Evaluation of the Therapeutical Effect of Matricaria Chamomilla Extract vs. Galantamine on Animal Model Memory and Behavior Using 18F-FDG PET/MRI
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Extract Presentation
2.2. Animal Experiments
- the Negative Control group (NC) received 0.2 mL physiological saline, intraperitoneally, for the first 28 days of the experiment;
- the Positive Control group (PC) or the Scopolamine-induced group received intraperitoneally, for 28 consecutive days, 2 mg/kg bodyweight Sco, an anticholinergic drug, dissolved in 0.2 mL physiological saline;
- the Classic Treatment group (Sco + Gal), that from the 8th day of the study and during 21 consecutive days, received intraperitoneally the specific treatment for AD, represented by 3 mg/kg bodyweight Galantamine (Gal), an alkaloid with acetylcholinesterase-inhibiting properties, 30 min after Sco administration;
- the Matricaria Chamomilla Extract Treatment group (Sco + MCE), from the 8th day of the study and during 21 consecutive days, received 75 mg/kg bodyweight of MCE intraperitoneally, 30 min after Sco administration.
2.3. Blood Glucose Level and Bodyweight Assessment
2.4. Brain Image Acquisition and Processing
2.4.1. Animal Preparation
2.4.2. 18F-FDG Brain PET/MRI—Image Acquisition
2.4.3. Image Processing
2.5. Behavioral Assays
2.6. Statistical Analysis
3. Results
3.1. Chemical Composition of the Matricaria Chamomilla Extract (MCE)
3.2. Effects of Matricaria Chamomilla Extract on Brain Metabolism and Image Quantifications
3.3. Effects of Matricaria Chamomilla Extract on Behavioral Assessments
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Risk Reduction of Cognitive Decline and Dementia: WHO Guidelines; WHO: Geneva, Switzerland, 2019.
- Jack, C.R., Jr.; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018, 14, 535–562. [Google Scholar] [CrossRef] [PubMed]
- Scahill, R.I.; Schott, J.M.; Stevens, J.M.; Rossor, M.N.; Fox, N.C. Mapping the evolution of regional atrophy in Alzheimer’s disease: Unbiased analysis of fluid-registered serial MRI. Proc. Natl. Acad. Sci. USA 2002, 99, 4703–4707. [Google Scholar] [CrossRef] [PubMed]
- Pengas, G.; Hodges, J.R.; Watson, P.; Nestor, P.J. Focal posterior cingulate atrophy in incipient Alzheimer’s disease. Neurobiol. Aging. 2010, 31, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Raileanu, I.; Rusu, V.; Stefanescu, C.; Cinotti, L.; Hountis, D. 18F FDG PET-aplicatii in oncologie (II) [18F FDG PET-Applications in Oncology]. Rev. Med. Chir. Soc. Med. Nat. Iasi 2002, 106, 14–23. (In Romanian) [Google Scholar] [PubMed]
- Nobili, F.; Arbizu, J.; Bouwman, F.; Drzezga, A.; Agosta, F.; Nestor, P.; Walker, Z.; Boccardi, M. EANM-EAN Task Force for the Prescription of FDG-PET for Dementing Neurodegenerative Disorders. European Association of Nuclear Medicine and European Academy of Neurology recommendations for the use of brain 18 F-fluorodeoxyglucose positron emission tomography in neurodegenerative cognitive impairment and dementia: Delphi consensus. Eur. J. Neurol. 2018, 25, 1201–1217. [Google Scholar] [PubMed]
- Mergenthaler, P.; Lindauer, U.; Dienel, G.A.; Meisel, A. Sugar for the brain: The role of glucose in physiological and pathological brain function. Trends Neurosci. 2013, 36, 587–597. [Google Scholar] [CrossRef] [PubMed]
- Butterfield, D.A.; Halliwell, B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat. Rev. Neurosci. 2019, 20, 148–160. [Google Scholar] [CrossRef]
- Minoshima, S.; Giordani, B.; Berent, S.; Frey, K.A.; Foster, N.L.; Kuhl, D.E. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann. Neurol. 1997, 42, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Nestor, P.J.; Fryer, T.D.; Ikeda, M.; Hodges, J.R. Retrosplenial cortex (BA 29/30) hypometabolism in mild cognitive impairment (prodromal Alzheimer’s disease). Eur. J. Neurosci. 2003, 18, 2663–2667. [Google Scholar] [CrossRef]
- Nestor, P.J.; Fryer, T.D.; Smielewski, P.; Hodges, J.R. Limbic hypometabolism in Alzheimer’s disease and mild cognitive impairment. Ann. Neurol. 2003, 54, 343–351. [Google Scholar] [CrossRef]
- Frisoni, G.B.; Boccardi, M.; Barkhof, F.; Blennow, K.; Cappa, S.; Chiotis, K.; Démonet, J.F.; Garibotto, V.; Giannakopoulos, P.; Gietl, A.; et al. Strategic roadmap for an early diagnosis of Alzheimer’s disease based on biomarkers. Lancet Neurol. 2017, 16, 661–676. [Google Scholar] [CrossRef]
- Pagani, M.; Nobili, F.; Morbelli, S.; Arnaldi, D.; Giuliani, A.; Öberg, J.; Girtler, N.; Brugnolo, A.; Picco, A.; Bauckneht, M.; et al. Early identification of MCI converting to AD: A FDG PET study. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 2042–2052. [Google Scholar] [CrossRef]
- De Carli, F.; Nobili, F.; Pagani, M.; Bauckneht, M.; Massa, F.; Grazzini, M.; Jonsson, C.; Peira, E.; Morbelli, S.; Arnaldi, D. Alzheimer’s Disease Neuroimaging Initiative. Accuracy and generalization capability of an automatic method for the detection of typical brain hypometabolism in prodromal Alzheimer disease. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 334–347. [Google Scholar] [CrossRef] [PubMed]
- Pyatigorskaya, N.; Habert, M.O.; Rozenblum, L. Contribution of PET-MRI in brain diseases in clinical practice. Curr. Opin. Neurol. 2020, 33, 430–438. [Google Scholar] [CrossRef]
- Gupta, Y.; Lama, R.K.; Kwon, G.R. Alzheimer’s Disease Neuroimaging Initiative. Prediction and Classification of Alzheimer’s Disease Based on Combined Features From Apolipoprotein-E Genotype, Cerebrospinal Fluid, MR, and FDG-PET Imaging Biomarkers. Front. Comput. Neurosci. 2019, 13, 72. [Google Scholar] [CrossRef]
- Keller, C.; Kadir, A.; Forsberg, A.; Porras, O.; Nordberg, A. Long-term effects of galantamine treatment on brain functional activities as measured by PET in Alzheimer’s disease patients. J. Alzheimers Dis. 2011, 24, 109–123. [Google Scholar] [CrossRef]
- Asai, M.; Fujikawa, A.; Noda, A.; Miyoshi, S.; Matsuoka, N.; Nishimura, S. Donepezil- and scopolamine-induced rCMRglu changes assessed by PET in conscious rhesus monkeys. Ann. Nucl. Med. 2009, 23, 877–882. [Google Scholar] [CrossRef] [PubMed]
- Danciu, C.; Zupko, I.; Bor, A.; Schwiebs, A.; Radeke, H.; Hancianu, M.; Cioanca, O.; Alexa, E.; Oprean, C.; Bojin, F.; et al. Botanical Therapeutics: Phytochemical Screening and Biological Assessment of Chamomile, Parsley and Celery Extracts against A375 Human Melanoma and Dendritic Cells. Int. J. Mol. Sci. 2018, 19, 3624. [Google Scholar] [CrossRef]
- Cioanca, O.; Miron, A.; Aprotosoaie, A.C.; Hancianu, M.; Trifan, A.; Stanescu, U. Contributii la studiul comparativ al actiunii anti-oxidante a unor extracte preparate din flori de musetel [Contributions to the comparative study of the antioxidant potential of some extracts obtained from chamomile flowers]. Rev. Med. Chir. Soc. Med. Nat. Iasi 2009, 113, 1274–1279. (In Romanian) [Google Scholar]
- Zhou, Z.; Chen, J.; Zhang, Z.X.; Wang, F.B.; Wang, L.; Lin, Y.; Zhang, X.; Liu, J. Solubilization of luteolin in PVP40 solid dispersion improves inflammation-induced insulin resistance in mice. Eur. J. Pharm. Sci. 2022, 174, 106–188. [Google Scholar] [CrossRef]
- Ionita, R.; Postu, P.A.; Mihasan, M.; Gorgan, D.L.; Hancianu, M.; Cioanca, O.; Hritcu, L. Ameliorative effects of Matricaria chamomilla L. hydroalcoholic extract on scopolamine-induced memory impairment in rats: A behavioral and molecular study. Phytomedicine 2018, 47, 113–120. [Google Scholar] [CrossRef]
- Asaad, M.; Lee, J.H. A guide to using functional magnetic resonance imaging to study Alzheimer’s disease in animal models. Dis. Model. Mech. 2018, 11, dmm031724. [Google Scholar] [CrossRef] [PubMed]
- Nagy, K.; Tóth, M.; Major, P.; Patay, G.; Egri, G.; Häggkvist, J.; Varrone, A.; Farde, L.; Halldin, C.; Gulyás, B. Performance evaluation of the small-animal nanoScan PET/MRI system. J. Nucl. Med. 2013, 54, 1825–1832. [Google Scholar] [CrossRef] [PubMed]
- Chomet, M.; Schreurs, M.; Vos, R.; Verlaan, M.; Kooijman, E.J.; Poot, A.J.; Boellaard, R.; Windhorst, A.D.; Van Dongen, G.A.; Vugts, D.J.; et al. Performance of nanoScan PET/CT and PET/MR for quantitative imaging of 18F and 89Zr as compared with ex vivo biodistribution in tumor-bearing mice. EJNMMI 2021, 11, 57. [Google Scholar] [CrossRef] [PubMed]
- Vállez Garcia, D.; Casteels, C.; Schwarz, A.J.; Dierckx, R.A.; Koole, M.; Doorduin, J. A standardized method for the construction of tracer specific PET and SPECT rat brain templates: Validation and implementation of a toolbox. PLoS ONE 2015, 10, e0122363. [Google Scholar] [CrossRef]
- Casteels, C.; Vunckx, K.; Aelvoet, S.A.; Baekelandt, V.; Bormans, G.; Van Laere, K.; Koole, M. Construction and evaluation of quantitative small-animal PET probabilistic atlases for [¹⁸F]FDG and [¹⁸F]FECT functional mapping of the mouse brain. PLoS ONE 2013, 8, e65286. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, A.J.; Danckaert, A.; Reese, T.; Gozzi, A.; Paxinos, G.; Watson, C.; Merlo-Pich, E.V.; Bifone, A. A stereotaxic MRI template set for the rat brain with tissue class distribution maps and co-registered anatomical atlas: Application to pharmacological MRI. Neuroimage 2006, 32, 538–550. [Google Scholar] [CrossRef]
- Iacob, R.; Pricope, C.; Nita, M.E.; Ionescu, T.M.; Stolniceanu, C.R.; Jalloul, W.; Dobrin, R.; Naum, A.G.; Necoara, R.M.; Cioanca, O.; et al. A chronic Scopolamine-induced animal model for cognitive alterations research—Anatomy and Metabolism. Rev. Med. Chir. Soc. Med. Nat. Iasi 2023, 127, 81–89. [Google Scholar] [CrossRef]
- Nozawa, A.; Rivandi, A.H.; Kesari, S.; Hoh, C.K. Glucose corrected standardized uptake value (SUVgluc) in the evaluation of brain lesions with 18F-FDG PET. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 997–1004. [Google Scholar] [CrossRef] [PubMed]
- Hritcu, L.; Ionita, R.; Motei, D.E.; Babii, C.; Stefan, M.; Mihasan, M. Nicotine versus 6-hydroxy-l-nicotine against chlorisondamine induced memory impairment and oxidative stress in the rat hippocampus. Biomed. Pharmacother. 2017, 86, 102–108. [Google Scholar] [CrossRef]
- Ishola, I.O.; Olubodun-Obadun, T.G.; Ojulari, M.A.; Adeyemi, O.O. Rutin ameliorates scopolamine-induced learning and memory impairments through enhancement of antioxidant defense system and cholinergic signaling. Drug Metab. Pers. Ther. 2020, 36, 53–61. [Google Scholar] [CrossRef]
- Dobson, C.C.; Mongillo, D.L.; Poklewska-Koziell, M.; Winterborn, A.; Brien, J.F.; Reynolds, J.N. Sensitivity of modified Biel-maze task, compared with Y-maze task, to measure spatial learning and memory deficits of ethanol teratogenicity in the guinea pig. Behav. Brain Res. 2012, 233, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Pellow, S.; Chopin, P.; File, S.E.; Briley, M. Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J. Neurosci. Methods 1985, 14, 149–167. [Google Scholar] [CrossRef] [PubMed]
- Islas-Preciado, D.; Ugalde-Fuentes, G.; Sollozo-Dupont, I.; González Trujano, M.E.; Cervantes-Anaya, N.; Estrada-Camarena, E.; López-Rubalcava, C. Anxiety-like Behavior and GABAAR/BDZ Binding Site Response to Progesterone Withdrawal in a Stress-Vulnerable Strain, the Wistar Kyoto Rats. Int. J. Mol. Sci. 2022, 23, 7259. [Google Scholar] [CrossRef]
- Shanazz, K.; Dixon-Melvin, R.; Bunting, K.M.; Nalloor, R.; Vazdarjanova, A.I. Light-Dark Open Field (LDOF): A novel task for sensitive assessment of anxiety. J. Neurosci. Methods 2021, 363, 109325. [Google Scholar] [CrossRef] [PubMed]
- Lister, R.G. Ethologically-based animal models of anxiety disorders. Pharmacol. Ther. 1990, 46, 321–340. [Google Scholar] [CrossRef]
- Mao, J.J.; Xie, S.X.; Keefe, J.R.; Soeller, I.; Li, Q.S.; Amsterdam, J.D. Long-term chamomile (Matricaria chamomilla L.) treatment for generalized anxiety disorder: A randomized clinical trial. Phytomedicine 2016, 23, 1735–1742. [Google Scholar] [CrossRef]
Sample | Concentration (µg/mL Extract) | |||||
---|---|---|---|---|---|---|
Apigenin | Apigenin-7-Glucoside | Luteolin | Luteolin-7-Glucoside | Rutoside | Chlorogenic Acid | |
MCE | 243.11 | 742.33 | 361.02 | 65.02 | 112.35 | 44.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iacob, R.; Palimariciuc, M.; Florea, T.; Pricope, C.V.; Uritu, C.M.; Tamba, B.I.; Ionescu, T.M.; Stolniceanu, C.R.; Jalloul, W.; Dobrin, R.P.; et al. Evaluation of the Therapeutical Effect of Matricaria Chamomilla Extract vs. Galantamine on Animal Model Memory and Behavior Using 18F-FDG PET/MRI. Curr. Issues Mol. Biol. 2024, 46, 4506-4518. https://doi.org/10.3390/cimb46050273
Iacob R, Palimariciuc M, Florea T, Pricope CV, Uritu CM, Tamba BI, Ionescu TM, Stolniceanu CR, Jalloul W, Dobrin RP, et al. Evaluation of the Therapeutical Effect of Matricaria Chamomilla Extract vs. Galantamine on Animal Model Memory and Behavior Using 18F-FDG PET/MRI. Current Issues in Molecular Biology. 2024; 46(5):4506-4518. https://doi.org/10.3390/cimb46050273
Chicago/Turabian StyleIacob, Roxana, Matei Palimariciuc, Tudor Florea, Cosmin Vasilica Pricope, Cristina Mariana Uritu, Bogdan Ionel Tamba, Teodor Marian Ionescu, Cati Raluca Stolniceanu, Wael Jalloul, Romeo Petru Dobrin, and et al. 2024. "Evaluation of the Therapeutical Effect of Matricaria Chamomilla Extract vs. Galantamine on Animal Model Memory and Behavior Using 18F-FDG PET/MRI" Current Issues in Molecular Biology 46, no. 5: 4506-4518. https://doi.org/10.3390/cimb46050273
APA StyleIacob, R., Palimariciuc, M., Florea, T., Pricope, C. V., Uritu, C. M., Tamba, B. I., Ionescu, T. M., Stolniceanu, C. R., Jalloul, W., Dobrin, R. P., Hritcu, L., Cioanca, O., Hancianu, M., Naum, A. G., & Stefanescu, C. (2024). Evaluation of the Therapeutical Effect of Matricaria Chamomilla Extract vs. Galantamine on Animal Model Memory and Behavior Using 18F-FDG PET/MRI. Current Issues in Molecular Biology, 46(5), 4506-4518. https://doi.org/10.3390/cimb46050273