and occludin), increasing mucus produc-
tion, and reducing intestinal permeability, with acetate having the most pronounced effects
on epithelial protection and both SCFAs contributing to increased fatty acid oxidation and
energy expenditure, potentially leading to weight loss, insulin sensitivity, and improved
metabolic health [85,86]. SCFAs block NF-kB activation in host immune cells via binding to
the G-protein-coupled receptors 43 and 41 (GPR43 and GPR41), with GPR43 playing an
important role in regulating the anti-inflammatory responses elicited by acetate [87,88].
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3. Probiotics, Prebiotics, Synbiotics, and Postbiotics in the Management of Obesity and
Related Diseases
3.1. Probiotics

Probiotics are live microorganisms that, when ingested in appropriate amounts, confer
a health benefit [89]. Their decline has been linked to an elevated risk of immune–metabolic
conditions such as obesity, T2DM, and metabolic syndrome [89–91]. The two most frequent
genera are Lactobacillus and Bifidobacterium [92]. Despite the absence of approval from
medical regulatory authorities like the European Food Safety Authority and the US Food
and Drug Administration for any probiotic formulation as a therapeutic agent [93–95],
in compliance with the guidelines established by the Ministry of Food and Drug Safety
(MFDS) for healthful functional foods, South Korea uses 19 probiotic species as functional
ingredients. Of these, 4 species are Bifidobacteria, and 12 are members of the Lactobacilli
genus [96]. Certain microbial species like Akkermansia muciniphila, Faecalibacterium praus-
nitzii, Anaerobutyricum hallii and Anaerobutyricum soenhgenii, Bacteroides uniformis, Bacteroides
coprocola, Parabacteroides distasonis, Parabacteroides goldsteinii, Hafnia alvei, Odoribacter laneus,
and Christensenella minuta have been identified as potential next-generation probiotics
or live biotherapeutic products [90,97–99]. These strains hold promise, particularly in
addressing obesity and related disorders, with some being prevalent in the microbiota of
most individuals.

Despite increased dietary intake, the global rise in obesity and diabetes is associated
with prevalent micronutrient deficiencies among obese individuals, specifically in vitamins
and minerals important for glucose metabolism and insulin signaling pathways, potentially
contributing to the development of diabetes and fatal outcomes (Figure 2) [100]. The small
intestine, which consists of the duodenum, jejunum, and ileum, is the primary location for
macro- and micronutrient digestion and absorption. A bidirectional relationship between
the gut microbiome and micronutrients involves microbial reliance on micronutrients for
growth and metabolism while also producing essential vitamins such as vitamins B and
K, facilitating mineral absorption. Although microbial dysbiosis may influence nutrient
bioavailability, probiotic supplements, including lactic acid bacteria and Bifidobacterium,
have been shown to promote beneficial microbial populations, enhance barrier integrity,
and alleviate nutrient malabsorption and small intestinal disease [101–106].
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Figure 2. Microbial dysbiosis may lower the intake of nutrients and increase total mortality due to
nutritional deficiencies. This causes protein–energy malnutrition, iodine deficiency, vitamin A deficiency,
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iron deficiency anemia, and other nutritional disorders. Inadequate consumption/availability of
essential macronutrients or micronutrients can result in fatal outcomes. The latest data included by
country: China, France—2017; Italy, Russia—2019; Brazil, Germany, Japan, UK, USA—2020 [107,108].

Their impact on various physiological markers has been identified. For example, the
Lactobacillus species administered to diet-induced obese mice resulted in beneficial out-
comes, including reduced weight, visceral fat, glucose, insulin, triglyceride levels, insulin
resistance, and proinflammatory cytokines, accompanied by increased IL-10 and improved
fatty liver indices [109–111]. In overweight or grade 1 obese adults, a 12-week L. gasseri
supplementation led to significant reductions in visceral fat and waist circumference [112],
while a 24-week L. rhamnosus treatment resulted in significant weight reductions in female
participants with obesity [113]. The oral administration of Bifidobacterium longum NK49,
Lactobacillus plantarum NK3, and Bifidobacterium longum PI10 improved obesity in mice
by improving intestinal barrier integrity via glucagon-like peptide 1 (GLP1) and IL-10
induction, modulating immune cells, and lowering TNF-α expression [114,115].

Another recent randomized controlled trial on 50 obese women (mean age:
55.2 ± 6.9 years; BMI: 36.6 ± 6.0 kg/m2) showed that the administration of a probiotics sup-
plement for 12 weeks consisting of Bifidobacterium bifidum W23, Bifidobacterium lactis W51,
Bifidobacterium lactis W52, Lactobacillus acidophilus W37, Lactobacillus brevis W63, Lactobacillus
casei W56, Lactobacillus salivarius W24, Lactococcus lactis W19, and Lactococcus lactis W58 im-
proved the lipid profile, and significantly reduced homocysteine, TNF-α, total cholesterol,
LDL-c, and triglyceride with an increase in total antioxidant status. However, no significant
change in BMI, waist circumference, SBP, or DBP was observed [116]. Similarly, an earlier
study involving 81 obese women (mean age 55.16 ± 6.87 years; BMI: 36.57 ± 5.95 kg/m2)
reported that a high dose of the probiotic supplement for 12 weeks resulted in a decrease
in BMI, systolic blood pressure (SBP), diastolic blood pressure (DBP), VEGF, IL-6, TNF-α,
thrombomodulin, pulse wave analysis systolic pressure, pulse wave analysis pulse pressure,
pulse wave analysis augmentation index, and pulse wave velocity [117].

A study on 58 obese postmenopausal women (mean age: 61.4 ± 6 years; BMI:
34.2 ± 3.1 kg/m2) with the administration of the probiotic supplement L. paracasei F19 for
6 weeks showed alterations in the fecal abundance of two metagenomic species (Eubacterium
rectale and Ruminococcus torques). However, no significant effect was observed for insulin
sensitivity, lipid metabolism, inflammatory markers, or anthropometric measures [118].
Likewise, probiotics Lactobacillus acidophilus La5 and Bifidobacterium animalis subsp lactis
Bb12 administered to 156 overweight men and women (mean age: 68.4 ± 8 years; BMI:
31 ± 4 kg/m2) for 6 weeks showed no significant change in anthropometric measures,
insulin, or HbA1c, and no improvement in glycemic control [119].

To date, investigations derived from animal models (Table 1) and clinical trials (Table 2)
have underscored a prevalent trend wherein the amelioration of inflammatory indicators
emerges as a notable feature linked to the favorable actions of probiotics in rectifying
metabolic dysregulations associated with obesity and related diseases.
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Table 1. Effect of probiotics, prebiotics, synbiotics, and postbiotics on inflammatory markers and
intestinal barrier proteins in experimental animal models.

Target Diseases Experimental Model Bioactive
Compounds Doses

Effect on
Inflammatory Markers and

Intestinal
Barrier Proteins

References

Probiotics

Diet-induced obesity
and

insulin
resistance

Male C57BL/6J mice;
5-week-old

Bifidobacterium lactis
LMG P-28149, and

Lactobacillus rhamnosus
LMG S-28148

5 × 108 CFU

Decrease in epididymal adipose
tissue expression levels of

inflammatory cytokines Tnfα, Il1a,
Il6, and Il17. Additionally, liver

Tnfα and Il6 were decreased while
Il10 expression was restored.

[120]

Diet-induced obesity C57BL/6JRj male
mice; 5-week-old

Bifidobacterium longum
PI10 alone or a mixture of

Bifidobacterium animalis
subsp. lactis LA804 and

Lactobacillus gasseri LA806

5 × 108 CFU

Decrease in inflammatory-related
genes tnfα, mcp1, and cd68 in

visceral adipose tissues; a
significant decrease in jejunum

mcp1 gene expression.

[115]

Obesity and
osteoporosis

Female C57BL/6
mice; 6 weeks old for
GV-induced bacterial

vaginosis
and 11 weeks old for

ovariectomy-
induced osteoporosis

Lactobacillus plantarum
NK3 and Bifidobacterium

longum NK49
from kimchi

1 × 109 CFU

Inhibition of NF-kB activation and
TNF-α expression in the vagina,
uterus, and colon; restoration of

IL-10 expression in the vagina; and
reduction in gut microbiota

LPS production.

[14]

Type 2 diabetes Female Wistar rats
(120–160 g)

Lactobacillus fermentum
MCC2759 and MCC2760 109 CFU

Downregulation of intestinal
TNF-α, IL-1β, IL-6, and reduced
expression of the TLR4 receptor

while inducing the
expression of IL-10, with a
concomitant increase in the
expression of tight junction
proteins, ZO-1, GLP1, and

endocannabinoid receptor CB2 in
the intestine.

[121]

Hypertension Wistar Kyoto rats;
5-week-old

Bifidobacterium breve
CECT7263 and

Lactobacillus fermentum
CECT5716

109 CFU

Decreased plasma endotoxin (LPS)
concentration; increased tissue

repair of cytokine IL-18 expression.
Together with SCFAs, the

probiotics restored TLR4 mRNA
levels and the aortic accumulation

of Treg (except for acetate)

[122]

Prebiotics

Metabolic
syndrome

Male db/db mice
(C57BLKS/J-

leprdb/leprdb);
5-week-old

oligofructose 0.6
g/day/mouse

Increased plasma levels of IL-10
and hypothalamic IL-1β mRNA
expression; IL-6 expression was

normalized by OFS; and
blood–brain barrier integrity was

improved due to normalized
expression of ZO-1 and

occludin.

[123]

Western-diet
-induced obesity

Male C57BL/6N
mice; 3–4 weeks old oat and rye fiber 10% in diet;

Attenuation of liver mRNA
expression levels TNF-α and TLR4;
increased colonic mucin (Mucin 3)

and tight junction protein
(Occludin and Claudin 7) mRNA
expression, suggesting improved

gut barrier function

[124]

HF diet-induced
obesity and

diabetes

C57BL/6J mice;
8–10 weeks old

acorn and sago
polysaccharides 5% in diet

Reduced expression of intestinal
IL-6, TNF-α, chemokine (C-C

motif) ligand 2 (Ccl2, and MCP1
with a corresponding increase in

ZO-1 and Occludin.

[125]
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Table 1. Cont.

Target Diseases Experimental Model Bioactive
Compounds Doses

Effect on
Inflammatory Markers and

Intestinal
Barrier Proteins

References

Obesity and
insulin

resistance

Female
C57BL/6NCrl mice;

15–16 weeks old
Isomaltodextrin

1%, 2.5%,
and 5%

introduced
through
drinking

water

Decreased expression of plasma
TNF-α and MCP-1; increased

adiponectin levels and increased
expression of mucin 2, mucin 4,

and claudin 4.

[126]

Synbiotics

Obesity and
insulin

resistance
Male Wistar rats

Lactobacillus paracasei
HII01 plus

xylo-oligosaccharide
(XOS)

108 CFU;
10% XOS

Decrease in serum LPS levels, and
the intestinal proinflammatory

cytokine gene expression of IL-6
and IL-1β in the ileum and

proximal colon

[127]

NAFLD C57BL/6 mice;
4 weeks old

Lactobacillus paracasei
N1115 (N1115) and

fructooligosaccharides
(FOS)

2.2 × 109

CFU/mL
(0.5 mL/day)

and
4 g/kg/day

Decrease in serum and hepatic
IL-1β and TNF-α, and serum LPS
levels; decreased liver TLR4 and
NF-κB mRNA expression; and

increased intestinal protein
expression of occludin-1

and claudin-1.

[128]

NAFLD Male C57BL/6N
mice

Bifidobacterium
bifidum V,

Lactobacillus plantarum
X

and Salvia miltiorrhiza
polysaccharide

2 × 108

CFU/mL;
1 × 108

CFU/mL;
50 mg/kg/day

Reduced liver TNFα, IL-1β, and
IL-6 mRNA expression alongside

cecal LPSs.
[129]

Postbiotics

Obesity C57BL/6J male mice;
4-week-old

Lactobacillus plantarum
L-14 (KTCT13497BP)

extract
500 mg/kg

Decreased expression of leptin,
IL-6, TNF-α, and resistin with an
increase in adiponectin and Arg1.
Inhibition of adipogenesis via the

activation of TLR2-AMPK pathway
by exopolysaccharide

[130]

Type 2 diabetes Male C57BL/6JUnib
mice; 4–5 months old Butyrate 5% w/w

Increase in claudin-1 levels within
intestinal epithelia (jejunum, ileum,

and colon)
[131]

Table 2. Select clinical trials on the impact of probiotics, prebiotics, synbiotics, and postbiotics on
inflammatory markers and intestinal barrier proteins in overweight or obese subjects.

Participants/
Target

Diseases

Bioactive
Compounds Doses

Effect on
Inflammatory Markers and

Intestinal
Barrier

Proteins

Research NCT References

Probiotics

32 obese subjects
aged 18–70 years

with insulin
resistance

Live or pasteurized
Akkermansia muciniphila;

1010 CFU
administered for

3 months

Decrease in LPSs, DPP-IV activity,
chemokine GRO, MCP-1, γGT,
AST, and sCD40 ligand, but no

significant change in plasma
GLP-1, ALT, or CRP levels;

similarly, there was no change in
visceral adiposity and BMI, but a

slight decrease was seen in
body weight

NCT02637115 [132]

51 patients with
metabolic syndrome

Bifidobacterium animalis ssp.
lactis ssp. nov. HN019

3.4 × 108 CFU
administered for

45 days
Decrease in TNF-α and IL-6 [133]
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Table 2. Cont.

Participants/
Target

Diseases

Bioactive
Compounds Doses

Effect on
Inflammatory Markers and

Intestinal
Barrier

Proteins

Research NCT References

85 overweight or
obese adults aged

25–65 years

Lactobacillus paracasei
(LCP-37),

Lactobacillus acidophilus
(NCFM),

Bifidobacterium lactis
(Bi-07), and

Bifidobacterium lactis (Bi-04)

1.25 × 109 CFU
administered for

8 weeks

Increase in hs-CRP while the IL-6
and ω6/ω3 ratio decreased; no
change in IL-4, IL-8, IL12, 1L-10,

IFN-γ, or TNF-α. Gut barrier
protein levels for I-FABP and

zonulin did not change

NCT04126330 [134]

69 obese or
overweight adults
aged 19–65 years

Lactobacillus
curvatus
HY7601

Lactobacillus plantarum
KY1032

5 × 109 CFU
administered for

12 weeks

Increase in
hs-CRP,

adiponectin, LDL-c and
triglyceride levels

[135]

85 middle-aged
overweight subjects

Lactobacillus plantarum
strain (LMT1-48)

1 × 1010 CFU
administered for

12 weeks

Increase in eGFR during 6th week
but not during 12th week;

decrease in the levels of ALT and
AST during 6th and 12th weeks;
decrease in total GIP during 12th

week; no significant change in
hs-CRP and GLP-1

NCT03759743 [136]

92 overweight or
obese subjects aged

19 to 65 years;

Limosilactobacillus
fermentum MG4231 and

MG4244

2.5 × 109 CFU
administered for

12 weeks

Decrease in adiponectin and
triglyceride levels; no significant
change in hs-CRP, LDL-c or total

cholesterol

[137]

81 obese subjects
aged 20 to 65 years

Lactobacillus plantarum K50
(LPK)

2 × 109 CFU
administered

twice daily for
12 weeks

Decrease in total cholesterol and
triglyceride; no significant change

in hs-CRP, LBP, resistin,
and sCD14

[138]

101 obese youths
aged 6–18 years with

insulin resistance

Bifidobacterium breve BR03
and B632

2 × 109 CFU
administered for

8 weeks

Decrease in ALT and IL-6 levels;
increases in TNF-α and HDL-c NCT03261466 [139]

44 obese subjects
aged 20–60 years

Bifidobacterium breve CBT
BR3, and Lactobacillus

plantarum CBT LP3

1.5 × 1010 CFU
administered for

12 weeks

TC/HDL increases significantly
and slight increases in ALT and

AST; no significant change in CRP
[140]

Prebiotics

26 overweight or
obese adults aged

20–45 years

FOS (8.67 g) from Yacon
flour (25 g)

Yacon flour
consumed with a
breakfast drink

(350 mL) for
5 weeks

Significant increase in Nitric oxide
level; No significant change in
CRP, leukocyte, lymphocyte,
platelet, or neutrophil levels

[141]

40 obese women
aged 19–20 years

FOS (14 g) of Yacon syrup
(14 g)

Yacon syrup
administered for

2 days
No effect on GLP-1 levels [142]

38 overweight or
obese children aged

7–12 years
oligofructose

8 g of
oligofructose-

enriched inulin
administered

daily for
16 weeks

No significant changes in GIP,
GLP-1, and PYY levels NCT02125955 [143]

37 overweight or
obese subjects aged

20–70 years
oligofructose

21 g of
oligofructose

administered for
12 weeks

Significant decrease in PAI-1 and
LPSs; no changes in IL-6, TNF-α,
MCP-1, adiponectin or resistin

NCT00522353 [144]

48 obese subjects
≥30 years Dietary fiber

16 g of dietary
(study beans)

fiber
administered for

6 weeks

Increase in FGF-19; decrease in
IL10rα, TRANCE, CD8A, PD-L1,

CXCL1, and uPA
NCT02843425 [145]
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Table 2. Cont.

Participants/
Target

Diseases

Bioactive
Compounds Doses

Effect on
Inflammatory Markers and

Intestinal
Barrier

Proteins

Research NCT References

45 obese and major
depressive disorder

subjects aged
20–50 years

inulin

10 g of Frutafit
(inulin/

oligofructose)
daily for 8 weeks

No significant effect on
endotoxemia LPSs, gut barrier
protein Zonulin, BDNF, or the
inflammatory markers IL-10,
TNF-α, MCP-1, TLR-4, and

hs-CRP levels

[146]

24 subjects aged
18–65 years with an

obesity-related
metabolic disorder

Inulin

16 g of native
inulin (obtained

from chicory root,
Belgium) daily
for 3 months

Decrease in calprotectin but no
change in fecal zonulin NCT03852069 [147]

14 overweight or
obese male adults
aged 20–50 years

Inulin

24 g of inulin
administered
over a 2-day
investigation

No significant change in plasma
GLP-1 and PYY NCT02009670 [148]

Synbiotics

29 overweight or
obese subjects aged

20–60 years

Bifidobacterium lactis
HN019; Lactobacillus
acidophilus NCFM;
and polydextrose

1 × 1010 CFU of
probiotics and

1.7 g of
polydextrose

administered for
eight weeks

No significant change in CRP or
lipid profile NCT05459909 [149]

76 overweight or
obese subjects aged

50–70 years

Bifidobacterium breve,
Bifidobacterium longum,
Lactobacillus acidophilus,
Lactobacillus bulgaricus,

Lactobacillus casei,
Lactobacillus rhamnosus,

and
Streptococcus thermophiles;

FOS

109 CFU of
probiotics and
35 mg of FOS
administered

daily for 8 weeks

Increased adiponectin and
decreased TNF-α, hs-CRP levels [150]

86 overweight or
obese subjects aged

30–80 years

Lacticaseibacillus paracasei
YIT 9029;

Bifidobacterium breve YIT
12272; and GOS

3 × 108 CFU live
probiotics and
7.5 g of GOS

daily for
24 weeks

No significant effect on IL-6, LBP,
or hs-CRP [151]

56 overweight or
obese subjects with a

mean age of
40.8 ± 14 years

Bifidobacterium lactis W51
(NIZO 3680),

Bifidobacterium lactis W52
(NIZO 3882),

Lactobacillus acidophilus
W22 (NIZO 3674),

Lactobacillus paracasei W20
(NIZO 3672),

Lactobacillus plantarum
W21 (NIZO 3673),

Lactobacillus salivarius W24
(NIZO 3675), and

Lactococcus lactis W19
(NIZO 3671);

FOS and Inulin

0.9–2.8 (×108)
CFU probiotics
plus 9.6 mg of

FOS and
110.4 mg of

inulin
administered for

12 weeks

Decrease in fecal zonulin level [152]

26 patients aged
>18 years with

diabesity

B. bifidum W23, B. lactis
W51, B. lactis W52, L.

acidophilus W37, L. casei
W56, L. brevis W63, L.

salivarius W24, Lc. lactis
W58 and Lc. lactis W19;
FOS, GOS, and konjac

glucomannan P13 (E425)

1.5 × 1010 CFU
probiotics and

8 g of active
prebiotics

administered for
6 months

Reduction in serum zonulin levels
after 3 months but not 6 months;

no significant changes to LPS,
LBP, and sCD14 levels

NCT02469558 [153]



Curr. Issues Mol. Biol. 2024, 46 1821

Table 2. Cont.

Participants/
Target

Diseases

Bioactive
Compounds Doses

Effect on
Inflammatory Markers and

Intestinal
Barrier

Proteins

Research NCT References

41 adults aged
30–65 years with

obesity or
hyperglycemia

INN pasta containing
Bacillus coagulans GBI-30

6086 and barley β-glucans;
7 log CFU/g

(10 million CFU/g)

1 serving of INN
pasta taken for

12 weeks

Increase in plasma IL-6; decrease
in plasma hs-CRP NCT02236533 [154]

94 adults aged 18–65
years with obesity

Bifidobacterium
adolescentis IVS-1 and

Bifidobacterium animalis
subsp. lactis
BB-12; GOS

1 × 109 CFU for
each probiotic

and 6.9 g of GOS
administered

daily for 3 weeks

No noticeable change in
endotoxemia markers of LPS and
LBP; reduced ratio of post-aspirin

sucralose to lactulose

NCT02355210 [155]

Postbiotics

49 overweight adults
aged 21–65 years Propionate

10 g of inulin-
propionate ester

administered
daily for
24 weeks

Increase in postprandial plasma
PYY and GLP-1 NCT00750438 [156]

6 overweight or
obese adult men Acetate

100 or
180 mmol/L

colonic acetate

Increased fasting PYY; slight
decrease in TNF-α [157]

12 overweight or
obese adult men
aged 20–40 years

Acetate, butyrate, and
propionate

8–24 mmol
(20–60%) of

sodium acetate,
sodium

propionate, and
sodium butyrate

in 200 mL of
sterile water

administered for
4 days

Increase in PYY, and postprandial
GLP-1; no significant change in

ANGPTL4, TNF-α, IL-6 and IL-8;
[158]

48 children aged
5–17 years with

pediatric obesity
Butyrate

20 mg/kg of
body weight of

sodium butyrate
administered

daily for
6 months

Reduction in
microRNA-221, and IL-6 NCT04620057 [159]

3.2. Prebiotics

Prebiotics are described as non-digestible dietary components that selectively promote
the growth and activity of specific beneficial bacteria in the colon that boost human health [160].
As defined by four criteria in 2004, prebiotics resist digestion by mammalian enzymes, solely
undergo fermentation by the gut microbiota, elicit beneficial effects either systemically or
within the luminal environment, and selectively promote the growth of gut microbiota linked
to optimal health [160,161]. Various natural sources and suggested substances, such as
galacto-oligosaccharides and inulin-type fructans, act as prebiotics, positively influencing gut
microbiota composition and health outcomes, with evidence indicating that prebiotic-rich
diets are associated with lower food intake, reduced body fat composition and weight gain,
especially in overweight and obese individuals [86,162]. Prebiotics such as oligofructose
stimulate the production of SCFAs and increase the number of enteroendocrine cells (EECs),
resulting in the release of peptides vital to lipid elimination [163].

Furthermore, prebiotics impact the gut microbiota, resulting in a lower presence of
LPSs and improving the structural integrity of the intestinal barrier. This fortification
functions as a prophylactic strategy, preventing bacterial translocation into the circulation
and causing systemic inflammation [164,165]. Prebiotics confer several health benefits
impacting lipid and glucose metabolism, intestinal microbiota composition, obesity, and
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satiety hormones [163] in addition to immunological regulation, which is characterized by
increased levels of immune-regulatory interleukins and intestinal-specific immunoglobu-
lins, as well as a decrease in pro-inflammatory interleukins [166,167]. In addition, acorn
and sago polysaccharides and unsaturated alginate oligosaccharides demonstrate an ability
to reduce mucosal inflammatory biomarkers and alleviate gut hyperpermeability in obese
and type 2 diabetic mice. They improve the intestinal barrier in obese mice by increasing
ZO-1 and occludin expressions, respectively [168].

3.3. Synbiotics

In obesity therapy research, synbiotics, a combination of prebiotics and probiotics,
have been investigated as a potential solution for gut microbiome dysfunction by employ-
ing complicated mixes of bacterial strains and varying prebiotic fiber concentrations [89].
Serving as a unique strategy for obesity prevention, combining omega-3 fatty acids with
live probiotics has been shown to reduce hepatic steatosis and lipid buildup more sig-
nificantly than probiotics alone [169,170]. Furthermore, diverse interventions, such as a
combination of Bacillus licheniformis and xylo-oligosaccharides in obese rats and a combi-
nation of Lactobacillus plantarum PMO 08 with chia seeds in obese mice, show enhanced
efficacy in improving body weight gain and lipid metabolism, as well as favorable changes
in gut microbiota [171,172]. In addition, a combination of Bifidobacterium lactis, Lactobacillus
paracasei DSM 4633, and oat β-glucan inhibited body weight gain and improved metabolic
complications in obese mice [173]. This impact was achieved by restoring fecal levels of
acetate, propionate, and butyrate while decreasing bile acid pools.

Formulations including Clostridium butyricum and corn bran reduce pathogen abun-
dances, stimulate acetate-producing bacterial growth, and increase acetate and isovalerate
synthesis [174]. Also, in an in vivo study, synbiotics containing Lactobacillus paracasei HII01
and xylo-oligosaccharides demonstrated the potential to prevent metabolic endotoxemia,
decreasing the enrichment of Enterobacteriaceae and the Firmicutes to Bacteroidetes ra-
tio in obese rats [127]. This intervention addressed the effects of an unhealthy diet that
may promote the growth of LPS-producing bacteria, leading to LPS translocation caused
by intestinal barrier compromise and subsequent metabolic disorders, insulin resistance,
systemic inflammation, and immune responses [24].

However, while probiotic Bifidobacteria strains independently display anti-obesity effects,
combining them with prebiotic galactooligosaccharides as a synbiotic does not result in
synergistic benefits despite potential enhancements in the intestinal barrier function observed
in obese adults [175]. This inconsistency could be attributed to the intensely competitive
microenvironment, reminiscent of the gut microbiota, wherein substrates are concurrently
accessible for both the indigenous microbiota and the introduced microbiota [89,150].

3.4. Postbiotics

Through complicated interactions with the immune system and food acquisition
from the host, gut bacteria play a critical role in affecting host physiological processes
by secreting low-molecular-weight metabolites that govern their development, growth,
and propagation, as well as boosting the growth of beneficial species, allowing cell-to-cell
contact, and protecting them from environmental challenges [56,176,177]. Some of these
soluble mediators, known as postbiotics, can be produced by living bacteria or released
following bacterial lysis and have the potential to benefit the host by altering cellular
processes and metabolic functions [177]. Postbiotics come in a variety of forms. For
example, the fermented infant formula (FIF) is made when infant formulas containing lactic
acid-producing or other bacteria are fermented; it is typically devoid of viable bacteria,
while paraprobiotics, also known as “ghost” probiotics, are non-viable or inactivated
microbial cells that provide health benefits in sufficient quantities [177,178].

Other postbiotics include SCFA, peptides, enzymes, teichoic acids, and vitamins [177].
The gut microbiota produces SCFAs as metabolic byproducts when non-digestible
carbohydrates—mainly acetate, propionate, and butyrate—are fermented [179]. The ac-
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etate/propionate ratio is important for de novo lipogenesis because, in contrast to acetate,
butyrate, and propionate have been demonstrated to increase gut hormones and reduce
food intake, stimulate intestinal gluconeogenesis, and cause the expression of genes linked
to gluconeogenesis, leading to a decrease in body weight and fat deposition, while propi-
onate inhibits hepatic lipogenesis by downregulating fatty acid synthase [89,180].

Exopolysaccharide from Lactobacillus plantarum L-14 and long-chain polyphosphate
from Lactobacillus brevis both have therapeutic benefits in mice [24]. By stimulating the
TLR2-AMPK signaling system, the former suppresses adipocyte development and regulates
body weight and lipid profiles, whilst the latter accelerates intestinal epithelial wound
healing and barrier function by activating the extracellular-regulated protein kinase (ERK)
signaling pathway [89,90]. Additionally, postbiotics like muramyl dipeptide, derived from
bacterial cell walls, alleviate obesity-induced insulin resistance by targeting nucleotide-
binding oligomerization domain 2 (NOD2) and interferon regulatory factor 4 (IRF4), while
interactions between muropeptide and NOD2 may improve insulin sensitization and
alleviate inflammation [181,182].

4. Conclusions

Probiotics, prebiotics, synbiotics, and postbiotics all play a variety of roles that together
have a wide range of effects on metabolic function. These constituents are essential for
decreasing intestinal permeability by blocking LPSs and improving the function of the
intestinal barrier by upregulating tight junction proteins and inhibiting proinflammatory
pathways. As bioactive compounds, they modulate the gut microbiota and may aid in the
complex reduction of chronic inflammation linked to obesity and related conditions. This
multifaceted approach, which targets several aspects of gut health and immune functions,
significantly reduces chronic inflammation through the regulation of the TLR family of
proteins and inflammatory pathways contributing to obesity. Hence, by demonstrating the
functional roles of probiotics, prebiotics, synbiotics, and postbiotics, future studies can seek
to unravel the mechanism of action of probiotics, prebiotics, synbiotics, and postbiotics on
TLRs in order to develop an effective therapeutic option for the management of obesity
and related diseases.
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