Antioxidant Glutathione Analogues UPF1 and UPF17 Modulate the Expression of Enzymes Involved in the Pathophysiology of Chronic Obstructive Pulmonary Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Individuals
2.2. Extraction of PBMCs
2.3. RNA Extraction from PBMCs and cDNA Synthesis
2.4. Measurement of mRNA Expression
2.5. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Pauwels, R.A.; Rabe, K.F. Burden and clinical features of chronic obstructive pulmonary disease (COPD). Lancet 2004, 364, 613–620. [Google Scholar] [CrossRef]
- Oit-Wiscombe, I.; Virag, L.; Soomets, U.; Altraja, A. Increased DNA damage in progression of COPD: A response by poly(ADP-ribose) polymerase-1. PLoS ONE 2013, 8, e70333. [Google Scholar] [CrossRef]
- Austin, V.; Crack, P.J.; Bozinovski, S.; Miller, A.A.; Vlahos, R. COPD and stroke: Are systemic inflammation and oxidative stress the missing links? Clin. Sci. 2016, 130, 1039–1050. [Google Scholar] [CrossRef]
- Hoxha, M.; Rovati, G.E.; Cavanillas, A.B. The leukotriene receptor antagonist montelukast and its possible role in the cardiovascular field. Eur. J. Clin. Pharmacol. 2017, 73, 799–809. [Google Scholar] [CrossRef]
- Ito, K.; Ito, M.; Elliott, W.M.; Cosio, B.; Caramori, G.; Kon, O.M.; Barczyk, A.; Hayashi, S.; Adcock, I.M.; Hogg, J.C.; et al. Decreased histone deacetylase activity in chronic obstructive pulmonary disease. N. Engl. J. Med. 2005, 352, 1967–1976. [Google Scholar] [CrossRef]
- Seys, L.J.M.; Widagdo, W.; Verhamme, F.M.; Kleinjan, A.; Janssens, W.; Joos, G.F.; Bracke, K.R.; Haagmans, B.L.; Brusselle, G.G. DPP4, the Middle East Respiratory Syndrome Coronavirus Receptor, is Upregulated in Lungs of Smokers and Chronic Obstructive Pulmonary Disease Patients. Clin. Infect. Dis. 2018, 66, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hyde, A.S.; Simpson, M.A.; Barycki, J.J. Emerging regulatory paradigms in glutathione metabolism. Adv. Cancer Res. 2014, 122, 69–101. [Google Scholar] [CrossRef] [PubMed]
- Lucente, G.; Luisi, G.; Pinnen, F. Design and synthesis of glutathione analogues. Farmaco 1998, 53, 721–735. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, K.; Viirlaid, S.; Mahlapuu, R.; Saar, K.; Kullisaar, T.; Zilmer, M.; Langel, U.; Soomets, U. Design, synthesis and properties of novel powerful antioxidants, glutathione analogues. Free Radic. Res. 2007, 41, 779–787. [Google Scholar] [CrossRef] [PubMed]
- Kairane, C.; Mahlapuu, R.; Ehrlich, K.; Kilk, K.; Zilmer, M.; Soomets, U. Diverse Effects of Glutathione and UPF Peptides on Antioxidant Defense System in Human Erythroleukemia Cells K562. Int. J. Pept. 2012, 2012, 124163. [Google Scholar] [CrossRef] [PubMed]
- Hansen, M.; Porosk, R.; Mahlapuu, R.; Kairane, C.; Kilk, K.; Soomets, U. GSH Synthetic Analogue O-Methyl-L-Tyrosinylglutathione Regulates Nrf2-Mediated Expression of GCLc and GCLm. J. Chem. 2019, 2019, 3841219. [Google Scholar] [CrossRef]
- Khor, T.O.; Huang, M.T.; Kwon, K.H.; Chan, J.Y.; Reddy, B.S.; Kong, A.N. Nrf2-deficient mice have an increased susceptibility to dextran sulfate sodium-induced colitis. Cancer Res. 2006, 66, 11580–11584. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, W.; Wang, C.; Zheng, C.; Xu, X.; Ni, X.; Hu, S.; Cai, B.; Sun, L.; Shi, K.; et al. DPP4 Inhibitor Attenuates Severe Acute Pancreatitis-Associated Intestinal Inflammation via Nrf2 Signaling. Oxid. Med. Cell Longev. 2019, 2019, 6181754. [Google Scholar] [CrossRef]
- Adenuga, D.; Caito, S.; Yao, H.; Sundar, I.K.; Hwang, J.W.; Chung, S.; Rahman, I. Nrf2 deficiency influences susceptibility to steroid resistance via HDAC2 reduction. Biochem. Biophys. Res. Commun. 2010, 403, 452–456. [Google Scholar] [CrossRef]
- Oit-Wiscombe, I.; Altraja, A.; Soomets, U.; Virag, L.; Kilk, K. Profiling of systemic inflammation and glutathione metabolism in COPD. Eur. Respir. J. 2020, 56, 168. [Google Scholar] [CrossRef]
- Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease. 2022. Available online: https://goldcopd.org/ (accessed on 11 July 2022).
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; van der Grinten, C.P.; Gustafsson, P.; et al. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef] [PubMed]
- Macintyre, N.; Crapo, R.O.; Viegi, G.; Johnson, D.C.; van der Grinten, C.P.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Enright, P.; et al. Standardisation of the single-breath determination of carbon monoxide uptake in the lung. Eur. Respir. J. 2005, 26, 720–735. [Google Scholar] [CrossRef] [PubMed]
- Quanjer, P.H.; Stanojevic, S.; Cole, T.J.; Baur, X.; Hall, G.L.; Culver, B.H.; Enright, P.L.; Hankinson, J.L.; Ip, M.S.; Zheng, J.; et al. Multi-ethnic reference values for spirometry for the 3-95-yr age range: The global lung function 2012 equations. Eur. Respir. J. 2012, 40, 1324–1343. [Google Scholar] [CrossRef] [PubMed]
- Piirila, P.; Seikkula, T.; Valimaki, P. Differences between Finnish and European reference values for pulmonary diffusing capacity. Int. J. Circumpolar Health 2007, 66, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Virag, L. Poly(ADP-ribosyl)ation in asthma and other lung diseases. Pharmacol. Res. 2005, 52, 83–92. [Google Scholar] [CrossRef]
- Hurtado-Bages, S.; Knobloch, G.; Ladurner, A.G.; Buschbeck, M. The taming of PARP1 and its impact on NAD(+) metabolism. Mol. Metab. 2020, 38, 100950. [Google Scholar] [CrossRef] [PubMed]
- Curtin, N.J.; Szabo, C. Therapeutic applications of PARP inhibitors: Anticancer therapy and beyond. Mol. Asp. Med. 2013, 34, 1217–1256. [Google Scholar] [CrossRef] [PubMed]
- Ohnuma, K.; Takahashi, N.; Yamochi, T.; Hosono, O.; Dang, N.H.; Morimoto, C. Role of CD26/dipeptidyl peptidase IV in human T cell activation and function. Front. Biosci. 2008, 13, 2299–2310. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, R.; Lu, S.; Yin, H.; Yu, O.H.Y.; Ernst, P.; Suissa, S.; Azoulay, L. Novel antihyperglycaemic drugs and prevention of chronic obstructive pulmonary disease exacerbations among patients with type 2 diabetes: Population based cohort study. BMJ 2022, 379, e071380. [Google Scholar] [CrossRef] [PubMed]
- Packer, M. Worsening Heart Failure During the Use of DPP-4 Inhibitors: Pathophysiological Mechanisms, Clinical Risks, and Potential Influence of Concomitant Antidiabetic Medications. JACC Heart Fail. 2018, 6, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.; Bromberg, P.A.; Samet, J.M. COX-2 expression induced by diesel particles involves chromatin modification and degradation of HDAC1. Am. J. Respir. Cell Mol. Biol. 2007, 37, 232–239. [Google Scholar] [CrossRef]
- Alqarni, A.A.; Brand, O.J.; Pasini, A.; Alahmari, M.; Alghamdi, A.; Pang, L. Imbalanced prostanoid release mediates cigarette smoke-induced human pulmonary artery cell proliferation. Respir. Res. 2022, 23, 136. [Google Scholar] [CrossRef]
- Costa, H.; Touma, J.; Davoudi, B.; Benard, M.; Sauer, T.; Geisler, J.; Vetvik, K.; Rahbar, A.; Soderberg-Naucler, C. Human cytomegalovirus infection is correlated with enhanced cyclooxygenase-2 and 5-lipoxygenase protein expression in breast cancer. J. Cancer Res. Clin. Oncol. 2019, 145, 2083–2095. [Google Scholar] [CrossRef]
- Haeggstrom, J.Z. Structure, function, and regulation of leukotriene A4 hydrolase. Am. J. Respir. Crit. Care Med. 2000, 161, S25–S31. [Google Scholar] [CrossRef]
- Song, Y.; Lu, H.Z.; Xu, J.R.; Wang, X.L.; Zhou, W.; Hou, L.N.; Zhu, L.; Yu, Z.H.; Chen, H.Z.; Cui, Y.Y. Carbocysteine restores steroid sensitivity by targeting histone deacetylase 2 in a thiol/GSH-dependent manner. Pharmacol. Res. 2015, 91, 88–98. [Google Scholar] [CrossRef]
- Wang, Y.; Ye, F.; Ke, Q.; Wu, Q.; Yang, R.; Bu, H. Gender-dependent histone deacetylases injury may contribute to differences in liver recovery rates of male and female mice. Transplant. Proc. 2013, 45, 463–473. [Google Scholar] [CrossRef]
- Zhao, Z.; Fan, L.; Frick, K.M. Epigenetic alterations regulate estradiol-induced enhancement of memory consolidation. Proc. Natl. Acad. Sci. USA 2010, 107, 5605–5610. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.J. Reduced histone deacetylase in COPD: Clinical implications. Chest 2006, 129, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Druz, A.; Betenbaugh, M.; Shiloach, J. Glucose depletion activates mmu-miR-466h-5p expression through oxidative stress and inhibition of histone deacetylation. Nucleic Acids Res. 2012, 40, 7291–7302. [Google Scholar] [CrossRef] [PubMed]
- Ito, K.; Lim, S.; Caramori, G.; Chung, K.F.; Barnes, P.J.; Adcock, I.M. Cigarette smoking reduces histone deacetylase 2 expression, enhances cytokine expression, and inhibits glucocorticoid actions in alveolar macrophages. FASEB J. 2001, 15, 1110–1112. [Google Scholar] [CrossRef] [PubMed]
- Khadempar, S.; Lotfi, M.; Haghiralsadat, F.; Saidijam, M.; Ghasemi, N.; Afshar, S. Lansoprazole as a potent HDAC2 inhibitor for treatment of colorectal cancer: An in-silico analysis and experimental validation. Comput. Biol. Med. 2023, 166, 107518. [Google Scholar] [CrossRef]
- Barnes, P.J. Role of HDAC2 in the pathophysiology of COPD. Annu. Rev. Physiol. 2009, 71, 451–464. [Google Scholar] [CrossRef]
- Adcock, I.M.; Ford, P.; Ito, K.; Barnes, P.J. Epigenetics and airways disease. Respir. Res. 2006, 7, 21. [Google Scholar] [CrossRef]
- Foronjy, R.F.; Mirochnitchenko, O.; Propokenko, O.; Lemaitre, V.; Jia, Y.; Inouye, M.; Okada, Y.; D’Armiento, J.M. Superoxide dismutase expression attenuates cigarette smoke- or elastase-generated emphysema in mice. Am. J. Respir. Crit. Care Med. 2006, 173, 623–631. [Google Scholar] [CrossRef]
- Haq, M.F.U.; Hussain, M.Z.; Mahjabeen, I.; Akram, Z.; Saeed, N.; Shafique, R.; Abbasi, S.F.; Kayani, M.A. Oncometabolic role of mitochondrial sirtuins in glioma patients. PLoS ONE 2023, 18, e0281840. [Google Scholar] [CrossRef]
- Murnyak, B.; Kouhsari, M.C.; Hershkovitch, R.; Kalman, B.; Marko-Varga, G.; Klekner, A.; Hortobagyi, T. PARP1 expression and its correlation with survival is tumour molecular subtype dependent in glioblastoma. Oncotarget 2017, 8, 46348–46362. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.C. Glutathione synthesis. Biochim. Biophys. Acta 2013, 1830, 3143–3153. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.; Siow, Y.L.; Isaak, C.K. Downregulation of Glutathione Biosynthesis Contributes to Oxidative Stress and Liver Dysfunction in Acute Kidney Injury. Oxid. Med. Cell Longev. 2016, 2016, 9707292. [Google Scholar] [CrossRef] [PubMed]
- Altraja, S.; Mahlapuu, R.; Soomets, U.; Altraja, A. Cigarette smoke-induced differential regulation of glutathione metabolism in bronchial epithelial cells is balanced by an antioxidant tetrapeptide UPF1. Exp. Toxicol. Pathol. 2013, 65, 711–717. [Google Scholar] [CrossRef]
- Frutiger, K.; Lukas, T.J.; Gorrie, G.; Ajroud-Driss, S.; Siddique, T. Gender difference in levels of Cu/Zn superoxide dismutase (SOD1) in cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. 2008, 9, 184–187. [Google Scholar] [CrossRef]
- Maury, J.; Gouzi, F.; De Rigal, P.; Heraud, N.; Pincemail, J.; Molinari, N.; Pomies, P.; Laoudj-Chenivesse, D.; Mercier, J.; Prefaut, C.; et al. Heterogeneity of Systemic Oxidative Stress Profiles in COPD: A Potential Role of Gender. Oxid. Med. Cell Longev. 2015, 2015, 201843. [Google Scholar] [CrossRef]
- Shuvaev, V.V.; Han, J.; Tliba, S.; Arguiri, E.; Christofidou-Solomidou, M.; Ramirez, S.H.; Dykstra, H.; Persidsky, Y.; Atochin, D.N.; Huang, P.L.; et al. Anti-inflammatory effect of targeted delivery of SOD to endothelium: Mechanism, synergism with NO donors and protective effects in vitro and in vivo. PLoS ONE 2013, 8, e77002. [Google Scholar] [CrossRef]
- Hwang, J.; Jin, J.; Jeon, S.; Moon, S.H.; Park, M.Y.; Yum, D.Y.; Kim, J.H.; Kang, J.E.; Park, M.H.; Kim, E.J.; et al. SOD1 suppresses pro-inflammatory immune responses by protecting against oxidative stress in colitis. Redox Biol. 2020, 37, 101760. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Non-Smoking Controls (n = 10) | Non-Obstructive Smokers (n = 15) | COPD | |||
---|---|---|---|---|---|---|
GOLD A (n = 25) | GOLD B (n = 30) | GOLD C (n = 4) | GOLD D (n = 32) | |||
Age | 64.0 ± 3.4 | 61.1 ± 2.9 | 69.0 ± 2.5 | 67.1 ± 2.0 | 80.0 ± 2.7 | 71.7 ± 1.6 |
Male | 7 (70%) | 9 (60%) | 21 (84%) | 29 (97%) | 4 (100%) | 31 (97%) |
BMI | 25.7 ± 1.6 | 27.0 ± 1.6 | 25.8 ± 1.0 | 23.4 ± 0.8 | 22.1 ± 0.6 | 24.0 ± 0.9 |
Smoking (pack-years) | - | 35.7 ± 2.6 | 40.4 ± 3.8 | 39.5 ± 3.6 | 45.0 ± 5.0 | 43.5 ± 4.4 |
Current smoker | - | 10 (67%) | 17 (68%) | 16 (53%) | 0 (0%) | 13 (41%) |
Patients with an ongoing AE-COPD | - | - | 2 (8%) | 7 (23%) | 3 (75%) | 32 (100%) |
Patients with a history of ≥2 moderate or ≥1 severe AE-COPD in the past year | - | - | - | - | 4 (100%) | 32 (100%) |
Smoking cessation amongst ex-smokers (years ago) | - | 6.8 ± 3.5 | 12.1 ± 3.4 | 9.0 ± 2.5 | 7.6 ± 3.1 | 7.9 ± 1.9 |
FEV1 % predicted | 97.6 ± 4.5 | 82 ± 4.5 | 53.6 ± 4.7 | 41.1 ± 3.4 | 34.8 ± 3.0 | 30.0 ± 1.8 |
Absolute decline in FEV1 % over years (%/year) * | 0.1 ± 0.1 | 0.6 ± 0.1 | 1.4 ± 0.4 | 1.6 ± 0.2 | 1.2 ± 0.1 | 1.6 ± 0.1 |
PEF % predicted | 99.5 ± 6.8 | 80.6 ± 4.1 | 43.7 ± 4.3 | 35.1 ± 2.9 | 27.8 ± 5.5 | 27.3 ± 1.6 |
FVC % predicted | 96.8 ± 4.7 | 79.9 ± 4.7 | 70.8 ± 4.8 | 59.2 ± 3.8 | 53.8 ± 7.8 | 46.7 ± 2.7 |
FEV1/FVC % | 81.9 ± 1.2 | 82.3 ± 1.6 | 62.7 ± 1.9 | 60.9 ± 1.6 | 55.8 ± 2.6 | 52.5 ± 1.5 |
KCO | 1.2 ± 0.1 | 1.2 ± 0.1 | 1.0 ± 0.1 | 0.8 ± 0.1 | 0.6 ± 0.0 | 0.6 ± 0.1 |
KCO % | 93.4 ± 4.8 | 80.3 ± 8.9 | 76.4 ± 7.5 | 56.6 ± 5.6 | 48.8 ± 0.0 | 40.5 ± 9.5 |
DLCO | 6.3 ± 0.6 | 5.6 ± 0.8 | 4.8 ± 0.6 | 3.5 ± 0.4 | 2.8 ± 0.0 | 2.8 ± 0.6 |
DLCO % | 77.3 ± 9.0 | 61.6 ± 7.4 | 54.4 ± 5.3 | 38.7 ± 3.8 | 30 ± 0.0 | 31.3 ± 6.1 |
TLC | 5.3 ± 0.3 | 4.82 ± 0.3 | 4.8 ± 0.3 | 4.6 ± 0.2 | 4.8 ± 0.0 | 4.6 ± 0.3 |
TLC % | 84.9 ± 5.8 | 79.2 ± 3.4 | 73.9 ± 2.1 | 68.0 ± 2.5 | 63.4 ± 0.0 | 67.4 ± 3.2 |
Enzyme | Baseline | UPF1 | p Value | UPF17 | p Value |
---|---|---|---|---|---|
Pro- and anti-inflammatory enzymes | |||||
COX-2 | 1.46 ± 0.28 | 1.46 ± 0.28 | 0.05 | 1.43 ± 0.27 | 0.19 |
5-LO | 11.43 ± 1.05 | 10.56 ± 0.96 | 0.69 | 10.27 ± 0.89 | 0.62 |
DPP4 | 0.88 ± 0.06 | 0.94 ± 0.07 | <0.001 | 0.93 ± 0.07 | <0.001 |
LTA4H | 4.79 ± 0.41 | 5.81 ± 0.59 | 0.88 | 5.62 ± 0.53 | 0.80 |
HDAC2 | 2.33 ± 0.11 | 2.45 ± 0.12 | 0.03 | 2.52 ± 0.11 | 0.01 |
PARP-1 | 0.40 ± 0.01 | 0.37 ± 0.01 | 0.001 | 0.36 ± 0.01 | 0.03 |
GSH metabolism enzymes | |||||
SOD-1 | 34.00 ± 2.45 | 33.98 ± 2.17 | 0.89 | 32.43 ± 1.98 | 0.91 |
GSS | 4.06 ± 0.18 | 3.57 ± 0.17 | 0.59 | 3.79 ± 0.19 | 0.29 |
GCLC | 1.22 ± 0.08 | 1.30 ± 0.13 | 0.14 | 1.30 ± 0.12 | 0.01 |
GCLM | 0.16 ± 0.02 | 0.17 ± 0.02 | 0.72 | 0.16 ± 0.02 | 0.66 |
GSR | 14.12 ± 1.49 | 15.10 ± 1.14 | 0.94 | 15.32 ± 1.35 | 0.95 |
GPx | 300.27 ± 24.25 | 284.20 ± 26.02 | 0.99 | 327.93 ± 31.97 | 0.94 |
Enzyme | Baseline | UPF1 | p Value | UPF17 | p Value |
---|---|---|---|---|---|
Pro- and anti-inflammatory enzymes | |||||
COX-2 | 1.07 ± 0.52 | 1.03 ± 0.50 | 0.03 | 0.90 ± 0.41 | 0.05 |
5-LO | 12.87 ± 2.63 | 12.84 ± 2.10 | 0.79 | 14.02 ± 2.33 | 0.70 |
DPP4 | 0.81 ± 0.08 | 0.79 ± 0.09 | 0.33 | 0.62 ± 0.09 | 0.10 |
LTA4H | 4.46 ± 0.71 | 5.53 ± 0.93 | 0.91 | 5.17 ± 0.65 | 0.74 |
HDAC2 | 2.56 ± 0.28 | 2.45 ± 0.19 | 0.16 | 2.69 ± 0.28 | 0.07 |
PARP-1 | 0.45 ± 0.03 | 0.40 ± 0.03 | 0.76 | 0.39 ± 0.03 | 0.13 |
GSH metabolism enzymes | |||||
SOD-1 | 31.60 ± 3.91 | 34.30 ± 6.13 | 0.86 | 36.11 ± 5.37 | 0.89 |
GSS | 4.21 ± 0.55 | 3.49 ± 0.36 | 0.40 | 3.12 ± 0.38 | 0.15 |
GCLC | 1.12 ± 0.13 | 1.23 ± 0.15 | 0.36 | 1.15 ± 0.16 | 0.14 |
GCLM | 0.11 ± 0.02 | 0.21 ± 0.08 | 0.24 | 0.21 ± 0.03 | 0.84 |
GSR | 11.40 ± 2.30 | 15.62 ± 3.19 | 0.86 | 11.55 ± 2.60 | 0.91 |
GPx | 333.92 ± 53.13 | 310.81 ± 60.76 | 0.99 | 311.54 ± 51.74 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oit-Wiscombe, I.; Soomets, U.; Altraja, A. Antioxidant Glutathione Analogues UPF1 and UPF17 Modulate the Expression of Enzymes Involved in the Pathophysiology of Chronic Obstructive Pulmonary Disease. Curr. Issues Mol. Biol. 2024, 46, 2343-2354. https://doi.org/10.3390/cimb46030149
Oit-Wiscombe I, Soomets U, Altraja A. Antioxidant Glutathione Analogues UPF1 and UPF17 Modulate the Expression of Enzymes Involved in the Pathophysiology of Chronic Obstructive Pulmonary Disease. Current Issues in Molecular Biology. 2024; 46(3):2343-2354. https://doi.org/10.3390/cimb46030149
Chicago/Turabian StyleOit-Wiscombe, Ingrid, Ursel Soomets, and Alan Altraja. 2024. "Antioxidant Glutathione Analogues UPF1 and UPF17 Modulate the Expression of Enzymes Involved in the Pathophysiology of Chronic Obstructive Pulmonary Disease" Current Issues in Molecular Biology 46, no. 3: 2343-2354. https://doi.org/10.3390/cimb46030149
APA StyleOit-Wiscombe, I., Soomets, U., & Altraja, A. (2024). Antioxidant Glutathione Analogues UPF1 and UPF17 Modulate the Expression of Enzymes Involved in the Pathophysiology of Chronic Obstructive Pulmonary Disease. Current Issues in Molecular Biology, 46(3), 2343-2354. https://doi.org/10.3390/cimb46030149