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Abstract: Diffuse large B cell lymphoma (DLBCL) is a multifaceted condition characterized by sig-
nificant diversity in its molecular and pathological subtypes and clinical manifestation. Despite the
progress made in the treatment of DLBCL through the development of novel drugs, an estimated
one-third of patients encounter relapse or acquire refractory disease. The tumor microenvironment
(TME) of DLBCL, a complex network consisting of cellular and noncellular components that en-
gage in interactions with the tumor, is a parameter that is gaining increasing attention. The TME
comprises both the immune and nonimmune microenvironments. The immune microenvironment
comprises natural killer (NK) cells, dendritic cells (DCs), tumor-associated macrophages (TAMs),
neutrophils, myeloid-derived suppressor cells (MDSCs), and T and B lymphocytes. The nonimmune
microenvironment consists of the extracellular matrix (ECM), cancer-associated fibroblasts (CAFs),
mesenchymal stromal cells, and other molecules that are secreted. Despite ongoing research, the exact
impact of these components and their interaction on the progression of the disease remains elusive. A
comprehensive review of significant discoveries concerning the cellular and noncellular constituents,
molecular characteristics, and treatment response and prognosis of the TME in DLBCL, as well as the
potential targeting of the TME with novel therapeutic approaches, is provided in this article.
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1. Introduction

Diffuse large B cell lymphoma (DLBCL), which accounts for almost 30% of all non-
Hodgkin lymphomas, is a heterogeneous and aggressive disease showing differences in
clinical presentation, pathological characteristics and molecular features [1–7]. Despite the
addition of polatuzumab vedotin, an antibody–drug conjugate targeting CD79b, in the
frontline treatment, still about one out of three patients experience relapse or refractory
disease (R/R) [2].

DLBCL can be categorized as germinal center B-cell-like (GCB), activated B-cell–like
(ABC), and unclassifiable DLBCL, based on the cell of origin, representing different B-
cell development stages. The last two groups, ABC and unclassifiable DLBCL, are often
combined and referred to as non-GCB [3,4]. GCB DLBCL is derived from normal ger-
minal center B cells and is characterized by the expression of CD10, a cell membrane
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zinc-dependent metalloendopeptidase, and BCL6, a transcription factor regulating T fol-
licular helper cells (TFH cells) proliferation with clinical significance in lymphomas, and
also by BCL2 gene rearrangements. ABC DLBCL is derived from peripheral activated B
cells, being characterized by chronic B-cell receptor signaling, the activation of nuclear
factor-kappaB (NF-κB), and IRF4/MUM1 expression [3,4]. This categorization, according to
the B-cell differentiation stages, also has prognostic value, since patients with GCB-DLBCL
display better overall survival (OS) compared to ABC patients [3]. In routine histopathol-
ogy, immunohistochemistry-based algorithms, such as the Hans algorithm, are used to
classify cases as GCB or non-GCB, with a risk of misclassification [5]. Interestingly, immuno-
histochemical studies using GC and non-GC B-cell differentiation immunophenotypes
are useful not only for pathological classification, but also for further understanding of
the pathogenesis of DLBCL. Indeed, (a) DLBCL with a GCB-cell-like immunophenotype
has been significantly correlated with increased apoptosis, high expression levels of the
pro-apoptotic proteins Bax, Bak, and Bid, and low expression levels of the anti-apoptotic
protein Bcl-xl; and (b) DLBCL with increased expression levels of the GC-associated mark-
ers i.e., BCL6 and CD10 proteins, has been significantly correlated with increased apoptosis
and proliferation of tumor cells [8,9]. Moreover, high expression of phosphorylated-c-Jun
(p-c-Jun), JunB, JunD has also been positively correlated with the proliferation of DLBCL
tumor cells [10]. More recent studies have proposed new molecular taxonomies for DL-
BCL, based on shared genomic aberrations [6,7]. Based on a multiplatform analysis of
structural genomic abnormalities and gene expression in 574 DLBCL biopsy samples, a
molecular classification of DLBCL was proposed that includes four subtypes, termed the
MCD (MYD88L265P- and CD79B-co-mutated) subtype, the BN2 (BCL6-fusions or NOTCH2-
mutated) subtype, the N1 (NOTCH1-mutated) subtype, and the EZH2 (based on EZH2
mutations and BCL2 translocations) subtype, whereas a significant number of cases re-
mained unclassified [7]. The MCD and N1 subtypes are dominated by ABC cases, the EZB
subtype includes mostly GCB cases, and the BN2 subtype has contributions from all three
gene-expression subgroups [7]. Another genomic analysis of 304 cases of DLBCL identified
five different molecular signatures or clusters (C) [6]. In particular, the C1 signature was
associated with NOTCH2 mutations and a favorable outcome; C2 was associated with
aneuploidy; TP53 was associated with biallelic inactivation and a poor outcome; C3 was
characterized by BCL2 mutations, translocations, and mutations in the chromatin modifiers
and was associated with an unfavorable outcome; C4 was associated with abnormalities
affecting signaling pathways, such as RAS/JAK/STAT, and a favorable outcome; and C5,
which includes cases with 18q gains and MYD88 and CD79B mutations, was associated
with a poor outcome [6]. A distinct cluster, termed C0 by the investigators, lacked defining
genetic drivers and included increased numbers of cases of T-cell/histocyte-rich large B-cell
lymphomas indicating the different pathobiology of this condition (Table 1) [6].

Table 1. Molecular subtypes of diffuse large B-cell lymphoma (LBCL), as defined by Chapuy et al.

Cluster (C) Genetic Characteristics Prognosis

C1 NOTCH 2 mutations good
C2 aneuploidy and TP53 biallelic inactivation poor

C3 BCL2 mutations, translocations and mutations
in chromatin modifiers poor

C4 RAS/JAK/STAT and other signaling pathway abnormalities good
C5 18q gains and MYD88 and CD79B mutation poor

Cluster 0 lacked defining genetic drivers and included increased numbers of T-cell/histocyte-rich LBCLs.

Another crucial factor in the pathobiology of DLBCL, with a possible prognostic and
predictive values, is the tumor microenvironment (TME) [11]. The TME is a complex
biological network that consists of interacting cellular and noncellular components, sur-
rounding the tumor and interacting with it, and therefore plays a crucial role in tumor
genesis, maintenance, and progression [11,12]. The TME consists of the immune microenvi-
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ronment, which includes immune cells such as T and B lymphocytes, natural killer (NK)
cells, tumor-associated macrophages (TAMs), neutrophils, myeloid-derived suppressor
cells (MDSCs), dendritic cells (DCs); and the nonimmune microenvironment, composed
of cancer-associated fibroblasts (CAFs), extracellular matrix (ECM), mesenchymal stromal
cells, and other secreted molecules, such as chemokines and cytokines (Figure 1) [11,13].
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The TME of DLBCL encompasses a variety of cell types, each comprising heteroge-
neous subsets with distinct phenotypes and functions [14,15]. The proportions of cell types
and their functional state can be identified by flow cytometry and transcriptional signa-
tures [14,16]. Artificial intelligence-based computational methods have delineated distinct
“lymphoma microenvironments” (LMEs) in DLBCL, each exhibiting unique clinical and bi-
ological characteristics [14,15]. Specifically, the germinal center–like LME (GC-LME), which
is characterized by the presence of cell subtypes commonly found in germinal centers; the
mesenchymal LME (MS-LME), which is dominated by stromal cells and extracellular matrix
signatures; the inflamed and immunosuppressive LME (IN-LME), which is characterized
by the presence of inflammatory cells and suppressed cytotoxic cells; and the depleted
LME (DP-LME), which has less prominent TME-derived signatures [14,15].

Regarding the therapeutic strategy in newly diagnosed DLBCL, either rituximab in
combination with cyclophosphamide, doxorubicin hydrochloride, vincristine sulfate, and
prednisone (R-CHOP) or polatuzumab vedotin in combination with rituximab, cyclophos-
phamide, doxorubicin hydrochloride, and prednisone (Pola-RCHP) are used [2,17]. For
the primary refractory and early relapsed DLBCL (<1 year of the treatment completion)
chimeric antigen receptor (CAR) T-cell therapy is the recommended treatment, whereas
for late relapses, either salvage chemotherapy followed by autologous transplantation or
CAR T-cell therapy is recommended [17]. Other treatment options for patients that are not
eligible for transplant include the combination of polatuzumab vedotin with rituximab
and bendamustine, tafasitamab with lenalidomide, and, upon second relapse, bispecific
antibodies, namely glofitamab and epcoritamab [17,18].

In this review, we summarize important research findings regarding the cellular and
molecular composition of the TME in DLBCL, and we scrutinize its role in the prognosis,
treatment response, and potential targeting.
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2. Overview of Cellular Components of TME in DLBCL
2.1. T Cells

The T cells in the TME of lymphomas have been extensively studied due to their
abundance and versatile functions (Figure 1). Effective B cell-mediated immunity and
antibody responses often rely on the contribution of CD4+ T cells, particularly T follicular
helper (TFH) cells, which are regulated by the transcription factor BCL6 [19]. TFH cells
are identified by the expression of cell surface markers CD4, CXCR5, PD1, and ICOS.
They primarily reside in the lymph nodes, tonsils, and spleen, playing a crucial role in
germinal center formation and maintenance by providing critical helper signals, such as
CD40L [20–22]. In addition, TFH cells promote the clonal selection and affinity maturation
of GCB cells [20,21]. The expression of the chemokine receptor CXCR5 is linked to the early
TFH cell migration to the border of the B cell follicle, whereas Th1, Th2, or Th17 signals
lead to Th1, Th2, or Th17 CD4 cell differentiation programs, driving the effector cell outside
the lymphoid tissue [20].

CD4+CXCR5+FOXP3+ follicular regulatory T (TFR) cells play a crucial role in down-
regulating the germinal center reaction, B cell activation, and TFH cytokine secretion [19].
TFR cells were found to be functionally different from non-TFR T regulatory (Treg) cells.
Patients with less advanced DLBCL stages and those who stayed in remission 2 years after
the initial chemoimmunotherapy treatment showed higher amounts of TFR cells within the
tumor [23]. Lymphoma-infiltrating TFH cells were associated with high levels of certain
cytokines, such as IL-4, IL-6, IL-21, and CXCL13 [21]. Significantly increased TFH cell ratios
were observed in patients with malignant lymphoma disease at pretreatment compared to
healthy controls, and decreased, or even normal, TFH cells ratios were observed in patients
at the end of treatment [24]. However, in cases of progressive disease, elevated levels of
TFH cells were noticed, indicating their crucial role [24].

FOXP3+Treg cells play a role in maintaining immunological tolerance and homeostasis,
and they are also implicated in the TME of DLBCL. These cells limit T-helper-cell (TH)-
mediated immune responses by releasing immunosuppressive cytokines, which help
maintain self-tolerance while hindering anti-tumor immunity [25].

Importantly, due to limitations in identifying this specific cellular population, we
should interpret results on the prognostic significance of Treg cells with caution [26]. FOXP3
is considered the best marker for Treg cells [27,28]. However, human non-regulatory CD4+
or CD8+ T cells have the ability to express FOXP3 [29,30] and, upon activation, a majority of
human FOXP3−CD25− T cells can temporarily acquire the characteristics of Treg cells, such
as the co-expression of FOXP3 and CD25, as well as the ability to suppress the proliferation
of autologous CD4+CD25− T cells [31]. Two retrospective studies have found that a greater
presence of intratumoral Treg cells is linked to prolonged OS and other positive prognostic
factors, such as the absence of spleen enlargement and early-stage illness, in patients with
DLBCL [32,33]. In a meta-analysis of fourteen studies, FOXP3+Treg cell expression was
not associated with OS [34]. However, in the subgroup analysis, the authors found that
higher expression of FOXP3+Treg cells was significantly correlated with better OS when
the expression was measured by the number or percentage of positive cells instead of the
score [34]. On the other hand, high levels of T cell immunoglobulin and mucin-containing
molecule 3 (TIM-3)+FOXP3+Treg in the lymphoma microenvironment were associated
with poor survival of DLBCL patients [35]. TIM-3+FOXP3+Treg cells could contribute to
DLBCL development by secreting IL-10 in the TME, whereas antiTIM3 antibodies could be
a potential future treatment regimen that blocks the secretion of IL-10 [35].

CD8+ T cells are generally known as cytolytic T cells (CTLs) due to their capacity to
directly kill infected or neoplastic cells after recognizing antigens bound to MHC (major
histocompatibility complex)-I molecules on their surface. Therefore, they are considered
crucial mediators of anti-tumor immunity, alongside other major cytolytic cells, such as
the NK cells [26]. Tumor-infiltrating lymphocytes (TILs) are essential members of the
TME in DLBCL, and CD8+TILs are the main components that deliver anti-tumor immune
response [36]. In cancer, tumor progression is induced by exhausted CD8+ T cells, a term
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that is used to describe T cells that undergo a progressive loss of cytokine production and
cytotoxicity [37]. Low tumor-infiltrating T lymphocytes and a high CD4/CD8 ratio were
associated with shorter survival in patients with DLBCL, indicating the crucial role of CD8+
T cells in the TME of DLBCL [38]. Despite the fact that PD-1 is expressed in TILs and was
linked with shorter survival, the PD-1 blockade by nivolumab in patients with R/R DLBCL
was ineffective [39,40]. Thus, the exploration of new immune checkpoints in DLBCL is
important, as is the assessment of the potential efficacy of novel immune checkpoint in-
hibitors or combined blockade regimens [41]. New immune checkpoints in DLBCL include
T cell immune receptors with Ig and ITIM domains (TIGIT), lymphocyte-activation-gene-3
(LAG-3), and TIM-3. TIGIT is a co-inhibitory receptor in the Ig superfamily, expressed by
activated T cells, Treg, and NK cells. The persistent activation of cancer cells by antigens
results in the ongoing production of TIGIT, leading to the depletion of T-cell activity [41].
LAG-3 is an immune inhibitory receptor, with MHC-II as a canonical ligand, and is mainly
expressed in activated T cells, NK cells, and Treg cells [41,42]. Fibrinogen-like protein
1 (FGL-1) is a major LAG-3 functional ligand independent from MHC-II and induces a
significantly reduced anti-tumor response [42]. Human cancer cells produce high levels
of FGL1, and increased peripheral levels of FGL1 in cancer patients have been associated
with a poor prognosis and resistance to anti-PD-1/B7-H1 therapy [42]. Elevated LAG-3
and PD-1 levels significantly inhibit CD8+ T-cell function, rendering them unable to kill
tumor cells. Combined LAG-3 and PD-1 blockade could restore CD8+ T cell function and is
a promising effective combination immunotherapy for DLBCL [43]. CD8+ T lymphocytes,
CD4+ T lymphocytes, NK cells, and monocytes primarily express TIM3 [44]. In addition,
overexpression of TIM3 has been associated with CD8+TIL exhaustion and immune defi-
ciency in DLBCL [36,45]. It is suggested that Galectin-9 is the key ligand of TIM3-mediated
CD8+TIL exhaustion in DLBCL [36].

2.2. B Cells and Plasma Cells

Among the infiltrating non-neoplastic cells of the TME in DLBCL, naïve B cells and
plasma cells have been recognized, and their prognostic role has been investigated. A
recent study of 269 people with DLBCL found that having more normal B cells (as shown
by clonotype analysis) in the total B cells was linked to a much higher chance of survival
in DLBCL [46]. A more recent study using flow cytometry in fresh biopsy tissues at
the clinical presentation of 102 patients with DLBCL confirmed that the frequency of
normal B cells in the TME of DLBCL was positively correlated with favorable clinical
outcomes [16]. However, in another study of 539 samples with DLBCL, where investigators
used CIBERSORT in the R software package, version 4.1.1, univariate Cox analysis showed
that neither B cells nor plasma cells had any significant correlation with survival [47].

2.3. NK Cells

Natural killer (NK) cells are innate lymphoid cells with known anti-tumor cytotoxic
activity. NK cells are also regulatory cells modulating interactions with dendritic cells,
macrophages, T cells, and endothelial cells [48]. Moreover, NK cells can discriminate
target cells such as cancer cells from healthy cells, expressing receptors that allow them
to recognize pathogens and activate effector functions such as cytotoxicity and cytokine
production [48,49]. Activating NK cell receptors find ligands on cells that are “in dis-
tress”, like the stress-induced self-ligands recognized by NKG2D. In addition, NK cells
express certain Toll-like receptors (TLRs) [49]. In vitro, the exposure of NK cells to TLR
ligands induces interferon (IFN)-γ production and enhances cytotoxicity, while in vivo,
this process is more efficient when accessory cells are present [48,49]. The NK cell detection
system also includes cell surface inhibitory receptors such as the MHC class I–specific
receptors, especially killer cell immunoglobulin-like receptors (KIRs) and the lectin-like
CD94-NKG2A heterodimers [50,51]. Dysregulation of NK cell function has a vital role in
cancer development, since it leads to both the uncontrolled proliferation of cancer cells and
the development of metastases [52,53]. NK cells, except for surface inhibitory receptors,
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express immune checkpoint molecules such as PD1, and overexpression of PD1 on NK cells
has been detected in DLBCL [54]. The mechanism is more prominent in classical Hodgkin
Lymphoma (cHL), compared to DLBCL; thus, PD-1 blocking is more efficacious in cHL
and is employed as a treatment. Nevertheless, PD-1 inhibition may potentially serve as an
advantageous intervention in DLBCL in the future [54].

2.4. Myeloid Cells

Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous, immunosup-
pressive population of immature myeloid cells, and they play a crucial role in tumor
progression [55,56]. They are divided into three distinct MDSC subcategories, including
the monocytic, the granulocytic and non-monocytic, and the non-granulocytic MDSCs [57].
MDSCs are characterized by the expression of the myeloid markers CD11b and CD33 and
low or absent expression of HLA DR, while the monocytic and granulocytic subsets of
MDSCs are characterized by the expression of CD14 and CD15, respectively [58]. Generally,
MDSCs are at low levels; however, they are expanded in conditions such as cancer and
inflammation, and they are involved in lymphomagenesis [57,59–61]. In a recent retrospec-
tive study, elevated levels of M-MDSCs were observed in the peripheral blood of newly
diagnosed and relapsed DLBCL patients, and in newly diagnosed patients, the frequency of
M-MDSCs was positively correlated with tumor progression and negatively correlated with
OS [55]. In addition, it was revealed that IL-35 mediated the accumulation of M-MDSCs
in DLBCL patients, while anti-IL-35 treatment reduced the levels of M-MDSCs in mice,
demonstrating their promising role as a potential therapy of DLBCL in the future [55].

Neutrophils are generally considered to be fully differentiated cells with specific
functions and minimal plasticity; however, tumor-associated neutrophils (TANs), an impor-
tant cellular component of the TME, are characterized by diversity and plasticity [62–64].
Neutrophils can have either pro-tumor or anti-tumor effects [63]. N1 neutrophils have anti-
tumor properties, while N2 neutrophils exhibit pro-tumor characteristics. N1 neutrophils
produce high levels of immune-activating cytokines and chemokines, demonstrating a
stronger ability to kill tumor cells in vitro [65]. On the other hand, N2 neutrophils con-
tribute to tumor progression within the TME by recruiting immunosuppressive CD4+ T
cells and by upregulating CCL2, which enhances angiogenesis [65]. Circulating neutrophils
enter tumors, where they differentiate into T1 and T2 TANs. T1 and T2 further differ-
entiate to form the T3 subset. The T3 subset is characterized by dcTRAIL-R1 expression
in mice, a significantly prolonged lifespan (more than 5 days), and proangiogenic and
pro-tumoral functions [63,64]. Noteworthy, eliminating the factors responsible for the
differentiation of T1/T2 into T3 does not reverse the T3 phenotype [64]. As far as DLBCL
is concerned, immunohistochemical studies revealed that (a) 46% of DLBCL cases show
upregulation of the proliferation-inducing TNF ligand (APRIL), which stimulates B-cell
activation; and (b) neutrophils were the main source of APRIL in all the DLBCL cases
with APRIL upregulation [66]. Moreover, malignant cells expressed the APRIL-signaling
receptor, TACI and/or BCMA, indicating that these DLBCL cases are equipped to respond
to APRIL [66]. A retrospective analysis of the clinical course revealed a statistically signifi-
cant correlation between a high expression of APRIL in DLBCL lesions and a decreased
overall survival rate of the patient [66]. Thus, APRIL produced by inflammatory cells,
mainly neutrophils, infiltrating DLBCL lesions may increase the aggressiveness of the
lymphoma and affect the outcome of the disease [66]. Furthermore, in a notable fraction
of DLBCL patients, malignant cells constitutively produced the chemokine CXCL-8 (IL8),
which enables them to recruit blood neutrophils that produce APRIL [67]. Thus, CXCL-8
derived from DLBCL cells can promote neutrophil infiltration, thereby providing a source
of the tumor-promoting factor APRIL [67].
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2.5. Mast Cells

Mast cells are a key regulatory component of the TME in DLBCL [68]. The infiltration
of mast cells reflects the host inflammatory response, and elevated levels of mast cells have
been associated with favorable clinical outcomes [69]. Moreover, in another study, the inves-
tigators observed that tryptase expression was significantly correlated with microvascular
density, supporting a role for mast cells in DLBCL tumor angiogenesis [70].

2.6. Dendritic Cells

Dendritic cells (DCs) are another important cellular component of the TME in DLBCL.
DCs are professional antigen-presenting cells capable of inducing naïve T-cell activation
and effector differentiation [71]. In tissues, CD11c+ cells are mostly classical DCs [71].
Decreased CD11c+ dendritic cells in the DLBCL TME were an independent unfavorable
prognostic factor, associated with shorter survival, as well as with the prediction of the
presence of a double or triple hit genotype [72]. Increased proportions of DCs in the DLBCL
TME were associated with favorable clinical outcomes [73]. Elevated levels of CD11c+ DCs
in the peripheral blood of DLBCL patients have also been correlated with favorable OS [74].

2.7. Tumor-Associated Macrophages

Tumor-associated macrophages (TAMs), located in the TME, are of great impor-
tance in contributing to cancer cell survival and progression [75]. TAMs can have ei-
ther anti-tumorigenic (kill tumor cells) or pro-tumorigenic (promote tumor cell survival)
effects [21]. They are classified into two distinct categories, based on their physical charac-
teristics. Specifically, the M1 phenotype (CD68/HLA-DR), which is characterized by its
anti-tumorigenic role via secreting proinflammatory cytokines (IL-1β, IL-6, IL-12, TNF-α,
etc.), and the M2 phenotype (CD68/CD163), which is characterized by its pro-tumorigenic
role via secreting anti-inflammatory cytokines (IL-10, IL-13, IL-4, matrix metalloproteinases,
etc.) [21,76,77] (Figure 2).
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TAMs are implicated in the pathogenesis of lymphomas, and they may have prog-
nostic value in patients with DLBCL [78]. A study showed that an increased number of
CD14+ monocytes with a loss of expression of human leukocyte antigen-DR (HLA-DR)
in lymphoma patients was associated with more aggressive and R/R disease [79]. In an-
other study, overexpression of CD68/CD163 TAMs (M2 phenotype) at diagnosis of DLBCL
was associated with a poorer prognosis [80]. Nam et al. found that an increased ratio of
CD163/CD68+ cells was an independent predictor of shorter OS and PFS in patients with
DLBCL [81]. In another study, a higher number of M2 TAMs was an independent signifi-
cant factor for poor prognosis [82]. However, some studies did not confirm the significant
prognostic role of TAMs in DLBCL patients, as overexpression of CD68 TAMs did not
significantly correlate to poorer clinical outcomes [83–85]. Another study highlighted the
predictive value of TAMs. The investigators found that CD68+ TAM and CD68 mRNA
levels were significantly correlated with a shorter OS in patients treated with CHOP; how-
ever, in patients treated with chemoimmunotherapy (Rituximab-CHOP), overexpression of
CD68 was significantly correlated with a prolonged OS [86]. While most of the studies have
focused on examining the potential prognostic role of macrophages in tissue biopsies of
lymphoma patients, several very recent studies have highlighted their prognostic value as
biomarkers, measured in the peripheral blood in patients with lymphoma [87–89]. A study
showed that increased levels of serum soluble CD163 were associated with shorter OS in
DLBCL patients [89]. Several clinical approaches targeting TAMs are still under investiga-
tion. Among them, the most promising target seems to be the blockade of CD47, which is
overexpressed in lymphomas, including DLBCL [90,91]. CD47, or the integrin-associated
protein, is a cell surface ligand normally expressed at low levels by nearly all cells of the
body. Its role is crucial in DLBCL, where CD47 is overexpressed, providing a potent pro-
tection signal to macrophages, and thereby preventing phagocytosis [91,92]. Magrolimab,
a humanized monoclonal antibody targeting the human cell surface antigen CD47, was
an effective and tolerable treatment choice when it was combined with rituximab and
chemotherapy in a phase 1b clinical study of patients with DLBCL. Further studies should
be performed to confirm these data and explore the potential significance of incorporating
magrolimab into the therapeutic schemes of DLBCL [93].

2.8. Cancer-Associated Fibroblasts

Resting fibroblasts are mesenchymal cells in the connective tissue [94]. They have
been called “cockroaches of the human body”, since they can survive in severe, stressful
conditions when all other cells cannot [89]. Resting fibroblasts can differentiate into active
fibroblasts, which can generate growth factors and synthesize ECM [94]. Active fibroblasts
are different from cancer-associated fibroblasts (CAFs), which contribute to tumorigenesis
via enhanced migratory capacity, autocrine growth factor-induced signaling, and increased
levels of secretory molecules [21,94]. CAFs are crucial modulators of tumor immunity,
and they are a heterogeneous and plastic population within the TME [95]. Distinct CAF
subtypes have been recognized, characterized by different molecular markers, such as
myofibroblast-like CAFs (myCAFs), inflammatory CAFs (iCAFs), and antigen-presenting
CAFs (ApCAFs), and they have distinct biological features and different roles in tumor
development [95–97]. Subcategories of CAFs are not permanent, but interconvertible via
manipulation of specific signaling, such as the conversion between iCAFs and myCAFs
via the TGFβ- or IL-6 signaling pathway of CAFs [95]. Regarding DLBCL, the “stromal 1”
gene signature shows enrichment in CAFs, with its expression inversely correlated to the
tumor stage [21]. Therefore, CAFs theoretically contribute to the trapping of B cells in a
specific anatomical location and preventing their spread [21,98]. The failure of clinical trials
targeting CAFs highlights their plasticity and dynamic complexity, as well as the necessity
of further studies to increase our understanding of CAF identity and function [95].
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To sum up, the TME comprises various cellular constituents, including immune cells
such as T cells, DCs, macrophages, and neutrophils, as well as cancer-associated fibroblasts.
These components play crucial roles in tumor progression, immune evasion, and response
to therapy, emphasizing their importance in comprehending and potentially targeting
DLBCL.

3. Extracellular Matrix and Stromal Signature

The extracellular matrix (ECM) is a complex mixture of various proteins, mineral
deposits, and proteoglycans produced by stromal cells. It serves to both support cells and
regulate the interactions among them [78]. Genes that encode several ECM components,
including collagen, laminin, and matricellular proteins, were linked to the “stromal-1
signature” and a better clinical outcome, as explained below [99].

More specifically, two gene expression signatures of non-malignant cells were de-
scribed in patients with DLBCL [84]. These two subgroups were associated with different
prognostic and predictive values, since the “stromal-1” response was correlated with a
better prognosis, while an elevated expression of the “stromal-2” signature was associated
with unfavorable outcomes and increased tumor blood vessel density [99]. Increased
expression of the “stromal-1” signature was detected in tumors with abundant extracel-
lular matrix elements and a high number of macrophages [99]. This signature encodes
components of the ECM, including fibronectin, osteonectin, various collagen and laminin
isoforms, and the antiangiogenic factor thrombospondin. In addition, it encodes modifiers
of collagen synthesis (LOXL1 and SERPINH1), proteins that remodel the ECM (MMP2,
MMP9, MMP14, PLAU, and TIMP2), and the connective-tissue growth factor (CTGF), a
secreted protein that can initiate fibrotic responses [99,100]. In addition, the “stromal-1”
signature comprises genes that are typically expressed in cells belonging to the monocytic
lineage, such as the transcription factor CEBPA encoding the transcription factor C/EBPα
(the CCAAT enhancer-binding protein alpha) and the CSF2RA encoding the colony stimu-
lating factor 2 receptor subunit alpha [99]. Secreted protein acidic rich in cysteine (SPARC),
also called osteonectin, is expressed by macrophages and plays an important role in the
development of lymphoid malignancies, since it has been described as either a tumor
suppressor or a tumor promoter [101,102]. In a cohort of 173 patients with DLBCL, the
combined immunohistochemical assessment of fibronectin and SPARC was found to be an
important tool for the prediction of survival [103]. Higher expression of each of them was
associated with longer OS, and their combination had stronger prognostic significance [103].
The “stromal-2” signature includes markers of endothelial cells, such as von Willebrand
factor (VWF) and CD31, or platelet endothelial cell adhesion molecule (PECAM-1), as well
as other genes specifically expressed in endothelium, such as EGFL7, MMRN2, GPR116,
and SPARCL1. Furthermore, this signature encodes key regulators of angiogenesis such
as VEGF and genes expressed only in adipocytes, including ADIPOQ, FABP4, RBP4, and
PLIN [99].

4. Immune Evasion of DLBCL

Various types of cancer employ immune evasion as a pathogenetic strategy during
their progression. The primary mechanisms involved include the avoidance of circulating T
lymphocytes or eluding detection by NK cells [78]. Multiple ways in which malignant cells
manage to escape anti-tumor immune surveillance have been identified [104]. It is estimated
that about three-quarters of DLBCLs carry genetic abnormalities in genes linked to immune
evasion [6,7]. These gene aberrations associated with immune evasion are notably prevalent
in the C1 and C5 subtypes, or in the MCD genetic subtype, are characterized by frequent
occurrences of MYD88L265P and/or CD79B mutations, and are attributed to the ABC
subtype [6,7]. The MHC-I expression plays a crucial role. MHC-I molecules are composed
of a heavy (α) chain, encoded by HLA-I, and a light chain (β2-microglobulin, β2M), encoded
by B2M [104]. Antigen-specific cytotoxic T lymphocytes engage with the MHC-I complex
on target cells via a T-cell receptor (TCR) complex. Upon receiving a co-stimulatory signal,
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cytotoxic T cells become activated and proceed to eliminate the target cells [104,105]. The
most prevalent mechanism associated with immune evasion is the absence of cell-surface
expression of MHC-I, which is detected in approximately 50% of DLBCL cases [106]. In
approximately 29% of DLBCL cases, genetic alterations can render the β2M gene inactive,
thereby impeding the cell-surface presentation of the HLA-I complex, resulting in tumor
cell evasion from cytotoxic T-cell surveillance [107]. Moreover, CD58, the receptor for NK
cells and T cell CD2+, plays a crucial role in this evasion process. Inactivation of the CD58
gene was identified in 21% of DLBCLs, and it was notably more prevalent in the ABC
subtype [107]. This inactivation leads to impaired recognition of tumor cells by cytotoxic T
cells and NK cells [107]. The immune evasion process also includes reduced expression of
the MHC-II, which presents tumor-specific antigens to CD4+ T cells [108]. Loss of MHC-II
expression was correlated with decreased infiltration of T cells and a poorer prognosis [109].

The CD70 and TNFSF9 genes, which are suspected tumor suppressor genes, belong to
the tumor necrosis factor superfamily [110]. CD70 engages with CD27 on T cells, initiating
a signaling axis that promotes cell survival, boosts T-cell proliferation, and is believed to
exert anti-tumor effects [111]. TNFSF9 binds to TNFRSF9 (CD137, 4-1BB) on activated T
cells, thereby stimulating T-cell proliferation [112]. Aberrations on both these genes are
detected in DLBCL, playing an important role in immune evasion [104]. As previously
discussed, dysregulation of immune checkpoints, such as PD1, LAG3, and TIM-3, can
lead to T-cell exhaustion. Novel immunotherapies (immune checkpoint inhibitors) are
under investigation in patients with DLBCL [104,113]. Genetic disorders that impact
genes responsible for modifying epigenetic processes are prevalent in DLBCL, with a
detection rate of over 60% [6,7]. Such epigenetic modifier genes include the histone-lysine
N-methyltransferase 2D (KMT2D), the enhancer of zeste homolog 2 (EZH2), the cyclic-adenosine
monophosphate response element-binding protein (CREBBP), and histone acetyltransferase p300
(EP300) [104]. Genetic mutations that control epigenetic processes cause changes in the
expression of several genes, affecting immune recognition molecules, response modifiers,
and cytokines. The reorganization of the gene expression landscape is crucial in shaping
the TME, leading to the progression of lymphoma. Several potentially effective treatment
drugs that specifically target epigenetic modifiers are now being studied in patients with
DLBCL [104,114]. Tazemetostat, a selective and orally available inhibitor of EZH2, has
shown promising results in patients with R/R DLBCL in a phase 1 clinical study [115].
In another phase 1b study, tazemetostat was combined with atezolizumab, a monoclonal
antibody targeting programmed death-ligand 1 (PD-L1) in patients with relapsed and
refractory DLBCL. The combination was safe; however, the overall response rate was only
16% [116].

Histone deacetylases (HDACs) are a class of proteases that play an important role
in the regulation of gene expression and are implicated in the development and drug
resistance of lymphoma. When HDACs are abnormally expressed, they disrupt histone
acetylation, resulting in the suppression of gene transcription and reduced CD20 expression,
therefore mediating immune evasion [117,118]. HDAC inhibitors have shown promising
results in DLBCL cell lines via the upregulation of CD20, enhancing the efficacy of anti-
CD20 monoclonal antibodies and promoting lymphoma cell apoptosis [117]. Panobinostat,
a pan-HDAC inhibitor, induced highly durable responses in certain patients with R/R
DLBCL in a phase 2 clinical study [119]. Unfortunately, the results were not confirmed
in another phase 2 clinical study, when panobinostat was tested as a single agent or in
combination with everolimus in patients with R/R DLBCL [120]. Vorinostat, another
HDAC inhibitor, has also been examined alone or in combination with pembrolizumab,
showing promising results, mainly in patients with primary mediastinal DLBCL [121].

Interrelated intrinsic and extrinsic mechanisms may influence the highly complex
interaction between malignant B cells and cellular components in the TME, ultimately
leading to immune escape [21]. Cellular elements from both immune and stromal origins
create complex cell-to-cell and paracrine networks with tumor B cells. This reciprocal
modulation involves malignant clones and TAMs, as well as stromal and immune cells such
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as neutrophils, T cells, and DCs, through the expression of chemokines and cytokines and
the deposition of ECM components [122]. In addition, accessory cells such as neutrophils
and stromal cells can regulate tumor survival [66,123]. The cooperative interaction between
neoplastic B cells and their supporting stromal cells facilitates and maintains cancer’s
hallmarks, such as resistance to cell death (anti-apoptosis and drug resistance), sustained
cell proliferation, angiogenesis, immune suppression, stemness and self-renewal, and cell
homing and invasion, thereby promoting tumor progression [124].

5. Conclusions

Overall, the complex interaction between different immune cells in the TME of lym-
phomas, namely DLBCL, highlights the intricate nature of immune control and its impact
on disease progression and patient outcomes. T cells, including CD4+ T cells and TFH
cells, play pivotal roles in orchestrating immune responses, modulating B cell-mediated
immunity, and determining the germinal center reaction. Treg cells, identified by FOXP3 ex-
pression, play a role in immunological tolerance and homeostasis, although their prognostic
significance in DLBCL remains uncertain. Furthermore, immune checkpoint molecules
such as PD-1 and TIM-3 mediate the exhaustion of CD8+ T cells, underscoring the necessity
of investigating novel immune checkpoint inhibitors in DLBCL treatment strategies. In
addition to T cells, other immune cell populations such as B cells, NK cells, MDSCs, mast
cells, dendritic cells, and TAMs have substantial effects on tumor progression and patient
outcomes. Notably, the ECM, the stromal signature, and the CAFs all play a part in how
the TME is controlled and how it impacts the development of DLBCL, and how it responds
to treatment. Recognizing the multifaceted interactions among immune cells, stromal com-
ponents, and tumor cells offers exciting prospects for developing innovative therapeutic
approaches targeting the immune landscape of DLBCL (Table 2).

Table 2. Potential therapeutic agents targeting tumor microenvironment in diffuse large B-cell
lymphoma.
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