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Abstract: The biological activity of structural HIV-1 proteins is not limited to ensuring a productive
viral infection but also interferes with cellular homeostasis through intra- and extracellular signaling
activation. This interference induces genomic instability, increases the lifespan of the infected cell by
inhibiting apoptosis, and subverts cell senescence, resulting in unrestricted cell proliferation. HIV
structural proteins are present in a soluble form in the lymphoid tissues and blood of infected indi-
viduals, even without active viral replication. The HIV matrix protein p17, the envelope glycoprotein
gp120, the transenvelope protein gp41, and the capsid protein p24 interact with immune cells and
deregulate the biological activity of the immune system. The biological activity of HIV structural
proteins is also demonstrated in endothelial cells and some tumor cell lines, confirming the ability of
viral proteins to promote cell proliferation and cancer progression, even in the absence of active viral
replication. This review corroborates the hypothesis that HIV structural proteins, by interacting with
different cell types, contribute to creating a microenvironment that is favorable to the evolution of
cancerous pathologies not classically related to AIDS.
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1. Introduction

The introduction of highly active antiretroviral therapy (HAART) has significantly
reduced the incidence of HIV-associated disorders, but HIV-infected people remain at
increased risk of many types of cancer [1]. Certainly, immunosuppression remains an
important risk factor, but the oncogenic properties of HIV could also be attributed to viral
proteins’ ability to induce malignant cell transformation and to interfere with multiple
homeostatic cellular processes. Indeed, patients living with HIV-1 show chronic immune
activation and an inflammatory state. This includes B cell activation and increased T cell
turnover, leading to elevated levels of cytokines, chemokines [2] and other inflammatory
biomarkers [3]. This chronic inflammatory state is associated with the rapid onset of serious
pathologies apparently unrelated to AIDS, such as metabolic syndrome [4,5], coronary
heart disease with thrombotic events [6] and neurological disorders [7]. Although AIDS-
related cancers have decreased since the advent of HAART, the incidence of lymphomas
remains elevated among individuals with chronic HIV-1 infection, with non-Hodgkin
lymphoma (NHL) being the predominant type [8]. This indicates that HAART alone,
even when effectively suppressing viral replication, does not completely alleviate all the
HIV-1-associated complications.

The most credible hypothesis is that circulating viral proteins may contribute to dis-
ease progression in patients where the virus is undetectable and in the absence of active
HIV-1 replication. In HIV-1 infection, both regulatory and structural proteins, including Tat,
Nef, gp120, and p17, can be produced and released from latently infected cells [9,10]. To
further regulate many essential functions of the HIV-1 replication cycle (i.e., entry, assembly,
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budding), the two major structural polyproteins of the retrovirus, Gag and Env, are able to
induce signal transduction and subsequent cell activation. This biological activity is essen-
tial for efficient HIV-1 infection, because these intracellular and extracellular signals induce
genomic instability, which increases the lifespan of infected cells (by inhibiting apoptosis
and reversing cellular aging), leading to unlimited cell proliferation. For example, chronic
stimulation of B lymphocytes by HIV appears to be essential for the lymphoproliferative
role of HIV-1 [11–13]. Numerous studies suggest that several HIV proteins, including
gp120 [14], Tat [15], Nef [16] and p17 [17,18], mediate the lymphocyte deregulation that
precedes lymphoma in HIV patients. HIV-1 structural proteins like gp120 and p17 persist
in patients under HAART [19]. Moreover, the increased expression of p17, gp120 and Nef
in HIV transgenic mice that develop lymphoma suggests a lymphomagenic role for these
proteins [20]. Can HIV viral proteins interact with non-immune human cells? In addition,
when HIV replication is blocked by HAART, viral signaling molecules remain among
the tools used by HIV-1 to fuel disease progression. In this review, we highlight some
representative examples of studies on the signaling capacity of HIV-1 structural proteins in
human cells (immune, endothelial, and cancer cells), supporting the idea that these are the
microenvironmental proteins most favorable for promoting cell proliferation. This can lead
not only to the amplification of the viral infection but also to an increased risk of cancer in
HIV-positive patients.

2. Gp120: Viral Receptor and/or Viral Chemokine?

Gp120 is a necessary glycoprotein for viral infection, aiding in the penetration of HIV
into the host cells [21]. The initial step in HIV-1 infection occurs through the binding of the
viral envelope glycoprotein gp120 to CD4, followed by interaction with coreceptors on both
T lymphocytes and macrophages [22]. Monocytes/macrophages contribute considerably
to the pathogenesis of AIDS because, in addition to rapidly spreading the virus to other
cells, they can induce apoptosis in T lymphocytes, astrocytes and neurons [23]. The two
coreceptors involved in the infection are CXCR4 (chemokine receptor 4 α) and CCR5
(chemokine receptor 5 β), which play crucial roles in the evolution of infection. HIV-1
strains are phenotypically differentiated according to their ability to use CCR5 and/or
CXCR4 based on the binding affinity directly created with gp120 [24]. The binding to
the two coreceptors is made possible by the presence of certain amino acids of gp120;
in particular, the main determinant of binding is found within the V3 domain, which
provides a higher affinity for CCR5 or CXCR4 and thus determines viral tropism [24,25].
The binding of the HIV envelope protein to the chemokine coreceptors (CXCR4, CCR5)
mediates two major biological functions: membrane fusion and signal transduction. Besides
facilitating viral entry, p120 plays a significant role in AIDS pathogenesis. The interaction
of HIV envelope proteins with the chemokine coreceptors CXCR4 and CCR5 is crucial
for both membrane fusion and signal transduction processes. Moreover, it is becoming
increasingly evident that gp120 plays a role in the development of AIDS, beyond just
facilitating viral entry. The binding of viral envelope proteins to these coreceptors activates
various intracellular signaling pathways, resembling the signaling induced by chemokines
binding to their receptors. This activation leads to different replication rates in macrophages
and lymphocytes [26,27], as well as to the ability of certain HIV strains that utilize CXCR4
to induce apoptosis in macrophages [24,28].

The binding of the HIV-1 envelope glycoprotein gp120 to the chemokine receptor
CXCR4 initiates a partial or abnormal array of signals (see Table 1). Within unstimulated
human primary CD4+ T cells, the signaling responses triggered by gp120 through CXCR4
closely mimic those induced by the natural ligand, stromal cell-derived factor 1. This
activation of gp120 involves heterotrimeric G proteins and major G protein-dependent
pathways, leading to events such as calcium mobilization, phosphoinositide-3 kinase activa-
tion, and Erk-1/2 MAPK activation. These cascading signals result in swift rearrangements
of the actin cytoskeleton and extensive membrane ruffling (Figure 1b). Thus, gp120, in an
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oligomeric virion-associated form, as well as a monomeric form, elicits a complex cellular
response that mimics the effects of a chemokine [29].

Curr. Issues Mol. Biol. 2024, 46 5104 
 

 

This activation, depicted in Figure 1f, leads to the upregulation of proinflammatory 

cytokines and chemokines in monocyte-derived macrophages (MDMs). In hepatic stellate 

cells (HSCs), this process leads to cell migration and the secretion of CCL2 and CXCL8, as 

shown in Figure 1e [40]. Several studies have shown that gp120 stimulates HSC migration, 

smooth muscle actin expression, and the secretion of procollagen type I and various 

cytokines involved in the fibrotic process [41,55]. 

 

Figure 1. Schematic representation of the signaling pathways involved in the cellular alteration 

action induced by the HIV-1 gp120 protein: (a) interaction with the integrin receptor on B cells 

causes a defective humoral response; interaction with CXCR4 on T cells (b) and on dendritic cells 

(c) causes a chemotaxis increase; interaction with CCR5 on monocyte-derived dendritic cells (d) and 

on monocyte-derived macrophage (f) increases inflammation; interaction with CXCR4 on hepatic 

stellate (e) cells causes a profibrogenic effect. 

Furthermore, gp120 triggers the production of CCL2 by human macrophages [56] 

and HSCs, which contributes to the local amplification and persistence of chronic 

inflammation [57]. Moreover, chemokines like CCL2 and CCL4 act as chemoattractants 

for HSCs [58], suggesting that gp120 may lead to HSC accumulation through direct 

chemotaxis [55]. HSCs themselves, along with activated macrophages, release 

chemokines, further contributing to this accumulation. HSCs and activated macrophages 

also secrete chemokines, further promoting this accumulation. Additionally, the release 

of CXCL8 is linked to the advancement of chronic liver disease, with 

monocytes/macrophages being the main responders to CXCL8 in cirrhosis [59]. Other 

macrophage-derived inflammatory factors, such as IL-1b, support the survival of 

activated HSCs [60]. In the absence of infection, gp120 can induce activation and stimulate 

the expression of collagen I in HSCs through its interaction with CXCR4, which is present 

on HSCs, thereby triggering profibrogenic effects. The ERK 1/2 pathway is important for 

collagen I induction in activated HSCs [41]. 

Figure 1. Schematic representation of the signaling pathways involved in the cellular alteration action
induced by the HIV-1 gp120 protein: (a) interaction with the integrin receptor on B cells causes a
defective humoral response; interaction with CXCR4 on T cells (b) and on dendritic cells (c) causes a
chemotaxis increase; interaction with CCR5 on monocyte-derived dendritic cells (d) and on monocyte-
derived macrophage (f) increases inflammation; interaction with CXCR4 on hepatic stellate (e) cells
causes a profibrogenic effect.

Moreover, gp120 is known to be secreted by chronically infected cells [30]. A subset
of people living with human immunodeficiency virus demonstrate persistent circulation
of gp120 in plasma [31], in saliva [32] and in lymphoid tissues in significant amounts [33].
This finding has important implications for the involvement of gp120 nonentry function
and the potential chronicity of the immune deregulation induced, even though virus
replication is inhibited by HAART. The binding of gp120 to HIV coreceptors has been
documented to elicit diverse effects on dendritic cells (DCs), including the activation
of the Pyk2, p38 MAPK, and ERK1/2 signaling pathways (see Figure 1c) [34,35]. Some
of these pathways’ activation has been associated with the gp120-induced migration
of DCs [34,36].

Furthermore, the in vitro interactions of gp120 with human monocyte-derived den-
dritic cells (MDDCs) result in atypical maturation and functional changes in these cells,
leading to diminished secretion of IL-12 and a decline in allostimulatory capacity [37].
Consistent with these findings, other studies have reported modified expression of surface
markers and cytokine secretion in MDDCs following exposure to gp120. The exposure of
MDDCs to gp120 results in the inhibition of co-cultured CD4+ T cell proliferation and
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a decrease in their IL-12 expression. These effects stem from the mannose-dependent
interaction between gp120 and a mannose C-type lectin receptor (MCLR), although they
are not necessarily associated with the expression of IL-10 [35].

A study proposed carbohydrate-binding agents (CBAs) as novel anti-HIV com-
pounds because they target gp120 glycans, inhibiting infection in primary human mon-
ocyte-derived macrophages (MDMs) and effectively preventing MDM-directed viral
capture and subsequent transmission to CD4+ T lymphocytes. This is particularly impor-
tant in transmission through sexual intercourse, since HIV mainly comes into contact with
immature DCs present in the vaginal mucosa but also with primary monocyte-derived
macrophages (MDM) [38]. Targeting gp120 glycans with CBAs presents a potential av-
enue for developing anti-HIV compounds, particularly in preventing viral transmission
through macrophages.

Del Cornò et al. proposed a model through which gp120 is able to directly activate
the STAT-3 and p38 MAPK/NF-κB signaling pathways following interaction with CCR5.
Precisely, the activation of these two pathways would determine the production of IL-6, a
molecule that plays a key role in gp120-mediated STAT-3 activation (Figure 1d). It is important
to note that this pathway is exclusively activated by gp120 and not by the natural chemokine
ligand CCL4, indicating that gp120 has specific signaling properties that distinguish it from
other ligands. In addition, the gp120-driven signaling pathway specifically triggers the
activation of the STAT3/IL-6 axis and increases the expression of negative regulators of
STAT3 activation, such as PIAS3 [39].

Gp120’s ability to activate specific signaling pathways highlights its impact on
cellular processes, cytokine production, and inflammation, influencing various cell
types. The interaction between gp120 and TLR4 triggers the activation of the NF-κB and
MAPK pathways.

Table 1. Biological activity of HIV-1 proteins on different cell types.

HIV-1
Proteins Cells Signaling Effects Ref.

gp120

Human primary CD4+
T cells

Heterotrimeric G
protein-dependent
pathways, calcium
mobilization, PI3K,

Erk-1/2 MAPK
activation

Chemotaxis [29]

Dendritic cells (DCs) Pyk2, p38 MAPK
activation

Migration and
inhibition of
autophagy

[34]

Human
monocyte-derived

dendritic cells
(MDDCs)

STAT3/p38
MAPK/NF-κB

activation

Persistent local
inflammation and
immune activation

(IL-6 secretion)

[39]

Monocyte-derived
macrophages (MDMs)

NF-κB and MAPK
pathways activation

Local amplification
and maintenance of

chronic inflammation
and infection

[24,40]

Hepatic stellate cells
(HSCs)

ERK 1/2 pathway
activation Profibrogenic effects [41]

Primary B cells Releasing TGF-β1
upregulates FcRL4

Blunt and delay the
humoral immune

response
[42]
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Table 1. Cont.

HIV-1
Proteins Cells Signaling Effects Ref.

gp41

Human T cell line
(Jurkat)

Inhibition of protein
kinase C (PKC) activity

and calcium mobilization

Inhibits the T cells’
activation [43]

Human CD4+ T cells
Caspase-3 activation

followed by activation of
Bid

Apoptosis [44]

Peripheral blood
mononuclear cells

(PBMCs)

ERK/MAPK pathway
activation Cell proliferation [45]

p17

Primary human
monocytes

AP-1 transcription factor
activation

Inflammation (MCP-1
secretion) [46]

Plasmacytoid dendritic
cells (pDCs)

Down-regulation of
nucleophosmin, heat
shock protein 70 and

eukaryotic translation
initiation factor 5B

Cell survival, resistance
to apoptotic stimuli,

increased proliferation
[47]

Human T cells

Obg-like ATPase 1
(OLA1) and

hyperactivation of
glycogen synthase

kinase-3 beta (GSK3β)

Autophagy inhibition [48]

Human B cells PTEN/PI3K/Akt
pathway activation

Apoptosis inhibition, cell
cycle promotion and
cancer progression

[18,49]

Breast cancer cells line
(MDA-MB231)

ERK/MAPK pathway
activation

Enhance cell migration
and invasiveness [50]

Human endothelial cells
(ECs)

PI3K/Akt and
MEK/ERK1/2 Angiogenic activity [51]

Primary human lymph
node–derived lymphoid

endothelial cells
(LN-LECs)

PI3K/Akt and
MEK/ERK1/2

Lymphangiogenic
activity [52]

p24

Dendritic cells (DCs) STAT1 and IRF3
pathways activation

Inflammation (INF
production) [53]

Leukemic monocyte cell
line

(THP-1)

Enhanced TRIM5α E3
stimulates AP-1 and

NF-κB signaling via the
TAK1/TAB2/TAB3
complex pathway

Inflammation [54]

This activation, depicted in Figure 1f, leads to the upregulation of proinflammatory
cytokines and chemokines in monocyte-derived macrophages (MDMs). In hepatic stellate
cells (HSCs), this process leads to cell migration and the secretion of CCL2 and CXCL8, as
shown in Figure 1e [40]. Several studies have shown that gp120 stimulates HSC migration,
smooth muscle actin expression, and the secretion of procollagen type I and various
cytokines involved in the fibrotic process [41,55].

Furthermore, gp120 triggers the production of CCL2 by human macrophages [56]
and HSCs, which contributes to the local amplification and persistence of chronic in-
flammation [57]. Moreover, chemokines like CCL2 and CCL4 act as chemoattractants for
HSCs [58], suggesting that gp120 may lead to HSC accumulation through direct chemo-
taxis [55]. HSCs themselves, along with activated macrophages, release chemokines,
further contributing to this accumulation. HSCs and activated macrophages also secrete
chemokines, further promoting this accumulation. Additionally, the release of CXCL8 is
linked to the advancement of chronic liver disease, with monocytes/macrophages being
the main responders to CXCL8 in cirrhosis [59]. Other macrophage-derived inflamma-
tory factors, such as IL-1b, support the survival of activated HSCs [60]. In the absence
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of infection, gp120 can induce activation and stimulate the expression of collagen I in
HSCs through its interaction with CXCR4, which is present on HSCs, thereby triggering
profibrogenic effects. The ERK 1/2 pathway is important for collagen I induction in
activated HSCs [41].

HIV-1 gp120 binds directly to integrinα4β7 on primary B cells, leading to certain
abnormalities in the B cell phenotype and function that are seen in HIV-1 viremic indi-
viduals. It is reasonable to assume that some aspects of the defective humoral response
in HIV-infected individuals [61] result from a direct interaction between free gp120 and
free B cells, which may directly attenuation the activation and proliferation of naive B
cells by TGF-β1 release, resulting in an upregulating of the inhibitory IgA receptor FcRL4
(Figure 1a) [42]. The increased expression of FcRL4 caused by gp120 may explain the
insufficient mucosal IgA responses observed in acute HIV-1 and SIV infection [62–64].

In HPV-positive neoplastic genital and oral epithelial cells, the presence of the HIV-1
gp120 and tat proteins induces the epithelial–mesenchymal transition (EMT), and
consequently, tumor invasiveness. Particularly, the interaction between HIV-1 proteins
and epithelial neoplastic cells stimulates the expression of stem markers, such as CD133
and CD44. As a consequence, the differentiation of neoplastic cells into cancer stem cells
occurs, which causes resistance to therapeutic treatments and promotes tumor invasive-
ness. The cancer-associated EMT is regulated by the TGF-beta signaling pathway, which
is in turn activated by MAPK. Lien et al. demonstrated that inhibition of TGF-beta and
MAPK signaling, suppression of the mesenchymal protein vimentin and restoration of
E-cadherin, an epithelial protein, reduce the HIV-mediated invasiveness of neoplastic
epithelial cells [65]. In summary, gp120’s role in HIV infection extends beyond viral entry,
influencing various cellular processes and contributing to the complexity of HIV pathogen-
esis. The inflammatory pathways STAT3, NF-κB, and PI3K/AKT, activated by gp120 in
cells of the immune system, directly or indirectly alter the microenvironment, producing a
tumor microenvironment and favoring the development of lymphomas [66,67].

Furthermore, the alteration in the activity of immune cells caused by the HIV-1 gly-
coprotein could delay and blunt the immune response against cancer cells and favor the
evolution of cancer in HIV-positive patients.

Understanding these multifaceted interactions is crucial for developing comprehensive
therapeutic strategies.

3. Gp41: Viral Transenvelope Protein and/or Cell Signaling Molecule?

The gp41 transmembrane subunit of the HIV-1 envelope glycoprotein (Env) plays a
central role in syncytium formation and HIV infection [68]. Its extracellular domain contains
four major regions, including the fusion peptide, the N-terminal seven-repeat, the loop, and
the C-terminal seven-repeat. The gp41 subunit is divided by the transmembrane region into
an endodomain and an ectodomain, with the latter possessing a hydrophobic N-terminal
fusion peptide, followed by an N-terminal and C-terminal leucine/isoleucine sequence with
a helical structure called HR1 and HR2 [69]. Gp41 also contains consensus sites (aspragin-X-
serine/threonine) for the incorporation of N-linked carbohydrates; their presence reduces
the binding surface area of gp41, which serves as an immunogenic target [70]. The gp41
trimer is situated in the virus membrane and covered by the gp120 surface protein [71].
Initially, gp120 binds to the CD4 cell surface and a chemokine receptor (CCR5/CXCR4),
causing a structural change in the complex and exposing gp41. Then, the gp41 trimer
ejects and inserts its fusion peptide into the target cell membrane. Following this, the N-
terminal heptad repeats and the C-terminal heptad repeats of gp41 are rearranged to create
a stable six-helix bundle that brings the membranes of both the virus and the cells into close
proximity to finally accomplish the fusion process and target cells’ infection [72]. As has
been shown in the previous paragraph, the interaction of gp120 with the cell surface CD4
receptor and coreceptor CCR5 or CXCR4 triggers a series of cellular signals that support
viral infection, while the HIV-1 gp41 can also interact with cell surface proteins to activate
cell signals that regulate both viral infection and host cell functions. For instance, gp41
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is functionally similar to human type I interferons, and the comparison with interferons
suggests that gp41 might contribute to immune modulation beyond its direct involvement
in viral entry (Table 1).

Recombinant soluble GP41 can selectively enhance the surface expression of MHC
class I, II and ICAM-1 on human T cells, B cells and monocytic cells [73], as well as
inhibiting spontaneous proliferation of human cell lines, including the T helper cell
line (H9), B cell line (Raji) and monocytic cell line (U937) [74,75]. Indeed, Rueg and
Strand have demonstrated that a short sequence of amino acids 539 to 684 from the
transmembrane protein gp41 of HIV-1 inhibits the activation of the lymphocytes T cell
line (Jurkat) (Figure 2b). This peptide hinders both the influx of intracellular calcium
and the enzymatic activity of PKC, which are two key intracellular signal transducers
in the phosphoinositide hydrolysis pathway responsible for T-cell activation [43]. The
detailed mechanism sheds light on how gp41 might interfere with intracellular signaling,
potentially contributing to immunosuppression.

Curr. Issues Mol. Biol. 2024, 46 5107 
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Figure 2. Schematic representation of the signaling pathways involved in the cellular alteration
action induced by the HIV-1 gp41 protein: (a) the fusion/hemifusion process mediated by gp41
causes human CD4+ T cells’ apoptosis; (b) interaction with an undefined receptor blocks Jurkat cells’
activation; (c) interaction with CD72 causes peripheral blood mononuclear cells’ proliferation.

Garg et al. have shown that gp41 is involved in the induction of CD4 T cell apoptosis
through a process dependent on caspase-3 activation (Figure 2a). The interaction of gp41
with cellular membranes generates a signal that activates caspase-3 on the membrane,
leading to the activation of pro-apoptotic proteins such as Bid and/or Bax. Although Fas
and caspase-8 are not involved, gp41-mediated apoptosis has similarities with the extrinsic
apoptosis pathway: gp41-mediated hemifusion most likely induces membrane signaling;
caspase-3 activation occurs before mitochondrial depolarization; nelfinavir, which inhibits
type II apoptosis but does not inhibit type I Fas-mediated apoptosis also inhibits gp41-
mediated apoptosis [44]. The association with the apoptosis pathways suggests a potential
mechanism for immune cell depletion in HIV infection. T cells play a critical role in
controlling cancer cells. Gp41 inhibition of activation and apoptosis, through PKC and
Bid/caspase-3 activation, respectively, produces a dysregulation of T cell activity that could
favor the evolution of cancer.
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Zhou et al., using a yeast two-hybrid screen, showed that CD74 present on the cell
surface is a protein capable of binding to gp41. HIV-1 gp41 can bind to the extracellular
domain of CD74, mainly through the gp41 loop (peptide 6358: aa 597–611). This region of
the gp41 loop is important because it is involved in the control of mediating virus–host-
cell interactions and regulating cellular functions. Using PBMCs as target cells, Zhou et al.
observed that peptide 6358 and soluble recombinant gp41 (rsgp41) can stimulate phos-
phorylation of ERK1/2, leading to activation of the CD74-mediated ERK/MAPK pathway
(Figure 2c). Several downstream substrates, including transcription factors and other pro-
tein kinases (e.g., c-Jun, c-Myc, and NF-κB), can be phosphorylated by ERK/MAPK. The
interaction of gp41 or gp41 fragments containing the loop sequence with CD74 highlights
its ability to interact with host cell proteins, thereby influencing the signaling pathways
important for cell proliferation and HIV infection. The authors hypothesize that CD74
plays a role in the early stages of HIV-1 infection by interacting with the gp41 loop region.
However, the observed inhibition of HIV-1 infection upon the silencing of CD74 likely
occurs due to the stopping of the CD74-mediated ERK/MAPK pathway [45].

Understanding the diverse functions of gp41 presents opportunities for developing
targeted therapies. Inhibiting specific interactions or signaling pathways involving gp41
could be explored to modulate immune responses and impede viral replication.

4. p17: Viral Matrix Protein and/or Deregulator Virokine?

In mature virions, the matrix protein p17 is a 132-amino acid polypeptide that forms a
protective shell attached to the inner surface of the plasma membrane of the virus [76,77].
Nuclear magnetic resonance and X-ray crystallography techniques have been employed to
determine the three-dimensional structure of p17 [78,79]. Each p17 molecule is character-
ized by five major α-helices and a notably basic platform composed of three β-strands. The
matrix protein plays a key role in several steps during virus replication. It plays a role in the
initial phases of virus replication, contributing to RNA targeting to the plasma membrane,
the incorporation of virions into the envelope, and the assembly of particles during the later
stages [80]. p17 is released into the extracellular space from HIV-1-infected cells and can be
readily identified in the plasma and tissue specimens of patients, including those who have
undergone successful HAART [19]. Extracellularly, p17 has been observed to disrupt the
biological activities of various cells directly or indirectly implicated in AIDS pathogenesis.
All the activities associated with p17 initiation depend on the interaction between the
functional epitope (AT20), located in the N-terminal region (amino acids 11 to 30) of the
viral protein, and receptors expressed on various target cells [81].

Recent studies have described the ability of p17 to exert chemokine [46], proangio-
genic [51] and lymphangiogenic [52] activities and to deregulate the biological activity of
different cells (Table 1). These activities are facilitated through the binding of p17 to CXCR1
and CXCR2, which are the physiological receptors for interleukin-8 (IL-8). Indeed, p17 has
been identified to mimic certain biological activities of IL-8 [51,82].

Experiments conducted on primary human monocytes have demonstrated that the
interaction between p17 and the cellular receptor selectively activates the transcription
factor AP-1 (refer to Figure 3a) [82]. More recent data have underscored the Rho/ROCK
pathway as a principal target in p17-mediated signaling [17]. The cellular receptor respon-
sible for the chemokine-like activity of p17 on human monocytes is the chemokine receptor
CXCR1. Upon binding with CXCR1, p17 induces the chemoattraction of monocytes by
activating a signaling pathway that involves Rho/ROCK activation [51]. Rho is recog-
nized for its pivotal role in monocyte migration [83], and its downstream effector ROCK, a
serine/threonine kinase, plays a role in the regulation of actin organization [84].

Fiorentini et al. proposed a model in which p17 induces the migration of immature
circulating plasmacytoid dendritic cells (pDCs) to the lymph nodes, rendering them
incapable of serving as a bridge between the innate and adaptive immune systems. Im-
portantly, p17 has the ability to stimulate circulating pDCs to produce CCR7, which
helps in recruiting them to the lymphoid organs. The study observed that p17 can affect
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host genes, leading to the downregulation of nucleophosmin, heat shock protein 70,
and eukaryotic translation initiation factor 5B. Nucleophosmin plays a significant role
in enhancing E2F1-mediated transcriptional activity, supporting cell survival, and pro-
viding resistance against apoptotic signals. Additionally, the elevated expression of the
molecular chaperone hsp70 is associated with increased proliferation and exhibits general
cytoprotective properties [47]. The inhibition of apoptosis is not the only mechanism by
which the HIV-1 matrix protein alters the biological activities of immune cells, given that
it also acts as a major factor in suppressing the autophagic process in immune T cells,
especially under glucose starvation conditions. According to Lu et al., HIV p17 interacts
with Obg-like ATPase 1 (OLA1), resulting in the hyperactivation of the downstream effec-
tor glycogen synthase kinase-3 beta (GSK3β), a critical regulator in the T cell autophagic
process (Figure 3b) [48].

Giagulli et al. demonstrated that in B cells, a p17 variant called S75X, derived from
a Ugandan HIV-1 strain A1 and differing from the prototype clade B isolate BH10 p17,
initiates the activation of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway.
Consequently, the observation of S75X revealed an increase in B cell proliferation and
clonogenicity on soft agar, serving as preliminary evidence of the existence of a p17 variant
with oncogenic activity that specifically targets human B cells [17]. A single mutation in the
wild-type p17 protein, replacing Arginine (R) with Glycine (G) at position 76 (p17R76G),
similar to the S75X variant, can give B cells the ability to clonally expand. This mutation
activates the PTEN/PI3K/Akt signaling pathway and alters the levels of various molecules
involved in preventing cell death (such as CASP-9, CASP-7, DFF-45, NPM, YWHAZ, Src,
PAX2, MAPK8), promoting cell growth, and advancing cancer (like CDK1, CDK2, CDK8,
CHEK1, CHEK2, GSK-3β, NPM, PAK1, PP2C-α) (Figure 3c) [49].
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action induced by the HIV-1 p17 protein: (a) interaction with p17 receptor on primary human
monocytes increases inflammation; (b) intracellular interaction with OLA1 inhibits T cell autophagy;
(c) interaction with p17 receptor inhibits B cells’ apoptosis; (d) interaction with CCR2 increases breast
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The distinct biological activity of S75X and p17R76G compared to wild-type p17 un-
derscores how the matrix protein’s binding to and signaling through the p17-receptor(s)
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may involve different determinants of the structure or conformation. The molecular ba-
sis for these opposing mechanisms may depend on the exposure or lack thereof of a
clonogenic epitope and the activation of the PTEN/PI3K/Akt pathway, which serves as
a critical driver of lymphoma development and metastasis. Indeed, Dolcetti et al. [18]
demonstrated that p17 (vp17) variants derived from non-Hodgkin lymphoma (NHL)
tissues of HIV-positive individuals exhibited potent B cell growth-promoting activity.
These variants are distinguished by the amino acid insertion at position 117–118 (Ala-
Ala) or 125–126 (Gly–Asn or Gly–Gln–Ala–Asn–Gln–Asn), as well as other mutations
scattered throughout the series. Identical dominant vp17s were found in both tumors
and plasma. Ala insertion at positions 117–118 promotes B cell growth and activates
the Akt cell signaling pathway. Ultradeep pyrosequencing showed that vp17 has a
C-terminal insertion found more frequently in the plasma of HIV-positive individuals
with non-Hodgkin lymphoma (NHL). The Ala–Ala insertion at position 117–118 in wild-
type p17 was found to be sufficient to confer B cell growth-promoting activity. In con-
trast, p17 with the Gly–Asn insertion at position 125–126 did not exhibit such expression.
Physiological analysis indicates that the Ala–Ala insertion mutant is less stable than wild-
type p17, whereas the Gly–Asn form is stabilized [18].

Recent data reveal that both the wild-type p17 and certain vp17s isolated from the
plasma of HIV+ patients with non-Hodgkin lymphoma (NHL) significantly enhance the
migration and invasiveness of MDA-MB-231 breast cancer cells. The heightened aggres-
siveness of MDA-MB-231 behavior is attributed to the activation of the MAPK pathway
following the interaction of the viral protein with CXCR2 (refer to Figure 3d). Indeed, the
phosphorylation status of ERK1/2 increased in MDA-MB-231 cells treated with either wild-
type p17 or vp17s. Additionally, inhibiting the ERK-dependent pathway with PD98059,
targeting the upstream kinase MEK1, significantly decreased the migratory activity induced
by p17 in the cells [50]. Moreover, p17, related to IL-8, has a strong binding to CXCR1 and
CXCR2 and shows potent angiogenic activity on human endothelial cells (ECs) (Figure 3e).
Experimental evidence identifies Akt and ERK as the signaling molecules responsible for
p17’s proangiogenic function. Additionally, PI3K plays a crucial role in connecting CXCR1
and CXCR2 to Akt and ERK signaling. The transmission of AKT signals to ERK occurs
through MAPK/ERK kinase (MEK), as the MEK inhibitor PD980099 effectively blocks
p17-induced capillary-like structure formation [51].

Similar events to those observed in p17-treated endothelial cells (ECs) are triggered
in primary human lymph node-derived lymphoid endothelial cells (LN-LECs) following
p17 stimulation (refer to Figure 3f). The HIV matrix protein exerts its lymphangiogenic
activity through both CXCR1 and CXCR2, triggering the PI3K/Akt. The MEK/ERK1/2
signaling pathways play a crucial role in p17-induced capillary-like structure formation,
as demonstrated by the complete blockade of this process with specific inhibitors of both
pathways [52]. In conclusion, p17, once primarily considered a structural component of the
HIV virion, emerges as a multifunctional protein with diverse activities affecting immune
cells, oncogenic potential, and involvement in angiogenesis. Understanding these intricate
functions provides valuable insights into potential therapeutic targets and the complex
interplay between HIV and host cells.

5. p24: The Building Block of the Capsid Core or Proinflammatory Molecule?

The capsid (CA) protein of HIV-1 plays a vital role as an essential structural component
of the virion, facilitating various critical steps in the virus life cycle. The Gag polyprotein
undergoes cleavage by the viral protease, resulting in the generation of individual mature
viral proteins arranged from the N- to C-terminus as a matrix (p17), nucleocapsid (NC),
and p6. Additionally, two spacer peptides (SP1 and SP2) and CA are produced in this
process [85,86]. In the mature virion, the assembly of CA forms a shell surrounding the
viral RNA genome and core-associated proteins and the asymmetric architecture of the
fullerene-shaped cone is the result of 12 pentamers and approximately 250 hexamers [87].
Indeed, the capsid protein (CA) plays a pivotal role in various crucial processes throughout
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the HIV-1 life cycle, contributing significantly to both the early and late stages of the viral
replication process. The CA protein is indispensable in virus infection and replication
as it offers structural support and protection to both the reverse transcription complex
(RTC) and the preintegration complex (PIC). Simultaneously, it enables the diffusion of
deoxyribonucleotide triphosphates (dNTPs) for reverse transcription [88]. Additionally,
CA plays a crucial role in facilitating retrograde movement in the cytoplasm, nuclear
import, and proper localization [89,90]. Kuster et al. proved that in patients with early,
asymptomatic HIV infection before and during combination HAART, the presence of viral
p24 remained consistently detectable in the tissues, even in cases where the HIV-1 RNA
in plasma was fully suppressed. Additionally, there was an increase in viral p24, even
following short-term rebounds in the plasma viral load [91].

The CA monomer is a 231-residue long protein, distinguished by 2 prominent α-
helical domains: the N-terminal and C-terminal domains, connected by a 5-residue linker
spanning 146 to 150. The N-terminal, often referred to as the “central” domain (consisting
of residues 1 to 145), plays a role in virion maturation and the binding of the cytosolic
protein cyclophilin A (CypA). On the other hand, the C-terminal domain, also known as
the “dimerization” domain (residues 151 to 231), contributes to Gag–Gag interactions [92].

The interaction between CypA and CA triggers a change in p24 conformation that
alters the viral envelope and thereby affects the ability of intracellular sensors to detect
viral nucleic acids, which in this case act as a pathogen-associated molecular template
(Table 1). Manel et al. found that during late infection, the interaction between the CA
domain of Gag and the newly synthesized CypA induces a type I IFN response that
activates T cells. The authors also demonstrated that in DCs, the CA–CypA interaction ac-
tivates both STAT1 and IRF3. The IFN induction and IFN production pathway (Figure 4a)
events were specifically abrogated by infecting target cells with the HIV-1 G89V-binding
CypA-CA mutant [53].
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Figure 4. Schematic representation of the signaling pathways involved in the cellular alteration
action induced by the HIV-1 p24 protein. Intracellular interaction with cyclophilin A (CypA) in
dendritic cells (a) activates both STAT and IRF3 INF induction, increasing inflammation. In a
leukemic monocyte cell line (b), interaction between TRIM5α and hexameric p24 stimulates AP-1
and NF-KB signaling via the TAK1/TAB2/TAB3 complex pathway and elicits proinflammatory
signaling pathways.

Pertel et al. demonstrated that the interaction between TRIM5α, the AC-specific
restriction factor, and the AC hexameric network stimulates AP-1 and NF-κB signaling
through the TAK1/TAB2/TAB3 complex (MAP3K7) pathway. They also showed that the
HIV-1 CA network enhances the activity of TRIM5α E3 ubiquitin ligase, which activates
TAK1 and induces inflammatory genes. Therefore, TRIM5α can be considered a pattern
recognition receptor (PRR) that recognizes CA retrovirus and activates inflammatory
signaling pathways (Figure 4b) [54]. In summary, the HIV-1 CA protein, traditionally
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seen as a structural element, plays a dynamic role in multiple aspects of the virus life
cycle. Its interactions with cellular factors like CypA and TRIM5α highlight its influence
on viral uncoating, innate immune responses, and proinflammatory signaling pathways,
underscoring its pivotal role in the host–pathogen interplay during HIV infection.

6. Conclusions

The HIV “accessory proteins” (Nef, Vif, Vpr, and Vpu or Vpx in HIV-2) enhance the
efficiency of viral replication through interactions with human cells. For example, Nef
negatively regulates CD4 by promoting its endocytosis and lysosomal degradation. This
facilitates virus budding by removing the Env receptor from the cell surface. Nef also
reduces the expression of major histocompatibility complex (MHC) class I on cell surfaces,
thereby limiting the ability of the immune system to eliminate infected cells. Additionally,
Nef activates T cells by binding to the T cell receptor and several downstream effectors.
Activated T cells translocate the transcription factors NFAT and NF-κB into the nucleus,
where they are thought to serve as viral promoters, leading to increased HIV transcription.
This is just one example of the biological power of the HIV accessory proteins. While
the pathogenic action of the HIV accessory proteins linked to an amplification of the
infection is widely recognized, it is necessary to study in more depth the ability of the
HIV structural proteins to interact with human cells, modulating their metabolism, the
progression of cell cycle, differentiation capacity, motility and genomic stability. The HIV
structural proteins not only constitute the virion, but even in the absence of productive
infection, they are always detectable in the HIV-positive patient and are capable of
triggering aberrant molecular mechanisms and signaling pathways in human cells. From
this review, it emerges that HIV structural proteins contribute to the pathogenesis of the
infection by interacting with the cells of the immune system (Table 1). However, through
cell signaling, the HIV structural proteins can also trigger malignant transformation of
normal cells, as well as proliferation and dissemination of existing precancerous and
cancerous cells. At the same time, it increases the growth and metastatic activity of
tumors (Table 1).

Further experimental studies are needed to confirm the activation of signal transduc-
tion pathways in different cell types by the HIV-1 structural proteins, as many examples
reported in this review are present as single studies. Furthermore, further clinical studies
on patients undergoing HAART treatment would be appropriate to confirm both the
presence of individual viral proteins in serum and any pathogenic effects on organs
and tissues.

A better understanding of the dynamic interactions between the HIV-1 structural
proteins and the target cells may lead to the development of antiviral strategies that can
limit HIV-1 pathogenesis. Thus, the significant importance of blocking the biological
activity of the HIV structural proteins becomes clear. This can be achieved using specific
drugs or vaccines that induce neutralizing antibody responses against these viral proteins
to prevent and combat AIDS-related pathologies.
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