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Abstract: Azoospermia and severe oligozoospermia represent the most extreme forms of male
infertility. Despite their prevalence, the genetic foundations of these conditions are not well under-
stood, with only a limited number of genetic factors identified so far. This study aimed to identify
single-nucleotide polymorphisms (SNPs) linked to both azoospermia and severe oligozoospermia.
We conducted a genome-wide association study (GWAS) involving 280 Greek males with normal
semen parameters and 85 Greek males diagnosed with either azoospermia or severe oligozoospermia.
Following rigorous quality control measures, our analysis identified seven SNPs associated with
azoospermia/severe oligozoospermia. An in silico functional annotation was subsequently used
to further investigate their role. These SNPs, found in regions not previously associated with male
reproductive disorders, suggest novel genetic pathways that may contribute to these forms of in-
fertility and pave the way for future studies. Additionally, this study sheds light on the significant
role of noncoding RNAs in the pathogenesis of male infertility, with three of the identified SNPs
situated in long intergenic non-coding RNAs (lincRNAs). Our findings highlight the intricate genetic
landscape of azoospermia and severe oligozoospermia, underlining the necessity for more detailed
studies to fully grasp the underlying mechanisms and their potential for informing diagnostic and
therapeutic strategies.

Keywords: male infertility; genome-wide association study (GWAS); single nucleotide polymorphism
(SNP); long intergenic non-coding RNAs (lincRNAs)

1. Introduction

Male infertility constitutes a significant global health concern, affecting approximately
7% of the male population [1], with recent studies indicating a progressive increase in
incidence over the past decades [2]. This growing trend underscores the profound impact of
male infertility not only affecting couples’ reproductive aspirations but also contributing to
significant social and psychological burdens [3]. Within the spectrum of male reproductive
disorders, azoospermia, and severe oligozoospermia are among the most severe forms.
Azoospermia is defined by the total absence of sperm in the ejaculate and is identified in
15% of infertile men [4], while severe oligozoospermia is characterized by markedly low
sperm concentrations (less than 5 million sperm/mL) [5]. These conditions not only reflect
severe impairments in spermatogenesis but also raise complex diagnostic and therapeutic
challenges [4,6]. The causes of azoospermia and severe oligozoospermia are multifaceted,
involving a complex interplay of genetic, environmental, and lifestyle factors, making
their management particularly challenging [7]. Notably, azoospermia is associated with a
heightened risk, approximately 25%, of carrying genetic abnormalities [1]. Among these, Y
chromosome microdeletions are recognized as significant causes of severe oligozoospermia
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and azoospermia [8]. However, the role of single nucleotide polymorphisms (SNPs) in
male infertility further illustrates the genetic complexity underlying these conditions [1].

In recent years, technological advancements have led to an increase in the identifi-
cation of SNPs associated with male infertility through next-generation sequencing [9],
but despite these advancements, our understanding of the molecular mechanisms under-
lying male infertility remains incomplete, resulting in idiopathic infertility still being a
common diagnosis [7,10]. Moreover, the predictive value of candidate genetic markers is
not consistent across all cases, which adds complexity to the diagnosis and management
of male infertility [10]. This complexity highlights the need for more in-depth research to
identify SNPs associated with male infertility in different populations and specific subtypes.
Furthermore, assisted reproductive technologies (ARTs), which bypass natural selection
in sperm, potentially increase the risk of transmitting genetic abnormalities to subsequent
generations [11,12]. Therefore, it is imperative to deepen our understanding of the critical
factors that influence sperm development. This will not only help reduce the genetic risks
associated with ARTs but also improve the early detection and diagnosis of infertility
through more reliable genetic markers and SNPs.

From this perspective, genome-wide association studies (GWASs) emerge as pivotal
tools for the investigation of male infertility. Therefore, our study aimed to perform a
GWAS to identify SNPs associated with azoospermia and severe oligozoospermia. Fur-
thermore, we conducted in silico functional annotation to decipher the biological roles
of the implicated genes and the potential impact of the identified SNPs. Specifically, our
GWAS included 365 men, dividing them into groups based on spermiogram parameters:
the control group included normozoospermic men, while the case group included partici-
pants with azoospermia or severe oligozoospermia. We also examined the genes harboring
associated variants and the SNPs using various databases and bioinformatics tools, aiming
to gain a complete understanding of their functionality and their contributions to male
fertility. This approach not only allows us to pinpoint genetic factors associated with male
infertility but also to explore the broader biological implications of these genetic markers.

2. Materials and Methods
2.1. Study Participants

This study included 365 participants who were all Greek males. All men provided
their written informed consent to join this study. After completing a questionnaire to collect
information about height (m), weight (kg), age, clinical history, medication, healthy habits,
etc., each participant donated a blood sample which was used for genomic DNA extraction
and ejaculate for semen analysis.

Sperm samples were collected through masturbation, following a minimum abstinence
period of two to three days. The processing of sperm and semen analysis followed the
guidelines outlined in the fifth edition (2010) of the World Health Organization (WHO) [13].
Specifically, parameters such as semen volume, sperm count, motility, morphology, etc.
were evaluated. Cell vision counting slides (Tek-Event) were used for cell counting, and
Nikon Eclipse TS100, E200, and Ts2 microscopes were employed for observation. To
elaborate, the samples underwent classification using the seminogram results and reference
values stipulated in the WHO guidelines. Thus, the control group consisted of 280 samples
with normal semen parameters or normozoospermia (sperm count > 15 × 106 mL−1, total
sperm count > 39 × 106, total motility > 40% motile sperm, progressive motility > 32%
(Grade a + b) motile sperm, and sperm with normal morphology > 4%), and the case
group consisted of 85 samples with azoospermia or severe oligozoospermia. Samples were
characterized as azoospermic or severe oligozoospermic after at least two semen analyses
(seminograms) performed at 2–4-week intervals, following 3–5 days of sexual abstinence,
to ensure accuracy and consistency of the results. The demographic characteristics and
healthy habits of these men are presented in Table 1. Although azoospermic and severe
oligozoospermic individuals were both included in the case group, the demographic data
are presented separately for each condition in Table 1. The p-values indicate that there are
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no statistically significant differences in factors that could affect fertility or the validity of
the results between the studied groups (e.g., alcohol consumption, age, etc.).

Table 1. Demographic characteristics and health habits of men selected to participate in this study.
p-values (p > 0.05) indicate no statistically significant differences in demographic characteristics
between the studied groups.

Normozoospermic
(n = 280)

Azoospermic
(n = 43)

Severe
Oligozoospermic

(n = 42)
p-Value

Body Mass Index—BMI
(m/kg2)

mean, SD

17.9–40.4
25.9 (3.7)

21.5–47.6
28.4 (5.1)

24.1–37.3
27.7 (3.4) 0.905

Age (years)
mean, SD

21–48
38.7 (8.3)

32–55
39.8 (5.5)

24–58
40.5 (7.8) 0.875

Smoking (Yes/No) No, 56%
Yes, 44%

No, 48.5%
Yes, 51.5%

No, 50%
Yes, 50% 0.665

Alcohol Consumption
(<2 drinks/week,
2 drinks/week,

>2 drinks/week)

<2 drinks/week, 58.8%
2 drinks/week, 20.6%

>2 drinks/week, 20.6%

<2 drinks/week, 63.6%
2 drinks/week, 21.2%

>2 drinks/week, 15.12%

<2 drinks/week, 58.3%
2 drinks/week, 25%

>2 drinks/week, 16.7%
0.984

It should be noted that semen and blood samples were collected in cooperation with the
“Embryolab Fertility Clinic” (Thessaloniki, Greece) for the research program “Spermogene”
(Grant number T1E∆K-02787). Except for patients in the IVF unit, many of the participants
were volunteers. Consequently, there is a difference in the numbers of diseased and control
groups because we did not have prior information about the men’s fertility status. We also
included all the samples collected in this study to increase the statistical power of our study.
This study was also approved by the Ethics Committee of the University of Thessaly and
was carried out in accordance with the guidelines of The Declaration of Helsinki.

2.2. Genotyping

Genomic DNA was extracted from blood samples using the PureLink Genomic DNA
Mini Kit (Invitrogen, Waltham, MA, USA-Catalog number: K182002), following the man-
ufacturer’s protocol. Briefly, 200 µL of whole blood was processed for each sample to
ensure complete lysis of blood cells for efficient DNA release. Subsequently, the lysate
underwent a column-based purification process, with DNA binding to a silica membrane
in the presence of a chaotropic salt. Impurities were eliminated through a series of washing
steps, resulting in the isolation of purified genomic DNA. The purified DNA was then
eluted in a low-salt buffer optimized to preserve DNA quality and stability. To assess the
concentration and purity of the extracted DNA, spectrophotometric measurements were
carried out using a Qubit 2.0 fluorometer in conjunction with the Qubit dsDNA BR Assay
Kit (Invitrogen, Waltham, MA, USA-Catalog number: Q32850). Furthermore, the integrity
of the DNA was confirmed through agarose gel electrophoresis.

Once the preparation was completed, the purified DNA samples were transported to
the Erasmus MC Human Genomics Facility (HuGe-F, University Medical Centre Rotterdam,
The Netherlands) for genotyping. The genotyping was carried out using the Illumina
Infinium® Global Screening Array, a high-throughput genotyping platform capable of
simultaneously genotyping more than 700,000 SNPs. These SNPs cover a wide range of
genome-wide markers and variants that are relevant for pharmacogenomics and complex
disease research. Additionally, the array utilizes Illumina’s Infinium assay, which combines
whole-genome amplification, hybridization, extension, and staining steps to detect SNP
alleles. This technology enables efficient and accurate genotyping of a large number of
SNPs in a single assay.
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2.3. Quality Control and Statistical Analysis

Genotype data obtained from the Illumina Infinium® Global Screening Array were
subjected to quality control processes using the PLINK software v1.07 [14]. To ensure
the reliability and accuracy of our genomic data, we implemented stringent quality con-
trol criteria. Specifically, we excluded from further analysis samples with low call rates
(<90%), SNPs with low call rates (<90%), deviation from the Hardy–Weinberg equilibrium
(p-value < 0.001), and with a minor allele frequency (MAF) less than 3%. Furthermore, we
applied exclusion criteria based on heterozygosity and relatedness tests and conducted
SNP pruning to remove SNPs in linkage disequilibrium.

Then we used PLINK software v1.07 [14] to perform an association analysis, with the
primary goal of investigating the relationship between SNP genotypes and the specific
phenotypic trait of interest, which in this case was male infertility. To assess the significance
of these associations, we employed Pearson’s chi-square test with a stringent threshold
of p-value < 10−5. This allowed us to identify statistically significant SNP-phenotype
associations. For visualization of our findings, we created Manhattan plots and quantile–
quantile (Q–Q) plots using the qqman package version 0.1.9 [15].

2.4. In Silico ANALYSIS

In this study, we also focused on exploring the regulatory roles of SNPs identified as
being significantly associated with male infertility after the association analysis. To enhance
our understanding of these SNPs, we utilized various tools, including SNPnexus [16], the
Genotype-Tissue Expression (GTEx) Portal [17], the 1000 Genomes Project database [18],
RegulomeDB 2.2. [19], 3DSNP 2.0 [20], and miRNASNP-v3 databases [21]. These resources
provided critical insights into regulatory elements, population genetics, and the potential
functional impact of the identified SNPs. Specifically, SNPnexus [16] is particularly useful
for annotating genetic variations and extracting significant insights from large genomic
datasets, while the GTEx Portal [17] contains data on expression quantitative trait loci
(eQTL) across various tissues, enhancing our understanding of gene expression patterns.
Furthermore, RegulomeDB 2.2. [19] and 3DSNP 2.0 databases [20] were used to assess
the functionality of SNPs. RegulomeDB 2.2. [19] classifies SNPs based on their regulatory
potential and assigns them ranks from 1 to 7 to indicate the likelihood of regulatory impact.
Similarly, 3DSNP 2.0 [20] offers a comprehensive view of the 3D genomic interactions,
enhancer and promoter states, and potential impacts on transcription factor bindings
and sequence motifs, using a scoring system to assess SNPs’ functionality. Finally, the
miRNASNP-v3 database [21] was used to explore how SNPs might influence miRNA
binding to mRNAs, potentially affecting gene regulation.

It should also be noted that all annotations performed were based on the Ensembl
database [22] and the GRCh38 human reference genome, ensuring a comprehensive and
up-to-date analysis framework.

3. Results

To elucidate the genetic underpinnings of male infertility, our study employed a
genotyping approach, analyzing approximately 756,000 SNPs across 280 control subjects
(men exhibiting normozoospermia) and 85 case subjects (men diagnosed with azoospermia
or severe oligozoospermia). After applying strict quality control criteria, such as excluding
samples with missing genotypes and SNPs with a very low MAF, etc., 214 controls, 72 cases,
and approximately 236,000 SNPs were retained for subsequent association analysis utilizing
the chi-square test.

The GWAS identified seven SNPs that showed a significant association with azoosper-
mia and/or severe oligozoospermia, exceeding the established threshold for suggestive
significance (p-value < 10−5). The results are presented in the Manhattan plot (Figure 1),
which elucidates the genomic distribution of SNPs relative to their significance levels.
Furthermore, the quantile–quantile (Q–Q) plot (Figure S1) is also provided, comparing
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the observed distribution of p-values against the expected distribution under the null
hypothesis, as an indicator of the validity of the GWAS findings.
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Figure 1. Manhattan plot of genome-wide association study data shows SNPs associated with
azoospermia and/or severe oligozoospermia. The x-axis represents the genomic coordinates of SNPs
on respective chromosomes, while the y-axis represents the significance level on a −log10 scale. The
suggestive significance threshold is indicated by the blue horizontal line (p-value = 10−5).

As shown in Table 2 and Figure 1, the SNPs significantly associated with azoosper-
mia/severe oligozoospermia are dispersed across various chromosomes, each correlated
with an elevated risk of the condition being studied. It is also important to note that these
SNPs have high odds ratios, indicating a strong association with azoospermia/severe
oligozoospermia (Table 2).

Table 2. Summary of the association results for azoospermia and/or severe oligozoospermia. Signifi-
cant SNPs and their genomic position are presented; Chr, chromosome; Ref/Alt, reference/altered;
OR, odds ratio.

Chr SNP Position Ref/Alt
Allele

Frequency
Cases

Frequency
Controls p-Value OR

1 rs873041 29,718,378 C/T 0.13190 0.032710 9.969 × 10−6 4.4950

4 rs77534195 94,718,164 C/A 0.11810 0.023360 3.573 × 10−6 5.5950

6 rs61712011 134,363,477 A/C 0.09722 0.014020 2.580 × 10−6 7.5740

9 rs75614542 123,521,842 A/C 0.09028 0.014020 9.996 × 10−6 6.9800

10 rs11572106 96,817,479 A/G 0.08333 0.009346 3.199 × 10−6 9.6360

15 rs17182744 25,279,455 C/T 0.11810 0.023470 3.856 × 10−6 5.5690

18 rs72963110 73,693,542 G/A 0.09028 0.012140 5.100 × 10−6 8.0780

To elucidate the functional implications of statistically significant SNPs in the context
of male infertility, a thorough annotation and in silico analysis were conducted using
various databases, as previously explained. Firstly, population genetic data and allele
frequency details across five distinct populations were obtained from the SNPnexus [16]
and the 1000 Genomes Project [18] databases. As shown in Table 3, a notable finding is that
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two specific SNPs (rs75614542 and rs11572106) exhibited exceptionally low minor allele
frequencies, each falling below the 0.05 threshold. Furthermore, a comparative analysis
revealed that the allele frequencies in the case group (men with azoospermia/severe
oligozoospermia) were consistently higher than those observed in the European population,
with the most significant disparities observed for rs75614542 (a fivefold increase) and
rs61712011 (a fourfold increase).

Table 3. Allele frequencies in five populations for the SNPs found to be associated with azoospermia
and/or severe oligozoospermia; Ref/Alt, reference/altered; Freq, frequency; MAF, minor allele
frequency; EAS, East Asian; AMR, American; AFR, African; EUR, European; SAS, South Asian.

SNP Ref/Alt Allele Freq Cases MAF EAS AMR AFR EUR SAS

rs873041 C/T 0.13190 0.29 0.188 0.092 0.236 0.061 0.134

rs77534195 C/A 0.11810 0.17 0.098 0.027 0.022 0.081 0.101

rs61712011 A/C 0.09722 0.43 0.021 0.053 0.327 0.024 0.043

rs75614542 A/C 0.09028 0.04 0.000 0.009 0.000 0.017 0.007

rs11572106 A/G 0.08333 0.04 0.000 0.017 0.002 0.023 0.018

rs17182744 C/T 0.11810 0.06 0.000 0.016 0.016 0.034 0.018

rs72963110 G/A 0.09028 0.08 0.000 0.016 0.002 0.031 0.003

To deepen our understanding of the functional implications of the identified SNPs
in azoospermia/severe oligozoospermia, we conducted a more extensive analysis using
various databases and tools for comprehensive functional characterization, as previously
explained. Table 4 shows that two of the significant SNPs (rs873041 and rs72963110)
are located in intergenic regions, close to long intergenic non-coding RNAs (lincRNAs).
Moreover, our analysis revealed three SNPs (rs77534195, rs61712011, and rs11572106)
within intronic regions, one SNP (rs75614542) located in a 3′ untranslated region (UTR),
and another SNP (rs17182744) mapped within a lincRNA region. It is noteworthy to
mention that none of the identified SNPs were associated with expression quantitative trait
loci (eQTL), according to the GTEx Portal [17]. In terms of their potential functional impact,
three SNPs (rs873041, rs75614542, and rs11572106) were highly scored by RegulomeDB
2.2. [19], and one (rs17182744) was notable for its high 3DSNP 2.0 [20] score, indicating a
strong likelihood of regulatory function.

Table 4. Annotation and functional characterization of the SNPs found to be associated with azoosper-
mia and/or severe oligozoospermia according to GTex portal, RegulomeDB 2.2., and 3DSNP 2.0.

SNP Closest Gene SNP-Gene
Distance Annotation eQTL RegulomeDB 2.2. 3DSNP Score

rs873041 LINC01756
(lincRNA) 41,752 bp Intergenic No Rank = 2b, Score = 0.61652 1.88

rs77534195 GRID2 0 bp Intronic No Rank = 7, Score = 0.18412 2.07

rs61712011 SLC2A12 0 bp Intronic No Rank = 7, Score = 0.51392 1.81

rs75614542 FBXW2 0 bp 3′ UTR No Rank = 1f, Score = 0.55324 6.63

rs11572106 CYP2C8 0 bp Intronic No Rank = 1f, Score = 0.907 1.22

rs17182744 SNHG14
(lincRNA) 0 bp Non-coding No Rank = 7, Score = 0.18412 26.38

rs72963110 AC090457.1
(lincRNA) 26,531 bp Intergenic No Rank = 5, Score = 0.58955 1.34
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Finally, the miRNASNP-v3 database [21] was employed to determine the impact of
significant SNPs on mRNA-microRNA (miRNA) interactions. More specifically, an SNP
located in the 3′ UTR region of the FBXW2 gene generated new binding sites for four
distinct miRNAs while concurrently causing the loss of a binding site for another miRNA.
These findings are detailed in Table 5.

Table 5. SNP associated with azoospermia/severe oligozoospermia and miRNA gain/loss of binding
sites according to miRNASNP-v3 database [21].

SNP Gene Gain Loss

rs75614542 FBXW2

hsa-miR-7110-3p,
hsa-miR-6873-3p,
hsa-miR-6817-3p,
hsa-miR-4680-5p,

hsa-miR-618

hsa-miR-3675-3p

4. Discussion

Azoospermia and severe oligozoospermia are significant forms of male infertility.
Genome-wide association studies (GWASs) have the potential to unravel the complex inter-
play of genes involved in spermatogenesis and testicular function, while also providing
valuable markers for the enhancement of the diagnosis of male infertility. In this study,
we conducted a GWAS involving 365 men, categorized into two groups: a control group
with normozoospermia and a case group characterized by azoospermia or severe oligo-
zoospermia. Our GWAS identified seven significant SNPs associated with azoospermia
and severe oligozoospermia, showing markedly different allele frequencies between fertile
and infertile men. Through extensive analysis using various databases and bioinformatics
tools, we aimed to elucidate the functionality and impact of genes and SNPs associated
with male fertility, offering insights into the genetic factors contributing to this condition.

Notably, the SNPs identified in this study are novel in the context of male infertility
and have not been linked to any other pathological conditions previously. It should also
be noted that the reported SNPs have not been associated with the progression of other
diseases, even non-reproductive ones. Thus, there is a need for further studies on their
role. However, the associated genes where these significant SNPs are located present
intriguing possibilities for understanding their roles in male reproductive health, especially
in azoospermia and severe oligozoospermia.

More specifically, one SNP (rs77534195) was found in an intronic region of GRID2.
GRID2 encodes the Glutamate Ionotropic Receptor Delta Type Subunit 2, also known as
GluD2, which is a part of the ionotropic glutamate receptors family [23]. These recep-
tors are crucial for synaptic transmission in the brain and also play a significant role in
synaptogenesis, synaptic plasticity, and motor coordination [24]. However, data from the
Human Protein Atlas (www.proteinatlas.org, accessed on 20 April 2024) [25] indicate that
GRID2 expression is not limited to the brain, as it is also highly expressed in the testis.
Specifically, GRID2 is expressed in early spermatids, and its expression is even higher in
the late spermatids stage. This dual high expression in both neurological and reproductive
tissues suggests a potential, albeit less understood, role in testicular function and possi-
bly in processes related to spermatogenesis or sperm development, opening the road for
future studies.

Another SNP was also identified in the 3′ UTR region of the FBXW2 gene, which
encodes for a protein that is part of the F-box protein family. This family is characterized
by an F-box motif and multiple WD-40 repeats, playing a vital role in cellular processes,
primarily through ubiquitin-mediated degradation of cellular regulatory proteins [26].
The FBXW2 gene exhibits low tissue specificity and is detected across various tissues,
indicating its fundamental role in cellular processes. Studies also show that it acts as a
tumor suppressor in several cancer types [27–29]. Furthermore, although this gene has
not been previously linked to male infertility, another family member, FBXW7, has been

www.proteinatlas.org
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shown to negatively regulate spermatogonia stem cell (SSC) self-renewal, highlighting
the importance of F-box proteins in the self-renewal and differentiation of SSCs crucial
for spermatogenesis [30]. The functional diversity of F-box proteins within SCF ubiquitin–
ligase complexes further emphasizes their significant role in cellular regulation, affecting
processes like cell cycle transitions and transcription regulation, which is essential for
reproductive cell development and function [31]. Finally, the Human Protein Atlas [25]
data reveal high FBXW2 expression in the testis, particularly in late spermatids, suggesting
a potential role of this gene in testicular function and spermatogenesis.

An SNP associated with azoospermia and severe oligozoospermia was also identi-
fied in an intronic region of the CYP2C8 gene. CYP2C8 is a member of the cytochrome
P450 family, which plays a role in metabolizing xenobiotics and polyunsaturated fatty
acids [32]. Specifically, research has shown that CYP2C8 is involved in metabolizing more
than 60 clinical drugs [33]. While there may not be specific studies directly linking cy-
tochrome P450 enzymes to spermatogenesis, sperm function, or male infertility, there
are indirect associations through their involvement in hormone metabolism and vitamin
D regulation, both of which are crucial for male reproductive functions. For example,
cytochrome P450 enzymes are involved in the metabolism of vitamin D, and it has been
observed that sufficient levels of vitamin D are positively correlated with sperm motility
and overall reproductive health [34]. Furthermore, cytochrome P450 enzymes are involved
in cholesterol metabolism, which is essential for spermatogenesis. Cholesterol is a key
component of cell membranes and serves as a precursor for steroid hormone biosynthesis,
which is vital for the development and function of male reproductive tissues [35].

Furthermore, rs61712011 was found in an intronic region of the SLC2A12 gene. The
SLC2A12 gene encodes GLUT12, a member of class III glucose transporters, which are
responsible for transporting glucose and other substances across cellular membranes [36].
Although SLC2A12 has been associated with certain types of cancer [37,38], specific details
regarding its exact function, biochemical properties, and significance in human physiology
are not as well-documented as other members of the SLC2 family [39]. Generally, glucose
transporters encoded by SLC2 genes play vital roles in metabolic processes and energy bal-
ance in various tissues [40]. While the available literature does not explicitly provide direct
associations with spermatogenesis or male infertility, the importance of energy metabolism
in reproductive processes suggests potential implications. Thus, further research could
help elucidate the role of SLC2A12 in testicular function and male reproductive health.

The present study also highlights the significant role of lncRNAs in male infertility,
which is well established [41]. Specifically, three significant SNPs were identified in lincRNA
regions or in close proximity to them. Although there are no studies about the function
of AC090457.1, SNHG14 is a well-studied lncRNA that has been extensively researched
in various types of cancers, including gynecological cancers [42,43], colorectal cancer [44],
hepatocellular carcinoma (HCC) [45], etc. Beyond its involvement in cancer, SNHG14 has
also been implicated in the genetic disorder Prader–Willi syndrome (PWS) [42]. However,
its role in male infertility has not yet been explored. Finally, LINC01756 is an understudied
lincRNA, but it is also highly expressed in the testis, suggesting a potential regulatory role.
Notably, two of the SNPs identified in lincRNA regions or close to them, also had a high
RegulomeDB rank or 3DSNPscore, indicating their regulatory role. Furthermore, this study
indicates the importance of miRNAs, as SNPs associated with azoospermia and severe
oligozoospermia were found to either create or disrupt miRNA binding sites, potentially
influencing gene regulation.

Regarding the strengths and limitations of the present study, one notable strength
lies in the strict quality control criteria we employed. By carefully excluding SNPs and
samples that could compromise the integrity of our findings, we reduced the risks of false
positives and negatives. This rigorous approach, as described earlier, ensures the high
quality of our results. Additionally, the utilization of sophisticated bioinformatics tools
and comprehensive databases for data analysis has allowed for a precise interpretation
of significant associations, thereby reinforcing the reliability of our conclusions. Finally,
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another strength is the genetic homogeneity of our sample, as all the volunteers completed
a questionnaire about their ancestry. This further enhances the validity of our study
by minimizing confounding variables associated with genetic diversity. However, this
study also has some limitations. A primary constraint is the relatively small sample size,
as only around 300 individuals remained after stringent quality control measures were
applied. This limitation underscores the need for further, larger-scale genetic studies to fully
evaluate the implications of the identified SNPs in azoospermia and severe oligozoospermia.
Moreover, our study did not identify any SNPs meeting the conventional threshold for
genome-wide significance (p-value < 5 × 10−8). Instead, we used a less strict cutoff, which
can still provide reliable results, but interpretation should be executedwith caution.

In conclusion, this GWAS aimed to identify genetic variants associated with azoosper-
mia and severe oligozoospermia in a cohort of Greek males. We discovered seven SNPs with
notable associations, suggesting a nuanced genetic contribution to these conditions. Fur-
thermore, we conducted an in silico analysis to explore their functional implications. Some
of the genes hosting these significant SNPs have been implicated in biological processes
not previously linked to male infertility, demonstrating the complex genetic architecture
underlying these conditions. This study also highlights the significant role of noncoding
RNAs in male infertility, as three out of the seven SNPs were found in lincRNAs or in close
proximity to them. These findings open up new avenues for further research into the ge-
netic factors contributing to male infertility, providing valuable insights for understanding,
preventing, and managing these reproductive challenges.
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