
Citation: Bel’skaya, L.V.; Sarf, E.A.;

Solomatin, D.V. Free Salivary Amino

Acid Profile in Breast Cancer:

Clinicopathological and Molecular

Biological Features. Curr. Issues Mol.

Biol. 2024, 46, 5614–5631. https://

doi.org/10.3390/cimb46060336

Academic Editor: Roberto Campagna

Received: 16 May 2024

Revised: 30 May 2024

Accepted: 4 June 2024

Published: 5 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Free Salivary Amino Acid Profile in Breast Cancer:
Clinicopathological and Molecular Biological Features
Lyudmila V. Bel’skaya 1,* , Elena A. Sarf 1 and Denis V. Solomatin 2

1 Biochemistry Research Laboratory, Omsk State Pedagogical University, 644099 Omsk, Russia;
sarf_ea@omgpu.ru

2 Department of Mathematics and Mathematics Teaching Methods, Omsk State Pedagogical University,
644099 Omsk, Russia; solomatin_dv@omgpu.ru

* Correspondence: belskaya@omgpu.ru

Abstract: The study of salivary amino acid profiles has attracted the attention of researchers, since
amino acids are actively involved in most metabolic processes, including breast cancer. In this study,
we analyzed the amino acid profile of saliva in a sample including all molecular biological subtypes
of breast cancer to obtain a more complete picture and evaluate the potential utility of individual
amino acids or their combinations for diagnostic purposes. This study included 116 patients with
breast cancer, 24 patients with benign breast disease, and 25 healthy controls. From all patients,
strictly before the start of treatment, saliva samples were collected, and the quantitative content of
26 amino acids was determined. Statistically significant differences between the three groups are
shown in the content of Asp, Gly, Leu + Ile, Orn, Phe, Pro, Thr, and Tyr. To differentiate the three
groups from each other, a decision tree was built. To construct it, we selected those amino acids for
which the change in concentrations in the subgroups was multidirectional (GABA, Hyl, Arg, His,
Pro, and Car). For the first time, it is shown that the amino acid profile of saliva depends on the
molecular biological subtype of breast cancer. The most significant differences are shown for the
luminal B HER2-positive and TNBC subgroups. In our opinion, it is critically important to consider
the molecular biological subtype of breast cancer when searching for potential diagnostic markers.

Keywords: saliva; metabolome; amino acids; breast cancer; breast benign lesion; molecular biological
subtype; diagnostics

1. Introduction

Saliva is a unique biological fluid that contains a huge amount of information about
the state of the human body [1]. In recent decades, it was discovered that saliva can
be used in medical examinations [2,3]. Saliva is a promising tool for diagnosing and
monitoring diseases, as well as guiding treatment [4–6]. Saliva has a great potential for
diagnosing a wide range of diseases, including cancer [7,8]. One of the key advantages
of saliva diagnostics in detecting cancer is its non-invasiveness, as saliva collection is a
simple and painless process that does not require any special equipment or experience.
Saliva collection can be easily performed in a clinical setting or even at home, making it
convenient for patients [9]. Saliva diagnostics also offer the advantage of the early detection
of diseases [10,11].

The development of metabolomics as one of the components of the new direction of
“Salivaomics” has brought saliva research to a qualitatively new level [12]. The metabolome
is the complete set of low molecular weight metabolites, including metabolic intermediates
such as carbohydrates, lipids, amino acids, nucleic acids, hormones, and other signaling
molecules [2]. Metabolomic analyses can be performed as targeted or untargeted. Targeted
metabolomics approaches analyze specific metabolites or associated pathways that are
candidate biomarkers [13]. The goal of untargeted metabolomic studies is to measure the
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widest possible range of metabolites in a sample and search for new biomarkers to identify
the phenotype [14]. The study of the salivary metabolome in cancer, including breast cancer,
has been a popular scientific area in recent years [15–22].

The study of amino acids, as one of the components of metabolomics, in saliva has
attracted special attention from researchers, since amino acids take an active part in most
metabolic processes, including glycolysis (Gln, Gly, and Ser), regulate the production
of reactive oxygen species, etc. [23]. However, the works of different authors identified
different amino acids, the changes in which were statistically significant in breast cancer.
Thus, Sugimoto et al. found eight amino acids in a number of metabolites for the diagnosis
of breast cancer (Lys, Thr, Leu + Ile, Glu, Tyr, Val, and Gly) [24]. Cheng et al. analyzed
17 amino acids to distinguish stage I–II breast cancer from healthy controls and proposed a
comprehensive index for the detection of early breast cancer, which included only three
amino acids: Pro, Thr, and His [25]. Zhong et al. [26] identified two potentially informative
amino acids for breast cancer diagnosis: Phe and His. Murata et al. emphasized the four
amino acids Leu, Gln, Ile, and Ser for the diagnosis of breast cancer [27]. It should be noted
that the authors identified different amino acids that are important in the diagnosis of
breast cancer. Thus, in three studies, Leu + Ile are common, but there is no justification for
the choice of these particular amino acids from the point of view of the biochemistry of the
ongoing processes, which has yet to be conducted.

In this study, we analyzed the amino acid profile of saliva in a sample including
all molecular biological subtypes of breast cancer to obtain a more complete picture and
evaluate the potential utility of individual amino acids or their combinations for diagnos-
tic purposes.

2. Materials and Methods
2.1. Study Design

This study included 116 patients with breast cancer (main group; age, 56.6 ± 2.3 years);
24 patients with non-malignant pathologies of the mammary glands (comparison group;
age, 47.0 ± 4.5 years); and 25 volunteers selected as healthy controls (control group; age,
39.7 ± 4.1 years). Patients of the main group and the comparison group were recruited from
the admission department of the Clinical Oncology Dispensary in Omsk. Patients with
breast cancer and non-malignant breast pathologies were hospitalized for surgical treatment.
Only after histological verification were patients assigned to the appropriate group (BC
or BBL). Some patients with a confirmed diagnosis of breast cancer were hospitalized
for the first course of chemotherapy. Volunteers in the control group were active blood
donors and underwent a full medical examination. All volunteers, based on the results of
mammography and ultrasound examination, were confirmed to have no pathologies of the
mammary glands.

Inclusion criteria: Female gender; patient aged 30–60 years; absence of any treatment
at the time of the study, including surgery, chemotherapy or radiation; and absence of signs
of active infection (including purulent processes). All participants were examined by a
dentist and had good oral hygiene. Exclusion criteria: lack of histological verification of the
diagnosis.

2.2. Collection of Saliva Samples

Saliva samples were collected during hospitalization strictly before the start of treat-
ment. Samples were collected in sterile polypropylene centrifuge tubes with a screw cap
in a volume of two ml. Saliva samples were collected by spitting without additional stim-
ulation in the interval of 8–10 a.m., the time of maximum saliva secretion, on an empty
stomach after preliminarily rinsing the mouth with water. We did not find significant
differences in the salivary flow rate in the studied groups, so they are not shown in the
tables below.
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Immediately after collection, samples were centrifuged at 10,000× g for 10 min (CLb-
16, Moscow, Russia); 1 mL of the upper layer was taken; transferred to Eppendorf tubes;
and stored in a freezer at −80 ◦C until analysis.

2.3. Determination of the Amino Acid Composition of Saliva

In all saliva samples, we determined the content of 26 amino acids (1-MH, GABA, Hyl,
Ala, Arg, Asn, Asp, Car, Cit, Glu, Gln, Gly, His, Hcit, Leu + Ile, Met, Orn, Phe, Pro, Sar, Ser,
Thr, t4HYP, Trp, Tyr, and Val). The volume of the aliquot for analysis was 40 µL, and, in
each case, three parallel determinations were carried out.

Samples were analyzed using high-performance liquid chromatography on a 1260 In-
finity II chromatograph (Agilent, Santa Clara, CA, USA) with detection on a 6460 Triple
Quad mass spectrometer (Agilent, Santa Clara, CA, USA). The samples were separated
by liquid chromatography using an Agilent Zorbax Eclipse XDB-C18 2.1 × 100 mm col-
umn with a sorbent diameter of 1.8 µm (Agilent, Santa Clara, CA, USA). To analyze the
test compounds in samples, an HPLC method with mass spectrometric detection in the
monitoring mode of selected reactions was developed. The internal standard method was
used to back-calculate concentrations. Alanine-d4 was used as an internal standard. The
detection of amino acids was performed in the mode of monitoring selected reactions in
accordance with the list of SRM transitions for each of the analyzed amino acids. The
dependence of the concentration of amino acids on the ratio of the peak areas of amino
acids to the peak area of the internal standard was preliminarily calculated. To construct a
calibration scale, at least six solutions of individual amino acids were used (Jasem, Istanbul,
Turkey), with concentrations selected in accordance with the content of amino acids in
saliva based on the results of a preliminary determination. The automatic integration of
chromatograms was used using the Quantitative Quant-my-way software (MassHunter
Workstation Quantitative Analysis B.09.00) (Agilent, Santa Clara, CA, USA).

2.4. Determination of the Expression of the Receptors for Estrogen, Progesterone, HER2, and Ki-67

The Allred Scoring Guideline was used to assess the level of expression of estrogen
receptors (ERs), progesterone receptors (PRs), and HER2 [28]. The level of expression of
estrogen, progesterone, and HER2 receptors was assigned to one of four categories (−, +,
++, or +++), in accordance with the ASCO/CAP recommendations [29]. Ki-67 expression
was determined as part of a standard breast cancer panel, according to the manufacturer’s
protocol [30]. The cut-off value for Ki-67 was defined as 14% (low Ki-67) and 40% (high
Ki-67). According to the obtained values, breast cancer was classified into five groups: triple
negative breast cancer (TNBC), luminal A-like, luminal B-like (HER2-negative), luminal
B-like (HER2-positive), and HER2-enriched (non-luminal).

2.5. Statistical Analysis

A statistical analysis was performed using Statistica 10.0 (StatSoft) programs using a
nonparametric method. When comparing two groups, we used the Mann–Whitney test;
when comparing three groups or more, we used the Kruskal–Wallis test. The sample was
described using the median (Me) and interquartile range in the form of the 25th and 75th
percentiles [LQ; UQ]. Differences were considered statistically significant at p < 0.05.

A principal component analysis (PCA) was performed using the PCA program in R.
PCA results are presented in the form of factor planes and corresponding correlation circles.
In each case, the figures show only the first two principal components (PC1 and PC2). The
color of the arrows on the correlation circle changes from blue (weak correlation) to red
(strong correlation), as shown on the color bar. The orientation of the arrows characterizes
positive and negative correlations (for the first principal component, we analyzed the
location of the arrows relative to the vertical axis; for the second principal component, it was
analyzed relative to the horizontal axis). The significance of the correlation is determined
by the correlation coefficient (r): strong—r = ±0.700 to ±1.00, medium—r = ±0.300 to
±0.699, and weak—r = 0.00 to ±0.299.
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To construct classification trees, the exhaustive search method for one-dimensional
branches CART (Classification and Regression Tree) was used (Statistica 10.0, StatSoft). In
the diagrams, ID is the number of the vertex, N is the number of objects directed along this
branch, branching conditions are indicated near each vertex, and the diagram inside each
vertex shows the classification result: if all the observations are classified correctly, then the
column corresponding to the predicted class will be high, and the rest are small.

3. Results

This study included three groups: breast cancer (BC), breast benign lesion (BBL), and
healthy controls (HCs). The structure of the breast cancer subgroup is shown in Table 1.

Table 1. Characteristics of the study group.

Feature Breast Cancer, n = 116

Clinical Stage
Stage IA + IB 37
Stage IIA + IIB 43
Stage IIIA + IIIB 22
Stage IIIC + IV 14

Lymph node status
N0 60
N1–3 56

Subtype
Luminal A-like 40
Luminal B-like (HER2+) 15
Luminal B-like (HER2-) 35
HER2-enriched (Non-Lum) 12
Triple-negative 14

HER2 status
HER2-negative 28
HER2-positive 88

Estrogen (ER) status
ER-negative 26
ER-positive 90

Progesterone (PR) status
PR-negative 46
PR-positive 70

Degree of differentiation (G)
G I + II 74
G III 42

Ki-67
<20% 59
>20% 57

In the first stage, we tested the effects of age, BMI, and menopausal status on salivary
amino acid levels. There were no statistically significant differences between subgroups
based on age and BMI. For patients with and without menopause, differences in Arg
content are shown; in the subgroup without menopause, Arg content is higher by 42.0%
(p = 0.0163). Because differences in Arg levels were not statistically significant in further
subgroup comparisons, we did not consider menopausal status in the calculations.

3.1. Features of the Amino Acid Profile of Saliva in Breast Cancer in Comparison with
Non-Malignant Breast Pathologies and Healthy Controls

The quantitative content of 26 amino acids was determined in the saliva of the studied
groups (Table 2). Statistically significant differences between groups are shown in the
content of Asp, Gly, Leu + Ile, Orn, Phe, Pro, Thr and Tyr (Table 2).
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Table 2. Concentration of amino acids in saliva (nmol/mL).

AAs Breast Cancer, n = 116 Breast Benign Lesion,
n = 24 Healthy Control, n = 25 Kruskal–Wallis Test;

p-Value

1-MH 42.09 [39.13; 100.3] 39.97 [39.21; 100.3] 100.1 [39.25; 100.5] 0.9043; 0.6363
GABA 5.28 [4.66; 6.31] 5.05 [4.60; 5.98] 5.57 [4.72; 6.97] 1.076; 0.5838
Hyl 82.55 [41.98; 84.27] 72.11 [44.84; 83.92] 83.16 [43.59; 84.01] 0.3879; 0.8237
Ala 95.34 [73.80; 120.8] 85.85 [68.09; 108.6] 83.82 [77.30; 133.5] 0.9605; 0.6186
Arg 25.63 [15.41; 41.06] 21.37 [15.92; 24.29] 21.68 [17.44; 29.43] 1.465; 0.4807
Asn 9.02 [8.30; 10.95] 10.57 [7.88; 12.62] 8.56 [8.25; 14.35] 0.3002; 0.8606
Asp 17.43 [10.01; 22.57] 9.57 [8.20; 13.22] 12.42 [7.80; 21.79] 7.920; 0.0191 *
Car 35.43 [28.19; 38.38] 36.19 [27.44; 38.12] 34.97 [27.16; 39.18] 0.0979; 0.9522
Cit 12.13 [7.35; 17.99] 11.71 [6.17; 14.71] 11.20 [6.92; 23.73] 0.7476; 0.6881
Glu 77.92 [50.94; 102.9] 74.53 [51.77; 121.3] 59.18 [44.52; 80.64] 4.323; 0.1151
Gln 238.8 [104.8; 412.8] 180.6 [114.5; 439.6] 438.76 [163.7; 638.4] 4.319; 0.1154
Gly 257.7 [163.7; 378.7] 160.1 [144.8; 206.4] 186.95 [141.7; 305.6] 7.174; 0.0277 *
His 65.82 [57.38; 83.16] 58.90 [55.42; 64.77] 66.12 [55.96; 96.48] 5.662; 0.0589
HCit 56.37 [53.24; 57.83] 55.03 [52.63; 58.87] 57.38 [52.64; 61.26] 0.5507; 0.7593
Leu + Ile 79.02 [34.42; 110.7] 24.50 [15.76; 32.77] 37.21 [14.17; 68.03] 11.59; 0.0031 *
Met 29.79 [24.07; 35.37] 29.99 [27.49; 31.07] 29.86 [28.60; 33.02] 0.8095; 0.6671
Orn 50.21 [29.16; 87.71] 25.92 [19.62; 44.20] 33.63 [20.45; 46.21] 16.35; 0.0003 *
Phe 54.49 [42.66; 66.64] 34.88 [26.79; 42.23] 39.20 [30.79; 62.09] 21.95; 0.0000 *
Pro 122.4 [88.58; 172.6] 73.52 [59.84; 112.3] 74.96 [63.51; 189.41] 14.47; 0.0007 *
Sar 47.34 [43.31; 55.20] 52.70 [43.31; 55.79] 50.61 [43.64; 64.01] 1.798; 0.4071
Ser 58.51 [47.23; 72.63] 59.22 [39.96; 73.76] 52.19 [40.09; 74.29] 0.7530; 0.6862
Thr 193.0 [176.8; 229.9] 242.1 [198.6; 258.0] 224.2 [192.5; 266.0] 4.437; 0.1088 *
t4HYP 47.46 [46.94; 48.33] 47.41 [47.31; 47.66] 48.06 [46.98; 51.22] 0.5976; 0.7417
Trp 46.42 [30.78; 50.14] 44.58 [26.29; 48.15] 47.43 [27.64; 53.27] 1.029; 0.5979
Tyr 145.4 [100.9; 202.7] 96.40 [60.95; 112.9] 94.85 [72.96; 170.0] 16.38; 0.0003 *
Val 709.0 [408.9; 1041.0] 676.2 [551.3; 774.2] 557.1 [289.6; 944.9] 1.281; 0.5269

Note: *—differences between the three groups are statistically significant, p < 0.05.

At the same time, for Asp, Gly, Leu + Ile, Orn, Phe, Pro, and Tyr, the concentration
in saliva in breast cancer increases both compared to the BBL subgroup and the healthy
controls, while the concentration in the BBL subgroup decreases compared to the healthy
controls (Figure 1). An inverse relationship is shown only for Thr, whereby the con-
centration in cancer decreases, and in the BBL subgroup, it increases compared to the
healthy controls.

The principal component analysis (PCA) showed that the separation of three groups
(BC, BBL, and HC) was statistically significant (p = 0.0478) (Figure 2A). It can be seen that the
separation of the subgroups of breast cancer patients and the BBL subgroup was complete,
while the subgroups of the BBL subgroup and the healthy controls were not completely
separated from each other. The greatest contribution to the separation of subgroups by the
first principal component was made by His (r = 0.8721), Ser (r = 0.8643), Sar (r = 0.8603),
Ala (r = 0.8471), and Trp (r = 0.8071). For the second principal component, the largest
contributions were made by Leu + Ile (r = 0.6984), Gly (r = 0.6654), Tyr (r = 0.6410), and Car
(r = −0.6074) (Figure 2B). It should be noted that the contribution of individual amino acids
to the separation of subgroups is approximately equal; it is not possible to identify amino
acids that clearly allow the subgroups to be differentiated from each other (Figure 2B).

At the next stage, we built a decision tree to differentiate the three groups from each
other (Figure 3). It is interesting that for constructing the tree, the algorithm did not
select those amino acids for which the difference in content between the subgroups was
statistically significant (Table 2), but it did for those in which the change in concentrations
in the subgroups was multidirectional (GABA, Hyl, Arg, His, Pro, and Car). Apparently,
the multidirectional nature of changes in amino acid concentrations in the groups was
important for the differentiation of groups.
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Figure 1. Relative change in the concentration of individual amino acids in the group of patients with
breast cancer compared with healthy controls (BC/HCs), compared with the breast benign lesion
(BC/BBL) group, as well as in the group of breast benign lesion compared with healthy controls
(BBL/HCs). *—the differences between BC and HC are statistically significant, **—the differences
between BC and BBL are statistically significant, p < 0.05.
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Figure 3. Classification tree for assigning patients to the classes “Breast cancer (BC)/Breast Benign
Lesion (BBL)/Healthy Control (HC)”, according to AA values.

Table 3 shows the results of classification into three classes: BC, BBL, and HC. It is
shown that out of 116 patients with breast cancer, 99 were classified correctly, 17 patients
received a false negative result, and 4 patients received a false positive classification result
(Table 3). Thus, the sensitivity was 85.3% and specificity 72.0%. The accuracy of BBL
detection was 75.0%.

Table 3. Classification matrix to the classes “Breast cancer (BC)/Breast Benign Lesion (BBL)/Healthy
Control (HC)”, according to AA values.

Observed Predicted BC Predicted
HC

Predicted
BBL Row Total

Number BC 99 11 6 116
Row Percentage 85.34% 9.48% 5.17%

Number HC 2 18 5 25
Row Percentage 8.00% 72.00% 20.00%

Number BBL 2 4 18 24
Row Percentage 8.33% 16.67% 75.00%

3.2. Effect of Breast Cancer Stage on Salivary Amino Acid Profile

Table 4 shows the relative change in amino acid concentrations compared to healthy
controls for early and advanced breast cancer. The change in amino acid concentrations was
unidirectional, with the exception of two amino acids, for which the differences between
early and advanced stages of breast cancer were statistically significant—Thr (p = 0.0195)
and t4HYP (p = 0.0417) (Tables 4 and S1). Amino acids, the differences of which with the
control group were statistically significant, differ for early stages and common ones. Thus,
for the early stages, the concentration of Gln (p = 0.0155) and Glu (p = 0.0280) increased
statistically significantly, and the concentration of Thr decreased (p = 0.0404). For common
stages, the concentration of Leu + Ile (p = 0.0204) and Phe (p = 0.0352) increased. In both



Curr. Issues Mol. Biol. 2024, 46 5621

cases, an increase in the concentration of Orn (p = 0.0128 and p = 0.0138) and Tyr (p = 0.0197
and p = 0.0417) was noted.

Table 4. Relative changes in amino acid concentrations compared to healthy controls (%).

AAs
Stage Lymph Node

Status HER2 Status ER Status PR Status Degree of
Differentiation

Ki-67
Expression

I + II III + IV N0 N1–3 (−) (+) (−) (+) (−) (+) I + II III Low High
1-MH −56 −60 0 −60 −59 −30 0 −59 0 −60 −60 0 −60 0
GABA −7 2 −7 2 −6 3 −4 −6 −3 −9 −6 −4 −7 −4

Hyl −7 0 0 −33 −22 1 0 −22 0 −39 −37 0 −37 0
Ala 13 14 13 14 10 24 7 14 13 15 16 6 16 8
Arg 20 7 20 12 19 8 23 18 8 21 20 5 18 15
Asn 6 −3 5 5 5 NA 69 2 28 4 0 110 0 110
Asp 35 48 34 49 33 65 43 38 41 40 40 40 37 43
Car 1 1 2 −5 0 14 8 1 5 −9 −5 3 −8 3
Cit 11 8 11 8 2 23 5 10 −3 20 20 −20 20 1
Glu 33 22 30 35 33 31 29 34 35 30 44 13 46 15
Gln −60 −40 −60 −42 −52 −42 −42 −69 −49 −37 −61 −40 −68 −40
Gly 40 38 29 47 28 60 55 29 43 29 42 32 49 37
His −1 1 −2 1 −2 16 1 −2 −2 1 5 −3 0 −1
Hcit −3 −1 −2 −1 −3 −1 −1 −4 −1 −5 −4 −1 −4 −1

Leu+Ile 105 138 92 115 92 155 114 112 114 92 114 109 111 114
Met −1 6 0 5 1 −9 4 0 3 −1 2 0 −1 6
Orn 48 50 47 50 35 103 51 44 52 38 54 28 44 51
Phe 37 46 33 44 34 47 43 36 44 34 46 32 44 36
Pro 68 57 61 70 62 81 71 63 60 67 64 60 71 57
Sar −6 −9 −6 −8 −6 −8 −3 −7 −4 −8 −6 −3 −6 −7
Ser 13 9 11 13 9 19 11 13 13 10 18 5 19 6
Thr −17 9 −17 −3 −14 3 −11 −17 −16 −12 −12 −18 −13 −15

t4HYP −2 1 −1 0 −1 NA 1 −2 0 −1 −2 0 −2 0
Trp −5 −2 0 −7 −7 6 2 −7 −1 −6 −7 0 −8 −1
Tyr 54 53 52 54 42 70 59 52 55 42 56 33 57 44
Val 12 36 10 32 11 41 47 7 30 12 29 9 30 9

Note: Red shows a decrease in amino acid concentration, and blue shows an increase. The intensity of the color is
proportional to the degree of change in concentration. NA—not assessed.

Compared with BBL, in breast cancer, both at early and advanced stages, the con-
centration of Asp (p = 0.0289 and p = 0.0018), Gly (p = 0.0194 and p = 0.0158), Leu + Ile
(p = 0.0114 and p = 0.0001), Orn (p = 0.0012 and p = 0.0024), Phe (p < 0.0001), Pro (p = 0.0004
and p = 0.0036), and Tyr (p = 0.0004 and p = 0.0023) increased. A distinctive feature of
the early stages of breast cancer was a decrease in Thr concentration compared to BBL
(p = 0.0138) (Table 5).

Table 5. Relative changes in amino acid concentrations compared to BBL (%).

AAs
Stage Lymph Node

Status HER2 Status ER Status PR Status Degree of
Differentiation

Ki-67
Expression

I + II III + IV N0 N1–3 (−) (+) (−) (+) (−) (+) I + II III Low High
1-MH 10 0 150 1 3 74 151 3 151 −1 0 151 0 150
GABA 3 13 3 13 4 13 6 4 7 1 3 6 3 6

Hyl 7 15 15 −22 −10 16 15 −10 15 −30 −27 15 −27 15
Ala 11 11 11 11 7 21 5 12 10 12 13 3 13 6
Arg 22 8 22 13 20 10 24 20 10 23 22 6 20 16
Asn −14 −21 −15 −15 −15 NA 37 −17 4 −16 −19 70 −19 70
Asp 75 92 74 94 73 115 86 79 83 82 82 82 77 86
Car −2 −2 −2 −8 −3 10 4 −2 1 −12 −8 0 −11 −1
Cit 7 3 6 4 −3 17 0 6 −7 14 14 −23 15 −4
Glu 6 −3 3 7 5 4 2 6 7 3 14 −11 16 −8
Gln −4 46 −4 42 16 41 41 −24 23 52 −4 46 −21 46
Gly 63 61 51 71 49 87 81 51 67 51 66 54 74 60
His 11 13 10 13 9 30 14 10 10 14 18 9 13 11
Hcit 1 3 2 3 1 3 3 0 3 −1 0 3 0 3

Leu + Ile 211 261 192 226 191 288 225 223 226 191 225 218 220 226
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Table 5. Cont.

AAs
Stage Lymph Node

Status HER2 Status ER Status PR Status Degree of
Differentiation

Ki-67
Expression

I + II III + IV N0 N1–3 (−) (+) (−) (+) (−) (+) I + II III Low High
Met −1 5 −1 5 0 −10 4 −1 3 −1 2 −1 −1 5
Orn 92 94 90 94 75 163 96 87 98 80 100 65 87 96
Phe 54 64 49 62 50 65 61 53 62 50 64 48 62 52
Pro 71 60 64 73 65 85 74 66 63 70 67 63 74 60
Sar −10 −13 −9 −12 −10 −11 −7 −10 −8 −12 −10 −7 −10 −10
Ser −1 −4 −2 −1 −4 5 −2 −1 −1 −3 4 −8 5 −6
Thr −23 1 −23 −11 −21 −4 −17 −23 −22 −19 −19 −24 −19 −21

t4HYP 0 2 0 1 0 2 2 0 1 0 0 1 −1 1
Trp 1 4 7 −1 −1 12 8 −1 6 0 −1 7 −2 6
Tyr 51 50 50 51 40 67 57 49 53 40 54 31 54 42
Val −8 12 −10 8 −9 16 21 −12 7 −8 6 −10 7 −10

Note: Red shows a decrease in amino acid concentration, and blue shows an increase. The intensity of the color is
proportional to the degree of change in concentration. NA—not assessed.

3.3. The Influence of Lymph Node Involvement Status on the Amino Acid Profile of Saliva

When analyzing the influence of the status of lymph node damage, it was shown
that with status N0, breast cancer patients differed from healthy controls in the content of
Glu (p = 0.0339), Gln (p = 0.0304), Orn (p = 0.0139), Thr (p = 0.0494), and Tyr (p = 0.0186)
(Tables 4 and S2). Other differences were found for N1–3 status: Leu + Ile (p = 0.0220), Orn
(p = 0.0126), Pro (p = 0.0370), and Tyr (p = 0.0357). When comparing breast cancer patients
with BBL for N0 status, differences were observed in the content of Asp (p = 0.0471), Gly
(p = 0.0424), His (p = 0.0358), Leu + Ile (p = 0.0260), Orn (p = 0.0012), Phe (p < 0.0001), Pro
(p = 0.0018), Thr (p = 0.0248), and Tyr (p = 0.0004). The same differences remained for N1–3
status with the exception of Thr (p = 0.3545) (Table 5).

3.4. The Influence of the Degree of Tumor Differentiation on the Amino Acid Profile of Saliva

When comparing breast cancer groups of different degrees of differentiation (G I+II vs.
G III), it was shown that the content of Asn (p = 0.0143) and t4HYP (p = 0.0071) increased,
while the content of Glu (p = 0.0101) and Phe (p = 0.0499) decreased with a low degree of
tumor differentiation (Table S3). Compared with the healthy controls, at G I + II, there was
a statistically significant decrease in the content of Gln (p = 0.0226), as well as an increase in
the content of Phe (p = 0.0344), Pro (p = 0.0377), and Tyr (p = 0.0079). With a low degree of
tumor differentiation, differences with the healthy controls in amino acid content decreased
(Table 4). If we compare it with the BBL subgroup, then for G I + II, more differences
are also seen, in particular, the content of Gly (p = 0.0046) and His (p = 0.0084) increased
(Table 5).

3.5. The Influence of the Expression Status of Estrogen, Progesterone, HER2 Receptors, and the
Proliferative Activity Index on the Amino Acid Profile of Saliva

There were no statistically significant differences in the content of individual amino
acids between the subgroups with a positive and negative expression status of estrogen
and progesterone. However, compared with the healthy controls, there was a statistically
significant increase in Glu content (p = 0.0361) and a decrease in Gln content (p = 0.0248)
for the subgroup of estrogen-positive breast cancer (Tables 4 and S4–S7). The subgroup of
progesterone-negative breast cancer differed from the healthy controls in the content of Leu
+ Ile (p = 0.0232) and Pro (p = 0.0366). Compared with the BBL subgroup, no differences
in the amino acid profile depending on the status of estrogen and progesterone receptors
were identified (Table 5).

The PCA method showed that the differences between the subgroups of estrogen-
positive and estrogen-negative breast cancer were not separated on the factor diagram
(p = 0.8366), while the differences with the BBL and HC subgroups were significant in both
cases (p < 0.0001) (Figure 4A). For progesterone receptors, there was a partial separation
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of subgroups in the factor diagram (p = 0.2025) (Figure 4B). It should be noted that the
differences were more pronounced for the progesterone-negative than for the progesterone-
positive breast cancer subgroup.
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Figure 4. Individuals factor map (PCA) for a comparison of 4 subgroups: (A) estrogen receptor
expression status, (B) progesterone receptor expression status, (C) HER2 receptor expression status,
(D) proliferative activity index (Ki-67).

Depending on the HER2 expression status, differences were observed in the content
of Asp (p = 0.0326), Leu + Ile (p = 0.0237), Orn (p = 0.0188), and Phe (p = 0.0393). Levels of
these amino acids were higher in the HER2-positive breast cancer subgroup. In addition to
the listed amino acids, when compared with the healthy controls, the HER2-positive breast
cancer subgroup had significantly higher levels of Gly (p = 0.0261) and Pro (p = 0.0394)
(Table 4). When compared with non-malignant breast pathologies, the HER2-positive breast
cancer subgroup also had increased His levels (p = 0.0029) (Table 5). According to the
results of the PCA analysis, it was found that it was the subgroup of HER2-positive breast
cancer that was significantly different from the BBL and HC subgroups (Figure 4C).

According to the value of the index of proliferative activity, Ki-67 differences were
detected for two amino acids: the Asn content increased with a high Ki-67 (p = 0.0143),
while the Glu content decreased (p = 0.0052). With a low Ki-67, compared with the healthy
controls, the content of Gln decreased maximally (p = 0.0234), and the content of Pro
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(p = 0.0445) and Tyr (p = 0.0088) increased. In general, the differences between subgroups
with different proliferative activity indexes were practically not pronounced (p = 0.6092)
(Figure 4D).

3.6. The Influence of the Molecular Biological Subtype of Breast Cancer on the Amino Acid Profile
of Saliva

Table 6 shows the relative change in amino acid concentrations that differ among the
different molecular biological subtypes of breast cancer. It was shown that the luminal B
HER2-positive subtype of breast cancer differed the most in amino acid profile: for Ala,
Asp, Leu + Ile, Orn, and Trp, a significant decrease in content was shown for all molecular
biological subtypes except TNBC (Table 6). Differences in the content of His (p = 0.0154),
Phe (p = 0.0114), and Tyr (p = 0.0059) were shown between the luminal B HER2-positive and
negative subtypes (Table S8). However, the concentration of amino acids was higher in the
HER2-positive breast cancer subgroup. Differences between the luminal B HER2-positive
and non-luminal breast cancer subtypes were shown in the levels of Cit (p = 0.0318), His
(p = 0.0192), and Tyr (p = 0.0055).

Table 6. Relative changes in amino acid concentrations compared to healthy controls for different
molecular biological subtypes of breast cancer (%).

AAs Lum A Lum B (−) Lum B (+) Non-Lum TNBC
1-MH −60 0 −61 0 0
GABA −9 −7 6 −9 2

Hyl −46 −1 −18 0 2
Ala 15 4 48 −4 18
Arg 20 19 −21 1 85
Asn 0 NA NA NA 69
Asp 35 29 84 22 68
Car −12 2 20 9 37
Cit 20 −8 38 −32 19
Glu 45 15 34 8 29
Gln −71 −59 51 −44 45
Gly 24 20 93 32 73
His −1 −5 19 −9 2
Hcit −5 −1 −4 −2 2

Leu + Ile 82 83 174 90 136
Met −1 4 −28 4 25
Orn 35 27 163 11 99
Phe 34 33 54 44 37
Pro 63 57 89 61 73
Sar −8 −6 −5 −4 6
Ser 7 13 25 13 15
Thr −13 −20 16 −16 42

t4HYP −2 −1 NA 0 1
Trp −31 −5 25 0 27
Tyr 53 39 76 2 62
Val 10 6 34 52 57

Note: Red shows a decrease in amino acid concentration, and blue shows an increase. The intensity of the color is
proportional to the degree of change in concentration. NA—not assessed.

Differences between subgroups were analyzed by PCA (Figure 5A). It can be seen
that the amino acid profile differed significantly between the luminal B HER2-positive and
TNBC subgroups, despite the fact that there were no differences in individual amino acids
between these subgroups. On the other hand, the remaining subgroups were not separated
on the factor diagram (Figure 5B), despite the fact that differences between these subgroups
were shown in individual amino acids (Table 6). The contribution of most amino acids
to the subgroup separation was high; only four amino acids (GABA, Arg, Glu, and Asn)
showed a low correlation coefficient (Figure 5B). Thus, subgroups with different molecular
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biological subtypes differed from the healthy controls more in the combination of amino
acids rather than in individual amino acids.
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The greatest contribution to the separation of molecular biological subtypes of breast
cancer by amino acid profile was made by Gly (r = 0.8766), Phe (r = 0.8691), Ala (r = 0.8410),
Tyr (r = 0.8227), Leu + Ile (r = 0.7921), and Ser (r = 0.7082) for the first principal component,
as well as Hyl (r = 0.9610), Car (r = 0.9370), 1-MH (r = 0.9296), Hcit (r = 0.8452), Trp
(r = 0.7925), and t4HYP (r = 0.7354) for the second principal component (Figure 5B).

4. Discussion

In the course of our study, we identified amino acids, the content of which increases
in saliva in breast cancer, both in comparison with healthy controls and in comparison
with non-malignant pathologies of the mammary glands. These amino acids include the
following: Gly, Leu + Ile, Orn, Phe, Pro, and Tyr (Tables 4 and 5). For these amino acids,
the increase in concentration is practically independent of the clinicopathological and
molecular biological characteristics of breast cancer. This fact suggests that these amino
acids generally characterize the presence of cancer pathology.

The obtained result is in good agreement with literature data, which show that the
content of amino acids in saliva increases in breast cancer [24–27]. The ratio of the concen-
tration of individual amino acids in saliva in breast cancer compared with healthy controls
varies significantly among the authors, which, in our opinion, is due to small sample sizes;
a wide range of variations in amino acid content, even in normal conditions; as well as the
different structure of the study groups both by stage and by molecular biological subtypes
of breast cancer.

We found a statistically significant increase in the Glu content and a decrease in the Gln
content in saliva in breast cancer only in comparison with healthy controls (Table 4). The
dysregulation of glucose metabolism, especially the shift from oxidative phosphorylation
to aerobic glycolysis, also known as the Warburg effect, has been included among the
hallmarks of cancer [31]. Glucose metabolism has been shown to be an important event
during the initiation and progression of breast cancer [32]. Kou et al. showed that Gln
was significantly more consumed by breast cancer cells, whereas Glu and Pro were most
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released into the media by breast cancer cells [33]. It is known that Gln performs several
functions in tumor cells: Gln is an intermediate metabolite for the synthesis of nucleotides
and non-essential amino acids and allows for the uptake of other essential amino acids,
while Gln is removed from the cell in exchange for the uptake of another amino acid;
Gln plays a role in the regeneration of intermediate metabolites of the tricarboxylic acid
cycle [34], and it is also important for the synthesis of glutathione [35]. Glutaminase, an
enzyme that converts Gln to Glu, is overexpressed in breast cancer, especially in TNBC
tumors compared to HER2 and luminal subtypes [36]. Exogenous glutamine is essential
for the survival of TNBC cells [37]. Luminal tumors are less dependent on exogenous Gln,
not so much because of their lower proliferation, but because luminal cells themselves can
synthesize the amino acid by expressing the enzyme glutamine synthetase [38]. HER2+
tumors have a glycolytic phenotype [39], as HER2 promotes glucose utilization [40]. For
example, it is known that the inhibition of HER2 leads to low levels of cell proliferation
due to a depletion of hexokinase-2 [41].

We have shown that the level of Gln in saliva changes unevenly for different molecular
biological subtypes of breast cancer. Thus, for the non-luminal, luminal A, and luminal B
HER2-negative breast cancer subgroups, the Gln content decreases compared to the healthy
controls, while for the luminal B HER2-positive and TNBC subgroups, it increases (Table 6).
It is known that high Gln activity has been detected in HER2-type breast cancer [36],
suggesting that Gln dependence is increased in proliferative subtypes of breast cancer [42].
Gln metabolism genes are significantly activated in both epithelial and stromal cells of breast
cancer tissues, indicating the role of Gln metabolism in the growth and metastasis of breast
cancer [43]. It should be noted that, according to literature data, both the concentrations of
Glu and Gln increase in saliva [24–27]. This once again emphasizes the need to take into
account the molecular biological subtype of breast cancer when planning experiments and
forming groups, as well as when interpreting the results [44]. In general, we have shown,
for the first time, the differences in the amino acid profile of saliva in different molecular
biological subtypes of breast cancer. Previously, Murata et al. determined the metabolic
profile of saliva for four subtypes of breast cancer [27]. However, differences between
molecular biological subtypes of breast cancer are characterized by metabolites other than
amino acids.

Gly and Ser are well-known and classical metabolites of glycolysis, which are formed
from the intermediate 3-phosphoglycerate [45]. It has been shown that the content of
these amino acids also increases in the luminal B HER2-positive and TNBC subgroup
(Table 6). Moreover, unlike Glu and Gln, the Gly content in saliva increases both in
comparison with healthy controls and in comparison with non-malignant pathologies of
the mammary glands.

Similar patterns are shown for Leu + Ile and Pro. In breast cancer, the importance
and necessity of the metabolic reprogramming of branched-chain amino acids (BCAAs)
was recently highlighted by Zhan et al., who showed that BCAA transaminase 1 promotes
breast cancer cell growth by improving mTOR-mediated mitochondrial biogenesis and
function [46]. Since cancer cells have high energy requirements, and due to the Warburg
effect, glucose is not a sufficient energy source, and cells require energy through the
degradation of proteins (mainly collagen), providing, among other things, proline as a
substrate for PRODH/POX, which leads to the formation of ATP or the generation of
reactive oxygen species [47].

An increased expression of aromatic amino acids in breast cancer has become evident
in a variety of recent studies [48]. We also showed an increase in the concentrations of Phe
and Tyr in breast cancer, but for Trp, the relationship is ambiguous. In particular, Trp content
increases for the luminal B HER2-positive and TNBC subgroups relative to the healthy
controls, while for other molecular biological subtypes, it decreases. A study highlighted
the importance of the kynurenine pathway in mediating tumor immune evasion, revealing
a dysregulation of the kynurenine pathway in the HER2-positive and TNBC subtypes of
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breast cancer [49]. We have previously shown that Trp can be considered as a marker of
TNBC [50].

Increased levels of Arg, Cit, Asp, and Asn have been shown for TNBC [51]. Kanaan
et al. showed that TNBC has increased levels of tumor-derived Arg and its intermediates,
including Cit [52]. These data suggest changes in multiple pathways associated with a
higher amino acid uptake and protein catabolism. Cit and other components of the urea
cycle increased significantly, leading to increased pro-inflammatory signaling. Yamashita
et al. analyzed metabolites associated with the urea cycle and observed significant increases
in Asp, Arg, and Cit levels in TNBC tissue samples [53].

Compared with non-malignant pathologies of the mammary glands, an increase in
Asp content and a decrease in Asn content in breast cancer were shown (Table 5). It can be
assumed that these amino acids are responsible for differentiating malignant and benign
pathologies of the mammary glands from each other. Asn is known to significantly influence
breast cancer progression, including promoting tumor metastasis [54], which has led to the
use of the bacterial enzyme L-asparaginase to limit the availability of asparagine [55,56].

It is interesting to note that the decision tree structure for classifying the BC, BBL,
and HC subgroups does not include amino acids that differ significantly between groups
other than Pro. The first branch of the decision tree includes Car (Figure 3). To date, the
important biological functions of Car have been established, in particular, the ability to
exhibit antioxidant properties aimed at suppressing free radical reactions by interacting
with reactive oxygen species [57]. Car is known to suppress the proliferation of tumor cells,
including breast cancer cells [58,59]. Overall, the resulting decision tree has a sensitivity
of 85.3% and a specificity of 72.0%, which is comparable to the data obtained previously.
Thus, for the SFAA index, including Pro, Thr, and His, sensitivity was 88.2% and specificity
was 85.7% [25]. Murata et al. showed an AUC of 0.912 (0.838–0.961) [27]; however, the
classification model includes not only amino acids but also other metabolites, as well as
in the Sugimoto et al. model with an AUC of 0.973 (0.881) [24]. The values we obtained
are somewhat lower, but we carried out the classification into three classes simultaneously,
which gives a qualitatively new result. It should be emphasized that in 3 out of 4 studies,
the number of patients in the sample was 30 people or less [60]. It is this fact, in view of
the high heterogeneity of breast cancer, that can explain most of the discrepancies in the
list of saliva indicators significant for classification and that places emphasis on the correct
formation of the sample with the obligatory indication of the molecular biological subtype
of breast cancer.

We have shown that the amino acid profiles of luminal A and luminal B HER2-negative
breast cancer are almost identical; in the factor diagram of the principal component analysis,
these groups completely overlap with each other (Figure 5). This fact indicates the similarity
of the molecular biological characteristics of these subgroups and confirms the possibility
of considering these types of cancer as a single group. The subgroups of luminal B HER2-
positive and TNBC should be considered as separate species.

Limitations of this study are primarily related to the small number of patients in the
non-luminal, luminal B HER2-positive, and TNBC subgroups, which is due to their lower
occurrence in the population. Limitations include constructing a decision tree without
taking into account the molecular biological subtype of the tumor, which we will do later
when expanding the number of patients in each subgroup.

5. Conclusions

The amino acid profile of saliva was determined in breast cancer, benign breast patholo-
gies, and healthy controls. It was established that the content of amino acids in saliva
in breast cancer increases, with the exception of Gln, Sar, and Thr. It was shown that
an increase in Glu concentration and a decrease in Gln concentration in breast cancer is
observed only in comparison with healthy controls, while an increase in Asp content and a
decrease in Asn content in breast cancer is observed only in comparison with benign breast
pathologies. It was shown that changes in the amino acid profile depend on the molecular
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biological characteristics of the tumor. The most significant differences were found for the
luminal B HER2-positive and TNBC subgroups. We proposed the construction of a decision
tree for the classification of samples of breast cancer, non-malignant breast pathologies, and
healthy controls with a sensitivity of 85.3%, which shows the potential of using the amino
acid profile of saliva for the diagnosis of breast cancer, including in the early stages.
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