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Abstract: Estrogen receptor-positive (ER+) breast cancer is common among postmenopausal women
and is frequently treated with Letrozole, which inhibits aromatase from synthesizing estrogen from
androgens. Decreased estrogen slows the growth of tumors and can be an effective treatment. The
increase in Letrozole resistance poses a unique problem for patients. To better understand the
underlying molecular mechanism(s) of Letrozole resistance, we reanalyzed transcriptomic data by
comparing individuals who responded to Letrozole therapy (responders) to those who were resistant
to treatment (non-responders). We identified SOX11 and S100A9 as two significant differentially
expressed genes (DEGs) between these patient cohorts, with “PLK1 signaling events” being the
most significant signaling pathway. We also identified PRDX4 and E2F8 gene products as being
the top mechanistic transcriptional markers for ER+ treatment resistance. Many of the significant
DEGs that we identified play a known role in ER+ breast cancer or other types of cancer, which
partially validate our results. Several of the gene products we identified are novel in the context of
ER+ breast cancer. Many of the genes that we identified warrant further research to elucidate the
more specific molecular mechanisms of Letrozole resistance in this patient population and could
potentially be used as prognostic markers with further wet lab validation. We anticipate that these
findings could contribute to improved detection and therapeutic outcomes in aromatase-resistant
ER+ breast cancer patients.
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1. Introduction

Breast cancer is the second leading cause of cancer death in women [1]. Approximately
13% of women will develop invasive breast cancer, with 3% of women dying from it [1].
Roughly 83% of invasive breast cancer cases are diagnosed in post-menopausal women
(50 years or older), with 91% of the deaths occurring in the same age group [1,2]. Given
that those who are 65 years of age or older are the largest growing subpopulation in the
United States (16.8% of the total population in 2020) [3], the overall number of new breast
cancer cases is expected to rise accordingly. The American Cancer Society predicts that
over 310,000 women in the United States will be diagnosed with breast cancer in 2024 [4],
which is expected to rise to ~440,000 by 2030 [5].

Breast cancer can be classified as a heterogenous disease. Among the various types
of breast cancer, some types have an affinity for particular hormones that contribute to
rapid tumor growth. Three important markers that are generally used to classify breast
cancer involve the positive or negative presence of the estrogen receptor (ER), progesterone
receptor (PR), and/or the human epidermal growth factor receptor 2 (HER2) protein on
the cell surface [6]. The estrogen and progesterone receptors both belong to the steroid

Curr. Issues Mol. Biol. 2024, 46, 7114–7133. https://doi.org/10.3390/cimb46070424 https://www.mdpi.com/journal/cimb

https://doi.org/10.3390/cimb46070424
https://doi.org/10.3390/cimb46070424
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cimb
https://www.mdpi.com
https://orcid.org/0000-0001-7930-8160
https://doi.org/10.3390/cimb46070424
https://www.mdpi.com/journal/cimb
https://www.mdpi.com/article/10.3390/cimb46070424?type=check_update&version=2


Curr. Issues Mol. Biol. 2024, 46 7115

receptor subgroup of ligand-activated transcription factors within the nuclear receptor
superfamily [7]. Their presence is a strong predictor of the efficacy of adjuvant and ther-
apeutic hormonal therapy [7]. Amplification of the ERBB2 gene in tumor cells leads to
increased presence of the protein at the cellular membrane, leading to potent proliferative
and anti-cell death signaling [8,9]. Taken together, the ER, PR, and HER2 play a central role
in the detection, diagnosis, and therapy of breast cancer [10–13].

Given that estrogen contributes to the promotion and progression of breast cancer,
some therapeutic strategies specifically target estrogen synthesis via the ER and its asso-
ciated intracellular signaling pathways [14]. The aromatase enzyme then catalyzes the
final conversion of androgens into estrogens [14,15]. Thus, aromatase was identified as
a potential therapeutic target in the late 1970s with the synthesis of aminoglutethimide
as the first aromatase inhibitor (AI) [16]. The low specificity and selectivity of this early
therapeutic led to the synthesis of subsequent aromatase inhibitors, with the most recent
being Letrozole [16]. The increased affinity of Letrozole to the catalytic site of the aromatase
enzyme competitively inhibits the binding of the precursor reactant to the aromatase en-
zyme [14]. Moreover, Letrozole has greater potency than other Ais, including anastrozole,
exemestane, formestane, and aminoglutethimide [14]. Seventy-seven percent of all breast
cancers are ER-positive (ER+); thus, treatment with aromatase inhibitors is currently the
standard treatment for all postmenopausal women [7]. Although Letrozole is one of the
most commonly used treatments for ER+ breast cancer, it also has limitations [17,18]. A
prior study showed that the overall response rate (ORR) among a large multi-national
study of postmenopausal women was 55% [17]. The ORR quantitatively represents the
percentage of patients that achieve a favorable response, either total (complete disappear-
ance of cancerous tissue) or partial (defined as a decrease in tumor size by at least 30%) [19].
Response rates are determined by either a mammogram or an ultrasound [17]. To our
knowledge, the ability of existing prognostic methods to accurately identify treatment
resistance prior to treatment is lacking.

A prior study examining the intracellular transcriptional response to Letrozole treat-
ment used RNA-sequencing data to identify Proline-Rich Protein 11 (PRR11) as the only
significantly overexpressed gene among 51 genes in chromosome arm 17q23. Focusing their
analysis and validation work on this single PRR11-containing locus in treatment-sensitive
vs. treatment-resistant ER+ breast cancer patients was useful [20], and amplification of this
locus has been shown to correlate with poor clinical outcomes in breast cancer [21].

The aim of the current study is to perform a secondary analysis of the complete
transcriptome from the same original RNA-sequencing study in treatment-sensitive vs.
treatment-resistant ER+ breast cancer patients. We expect that re-analyzing this valuable
dataset will identify genes, signaling pathways, and transcriptional mechanisms across the
whole human transcriptome that are significantly associated with resistance to letrozole
treatment in patients with ER+ cancer.

2. Materials and Methods
2.1. Retrieving Fastq Files, Preprocessing, and Enriching RNA-Sequencing Data

The sratools software (version 2.10.8) package was used to download the RNA-
sequencing fastq files from the desired study (Gene Expression identifier: GSE145325)
from the Sequence Read Archive (SRA) database at NCBI [20,22]. The fastq files were then
pre-processed and analyzed using the snakemake-based Automated Reproducible Modular
Workflow for Preprocessing and Differential Analysis of RNA-seq Data (ARMOR; version
1.5.7) [23,24]. This preprocessing workflow applies the following methods using established
algorithms: (1) quality control with fastqc [25] using default parameters; (2) trimming with
TrimGalore! [26] using default parameters, including a minimum quality score of 20, a
phred scale of 33, and a minimum length of 20 bases; (3) pseudomapping and quantifica-
tion to the human transcriptome (GRCh38 release 98) using Salmon (version 1.3.0) [27]
with a k-mer setting of 31, a read length of 63, and the following flags: seqBias,gcBias,
fldMean=250, and fldSD=25; (4) read count normalization and differential gene expression
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using edgeR (version 3.36.0) [27,28] with default parameters; and (5) functional enrich-
ment using CAMERA (version 3.50.3) [29], with default parameter enriching against the
H, C2, and C5 Molecular Signature database gene sets. Although the trimming and/or
differential expression algorithms may change, each of these steps is commonly applied to
preprocessing RNA-sequencing data.

The differential gene expression results were then used as an input to the Signaling
Pathway Impact Analysis (SPIA; version 2.50.0) algorithm [30], with default parameters
other than using 2000 replicates and a Bonferroni-adjusted p-value cutoff of 0.05. This
algorithm uses bootstrapping and a null distribution to calculate significantly perturbed
pathways that are enriched in statistically significant DEGs, regardless of the fold-change
value or direction [31–33]. The SPIA method was specifically chosen because of its ability
to take into account the topology of gene products that contribute to a pathway rather
than simply calculating whether there is a significant overlap between the significant
genes and the pathway, which decreases the number of false-positive results. Another
benefit is that this algorithm uses bootstrapping and permutation to calculate a custom null
distribution for each pathway. This null distribution is then used to determine a specific
and unique p-value for the differentially expressed genes in the dataset for each pathway.
This approach generally produces fewer false-positive results when compared to other
hypergeometric-based methods and enables it to predict whether any significant pathway
is activated or inhibited without needing to perform separate analyses of upregulated and
downregulated DEGs [30–33].

2.2. Target and Mechanistic Marker Prediction

The Pathway2Targets algorithm (version 2.2) was then used to predict and prioritize
relevant therapeutic targets from the transcriptomics signatures that could be repurposed
in the case of Letrozole resistance, similar to prior work [34–37]. Briefly, this algorithm
identifies known drug targets within each of the significant signaling pathways. It then
uses multiple criteria from the OpenTargets database [38], as well as the signaling pathway
information, to rank the relevant therapeutics and their targets according to a customizable
weighting scheme. The justification for this approach is that a gene product does not need
to be differentially expressed to be a relevant therapeutic target that is capable of reducing
the signs and/or symptoms of a given condition, particularly if the target is upstream of
one or more significant DEGs.

Separately, the Salmon read counts for each sample were combined into a tabular
format and labeled as “resistant” or “sensitive” to treatment with Letrozole. This table
was then used as an input to the XGboost algorithm [39], which implements a tree-based
method to train a model from 80% of the dataset and then quantifies its performance
using the remaining 20% of the data [40,41], which minimizes model overfit. For the initial
analysis, the gain metric was calculated from the read counts for all detected genes across all
samples. The results were sorted in descending order, such that the genes/features with the
highest gain value were listed first. Given the gain metrics from the whole transcriptome,
the number of genes/features being evaluated was reduced to the best two mechanistic
markers from the original analysis since this is a number that is easily accommodated by
qRT-PCR (or similar) molecular methods. This approach has been successfully applied
previously with acceptable performance and accuracy [40–42]. The XGboost algorithm was
selected since prior work has shown that tree-based classifiers are faster and more accurate
than other machine learning-based methods such as support vector machines, neural
networks, and Bayesian approaches [43]. The XGboost parameters that were changed from
the default included: constructing 10,000 parallel trees to ensure appropriate coverage of
the available tree space, a subsample of 0.5, using a binary–logistic objective, and an area
under the curve (AUC) evaluation metric.
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2.3. Protein Network Analysis

The public protein–protein interactions in the STRING database were used to construct
a PPI network for all significant DEGs, the top five targets, and the top five mechanistic
transcriptional markers [44]. Cytoscape was then used to visualize the network, while
the 12 algorithms incorporated into the cytoHubba app were used to compute multiple
node-based metrics from the Cytoscape network [45,46]. These algorithms were specifically
selected to predict key nodes from a network while also minimizing bias due to either
high-degree or low-degree proteins [46].

3. Results
3.1. The Majority of Differentially Expressed Genes in ER+ Treatment Resistance Are Upregulated

We began by retrieving, preprocessing, and analyzing an existing dataset, which
consisted of 58 ER+ stage II or stage III primary breast tumor samples from newly diagnosed
female patients who had been treated with Letrozole for a median of 7.2 months prior to
surgery. These patients were at least 60 years old when the original study started, had a mix
of progesterone receptor presence, were primarily HER2-negative, and consisted mostly of
ductal carcinoma. No mention of prior treatment with other therapeutics was associated
with the original study.

The RNA sequencing data from these clinical samples are publicly available in the
NCBI Gene Expression Omnibus (GEO) database. Our analysis detected a total of 18,735
genes between responders (treatment-sensitive patients) and non-responders (treatment-
resistant patients), with 105 of those genes having significant differential expression (FDR
p-value < 0.05; Table 1; Supplementary Table S1). This significance cutoff was used since
the FDR method applies a multiple hypothesis correction to reduce false positives in the
results when many statistical tests are performed.

Table 1. Metrics for the original 58 ER+ breast cancer samples treated with Letrozole.

Metrics Study Information

Gene Expression Omnibus (GEO) Study
Identifier GSE145325

Title RNA sequencing of ER+ breast tumor treated
with Letrozole

Platform Illumina HiSeq 3000

Diagnostic criteria

Resistance to estrogen suppression was defined
by a preoperative endocrine prognostic index
(PEPI) ≥ 4 and/or evidence of cancer relapse

after a median follow-up of 5 years
Number of responders vs. non-responders 36 vs. 22

We observed that among these 105 Differentially Expressed Genes (DEGs) (Figure 1),
the top 20 (Table 2) included 17 protein-coding genes that consisted of two S100 calcium-
binding proteins, various transcription factors, and matrix metallopeptidase 7 (Figure 1
and Table 2). Three of the top twenty DEGs coded for immunoglobulin variable regions,
while one was a putatively transcribed unprocessed pseudogene, Ovostatin II. All but
one of these 20 DEGs were upregulated in the group that failed to respond to Letrozole
treatment. The sole exception to this was the downregulation of the gene that encodes
the growth arrest and DNA-damage inducible gene 45 gamma expression (GADD45G),
which is involved in the regulation of cell growth and apoptosis [47] and showed a log2
fold-change (log2FC) value of −1.62.
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1.5; FDR-corrected p-value < 0.05, equivalent to -log10FDR of 1.3). The 15 most statistically significant 
DEGs (11 up-regulated and 4 down-regulated) are labeled. 
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S100A8 4.7 2.96 1.77 × 10−5 S100 calcium-binding protein A8  

IGLV3–25 5.15 6.27 0.000184 Immunoglobulin lambda variable 3–25 
MMP7 4.11 4.84 0.000665 Matrix metallopeptidase 7  
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Figure 1. A volcano plot of all differentially expressed genes (DEGs). Each dot represents a gene product,
with blue dots representing those that were significantly downregulated (log2FC < 1; FDR-corrected
p-values < 0.05) and red representing DEGs that were significantly upregulated (log2FC > 1.5; FDR-
corrected p-value < 0.05, equivalent to −log10FDR of 1.3). The 15 most statistically significant DEGs (11
up-regulated and 4 down-regulated) are labeled.

Table 2. Metrics and information for the top five statistically significant differentially expressed genes.

Gene Symbol Log2
Fold-Change

Log Counts Per
Million (CPM) FDR p-Value Gene Name

SOX11 3.87 3.74 8.07 × 10−6 SRY-box transcription factor 11
S100A9 4.53 5.06 1.77 × 10−5 S100 calcium-binding protein A9
S100A8 4.7 2.96 1.77 × 10−5 S100 calcium-binding protein A8

IGLV3–25 5.15 6.27 0.000184 Immunoglobulin lambda variable 3–25
MMP7 4.11 4.84 0.000665 Matrix metallopeptidase 7

The original study identified PRR11 as one of the few statistically significant differen-
tially expressed genes among the 51 genes in chromosome arm 17q23 that were included
and validated in their analysis [20]. However, our analysis identified PRR11 to be the
1211th differentially expressed gene across the whole transcriptome, which did not surpass
the statistical (FDR-adjusted p-value < 0.05) threshold for significance.

3.2. The Signaling Pathway Impact Analysis Identified Four Significantly Affected Pathways

We then wanted to determine which intracellular signaling pathways were signif-
icantly enriched with the detected DEGs using the Signaling Pathway Impact Analysis
(SPIA) algorithm (Bonferroni-adjusted p-value < 0.05). Briefly, this robust pathway en-
richment algorithm uses a bootstrap-based approach to generate a null distribution for
each pathway and calculate a p-value. The results from our pathway enrichment anal-
ysis included four pathways that were predicted to differ between responders and non-
responders to Letrozole treatment (Table 3). These pathways included those associated
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with activated “PLK1 signaling events and anti-tumoral activity” as well as the activated
“FOXM1 proliferation-associated transcription factor network”.

Table 3. Metrics for all significantly affected intracellular signaling pathways and their predicted
modulation.

Rank Pathway Name Total # of Pathway
Members

# DEGs in
Pathway

Bonferroni
p-Value

Predicted
Modulation

1 PLK1 signaling events/anti-tumoral activity 44 23 5.84 × 10−10 Activated

2 Syndecan-1-mediated signaling
events/leukocyte adhesion 30 8 0.00018429 Activated

3 FOXM1 proliferation-associated
transcription factor network 36 14 0.0105863 Activated

4 HIF-1-alpha transcription factor
network/oxygen homeostasis 60 17 0.01923722 Inhibited

3.3. Targets Prioritized for Repurposing from the Identified Pathways

We then wanted to use the pathway results to predict any existing therapeutic tar-
gets that could be repurposed to treat the resistance phenotype with small molecules,
monoclonal antibodies, peptides, or other modalities. We consequently applied the Path-
way2Targets algorithm to perform this target prioritization analysis, which predicted 60
therapeutic targets (Table 4 and Supplementary Table S2). Briefly, this algorithm calculates
a weighted score for each target based on the sum of values assigned to 26 attributes. No-
tably, the predicted targets for the non-response (resistance) phenotype included Vascular
endothelial growth factor A (VEGFA), a current target for solid tumors, as well as Estrogen
Receptor 1 (ESR1), Nitric Oxide Synthase 2 (NOS2), and various matrix metalloproteinases
(MMP9 and MMP2).

Table 4. Ranked list of top five repurposed therapeutic targets predicted to aid with the resistance
phenotype.

Target Symbol Target Name Weighted Score (Higher Is Better)

VEGFA Vascular endothelial growth factor A 2220.5
ESR1 Estrogen Receptor 1 1771

MMP9 Matrix Metallopeptidase 9 1699
FGFR3 Fibroblast Growth Factor Receptor 9 1589
AKT1 AKT serine/threonine kinase 1 1571

3.4. Machine Learning Predicted Two Robust Mechanistic Transcriptional Markers

We next wanted to predict a subset of mechanistic transcriptional markers that could
potentially be used to better identify patients who will not respond to treatment with
Letrozole and better understand their underlying resistance mechanism(s). To perform this
analysis, we applied a decision tree-based machine learning approach to predict features
(i.e., expressed genes) that most accurately classify Letrozole treatment responders vs. non-
responders. We used the read counts for all samples as the input for this analysis to identify
and rank 278 transcriptional biomarkers by the gain metric (Table 5). The performance
metrics for all 278 transcriptional biomarkers yielded an area under the receiver-operator
characteristic (AUROC) curve of 0.972 (97.2%; Figure 2), indicating an exceptional ability
to classify Letrozole responders vs. non-responders based on global gene expression. The
sensitivity for this complete set of mechanistic transcriptional markers was predicted to be
100%, with a predicted specificity of 94%.
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Table 5. Description and metrics for the top five predicted mechanistic transcriptional markers from
all detected genes, ranked in decreasing order by gain.

Feature Gain Cover Frequency Antibody Available Log2FC
(FDR p-Value) Location

PRDX4 0.032 0.027 0.023 Monoclonal 0.807
(0.0326)

Secretory granules; the ER;
and exosomes

E2F8 0.031 0.025 0.021 Monoclonal 1.4
(0.266) Cytosol and nucleus

IQGAP3 0.024 0.020 0.016 Monoclonal 1.2
(0.266)

Cytosol and plasma
membrane

ATP6V1C2 0.021 0.018 0.015 Monoclonal 2.44
(0.0263)

Cytosol; lysosomes; and
exosomes

CDCA8 0.017 0.014 0.011 Monoclonal 1.37
(0.101) Cytosol and nucleus
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gene products as inputs showed high overall specificity (x-axis) and sensitivity (y-axis) for detecting
Letrozole resistance in patients, with an AUC value of 97.2%.

Given the resources required to generate whole transcriptome data using RNA-
sequencing, we repeated our machine learning analysis to predict the mechanistic tran-
scriptional markers that are most associated with treatment nonresponse in this patient
population. To achieve this, we used the top two mechanistic markers from our first analysis
as an input for a subsequent analysis. This more focused second analysis identified PRDX4
and E2F8 transcripts as markers with potential as diagnostic targets, with an AUROC for
only these two gene products of 0.854 and an overall accuracy of 88.2% (Figure 3).
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Figure 3. The area under the receiver operator characteristic curve shows acceptable performance for
the top two transcripts. A secondary computational analysis using the highest ranked mechanistic
markers from the whole transcriptome prediction (PRDX4 and E2F8). This analysis showed the
combination of these two gene products having acceptable specificity (x-axis) and sensitivity (y-axis)
for detecting Letrozole resistance in patients, with an AUC value of 85.4%.

3.5. Protein–Protein Interactions Reveal a Potential Treatment Resistance Network

We then constructed a protein–protein interaction (PPI) network to predict the pro-
tein(s) that potentially played a role in Letrozole resistance for these patients (Figure 4).
To achieve this, we retrieved the known PPIs from the public STRING database for the
105 DEGs, as well as the top five drug targets and the top five transcriptional biomarkers.
Interestingly, this analysis revealed a relatively well-connected local network, which indi-
cates that the majority (87/115) of the input gene products directly interacted with each
other and at least partially supports our earlier predictions. We applied all 12 available
algorithms within the CytoHubba app to this network to identify the key proteins with
minimal bias to any individual approach. We then calculated the rank determined by
each algorithm and then averaged them together. This analysis identified the top 10 “key”
proteins in the network as CDK1, CCNB1, CCNA2, BIRC5, AKT1, ESR1, MMP9, CDCA8,
CCND1, and PLK1. We found the ESR1, PLK1, MMP9, and AKT1 proteins to be of particu-
lar interest since they were identified previously as the targets of Letrozole, a significant
signaling pathway, and two therapeutic targets. This profile at least partially represents the
intracellular transcriptional response to Letrozole therapy.



Curr. Issues Mol. Biol. 2024, 46 7122
Curr. Issues Mol. Biol. 2024, 46, FOR PEER REVIEW 9 
 

 

 
Figure 4. Protein–protein interaction network of DEGs, predicted targets, and top predicted mark-
ers. A graphical representation showing the interactions (edges) for each of the proteins (nodes) 
from the STRING-DB database. The 87 gene products that directly interacted with each other were 
included in a single network. The input consisted of the 105 DEGs (blue-colored nodes), top five 
predicted therapeutic targets (salmon-colored nodes), and top five predicted transcriptional bi-
omarkers (orange-colored nodes). 

4. Discussion 
The primary aim of the current study was to perform a secondary analysis of a pub-

licly available RNAseq dataset produced from 58 samples from patients with ER+ breast 
cancer following Letrozole treatment. In addition to finding PRR11-related mechanisms, 
the original study reported a cluster of E2F4-regulated genes that were sensitive to subse-
quent CDK4/6 inhibitor (palbociclib) treatment in a separate cohort of ER+ breast cancer 
patients [43]. 

Our analysis identified 105 statistically significant DEGs, with the top 20 gene prod-
ucts consisting of 17 protein-coding genes, including three encoding immunoglobulin var-
iable regions and one pseudogene. We also identified four significant signaling pathways, 
twenty therapeutic targets that could be repurposed to reduce Letrozole resistance and/or 
target resistance cells, and two potential mechanistic transcriptional markers that demon-
strate high combined specificity and sensitivity in identifying Letrozole non-responders. 
Below, we describe our primary findings in the context of breast, and other cancer-related 
studies in an effort to use prior observations to at least partially validate our mechanistic 
findings. 

4.1. Differentially Expressed Genes 
In contrast to our findings, which identified 105 statistically significant DEGs, the 

original study that utilized the same data identified PRR11 as the only differentially ex-
pressed gene among the 51 genes in chromosome arm 17q23 [20]. We believe that the 
mostly likely contributor to this seeming discrepancy was the focus of the original study 

PSAT1

ATG5
GLUD2

S100A8

ASS1

MAP2
DEPDC1

COL18A1

IQGAP3

H3C12

CDCA8

NOS2

SHCBP1

MMP1

PFDN2

KPNA2

BIRC5

SPTBN2

PLK1

CIP2A

KIF13B

MAD2L1

SKP2

PADI3

CDCA7

MMP7

KLK2

MASTL

CDK4

YBEY

NDC80

CCNB1
GTPBP8

KIF11

COL1A1

MUCL1

IGF2BP3
HGF

GCNT3

ESPL1

RASD2

KIF1A

E2F8

PADI2

ANLN

TFRC

S100A9

ENO1

SERPINE1

ELF5

CCNA2

ACE2

COL2A1

YES1

AKT1

FGFR3

PHGDH

ESR1

SOX11

HDAC2

PRDX4

ZADH2

STMN1

MMP9

GLYATL2

ITGA6

TUBB3

GADD45G

CXCR4

MET

H1-1

ITGB2

MAPK3

CA3

CDK1

CCND1

CHI3L2

VDAC1

MMP2

C1orf198

FANCA ABCB1ERO1A

LCN2

ATP6V1C2 NRAS

Figure 4. Protein–protein interaction network of DEGs, predicted targets, and top predicted markers.
A graphical representation showing the interactions (edges) for each of the proteins (nodes) from the
STRING-DB database. The 87 gene products that directly interacted with each other were included
in a single network. The input consisted of the 105 DEGs (blue-colored nodes), top five predicted
therapeutic targets (salmon-colored nodes), and top five predicted transcriptional biomarkers (orange-
colored nodes).

4. Discussion

The primary aim of the current study was to perform a secondary analysis of a pub-
licly available RNAseq dataset produced from 58 samples from patients with ER+ breast
cancer following Letrozole treatment. In addition to finding PRR11-related mechanisms,
the original study reported a cluster of E2F4-regulated genes that were sensitive to subse-
quent CDK4/6 inhibitor (palbociclib) treatment in a separate cohort of ER+ breast cancer
patients [48].

Our analysis identified 105 statistically significant DEGs, with the top 20 gene products
consisting of 17 protein-coding genes, including three encoding immunoglobulin variable
regions and one pseudogene. We also identified four significant signaling pathways, twenty
therapeutic targets that could be repurposed to reduce Letrozole resistance and/or target
resistance cells, and two potential mechanistic transcriptional markers that demonstrate
high combined specificity and sensitivity in identifying Letrozole non-responders. Below,
we describe our primary findings in the context of breast, and other cancer-related studies
in an effort to use prior observations to at least partially validate our mechanistic findings.

4.1. Differentially Expressed Genes

In contrast to our findings, which identified 105 statistically significant DEGs, the
original study that utilized the same data identified PRR11 as the only differentially ex-
pressed gene among the 51 genes in chromosome arm 17q23 [20]. We believe that the
mostly likely contributor to this seeming discrepancy was the focus of the original study on
the particular locus in 17q23 that contains 51 genes. In contrast, our analysis evaluated all
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of the detected mRNAs in the cells, which increased the scope and the statistical stringency
needed to obtain significant results after incorporating multiple hypothesis corrections.
PRR11 underwent substantial differential gene expression in our analysis, although our
thresholds did not categorize it as significant when the whole transcriptome was taken
into account.

Transcription of the SRY-Box Transcription Factor 11 (SOX11) gene (with a log2FC
value of 3.87) was our most statistically significant finding. Briefly, SOX11 is part of the
Sox gene family, comprising 20 transcription factors, which can further be divided into
nine subgroups based on functional similarity [49]. SOX11 belongs to the SoxC group
(composed of Sox4, Sox11, and Sox12), which are critical in the development of the nervous
system and show substantial transactivation potential [50], while also being required for
the generation/proliferation of immature neuron progenitors [51]. SOX11 has recently
been shown to behave as an oncogene and is a critical regulator of basal-like and luminal B
breast cancers and their metastasis to the brain [52–54].

The upregulated S100 calcium-binding Protein A8 and A9 (S100A8 and S100A9) genes
encode a heterodimer of two calcium-binding proteins, referred to as calprotectin [55].
This protein is secreted by neutrophils and is an important proinflammatory mediator in
both chronic and acute inflammation [55]. Calprotectin has recently been discovered to
play an important role in tumorigenesis, cell proliferation, and resistance to traditional
cancer therapies [56,57]. S100 proteins lack the signal peptide required for secretion via
the classical endoplasmic reticulum/Golgi route, and its secretion mechanism is not well
understood [56,58]. Recent discoveries implicate BRCA1, a known tumor suppressor, as
essential for regulating the levels of S100A8 and S100A9 in the body [56,59]. These S100
gene products have also been shown to be secreted due to IL-22 and IL-17 signaling [60],
have been associated with poor outcomes in ductal carcinomas [61], and have been affected
after AI treatment in an animal model [62]. While S100 proteins have been shown to be
host markers of tumor development and progression, their role as modulators of Letrozole
resistance has not been characterized previously. Thus, we believe that further experiments
will help to elucidate the underlying mechanism(s) of S100A8 and S100A9 proteins in
treatment-resistant ER+ breast cancer.

The Immunoglobulin Lambda Variable 3–25 (IGLV3–25) gene codes for light chain vari-
able regions involved with antigen recognition [63,64] and has previously been implicated
in various cancers [63,65,66]. Our analysis also found Matrix Metalloproteinase 7 (MMP7)
to be upregulated in this dataset. This gene product encodes a proteolytic enzyme that
secretes zinc and calcium endopeptidases, which are normally involved in wound healing
and bone growth [67]. It has also been implicated in cancer progression, proliferation,
differentiation, and/or apoptosis [68–70]. Basal-like breast cancer has upregulated MMP7
expression, which has been linked to DKK1 knockdown, a known tumor suppressor in
breast cancer [71]. Interestingly, zoledronate, a common drug used to treat bone damage
and osteoporosis [72–74], has been shown to decrease the expression of MMP7 in breast
cancer cell lines [75].

Engrailed Homeobox 1 (EN1) was another upregulated gene that we identified, which
is a protein-coding gene that helps control development [76] and has been shown to affect
bone metastases from breast cancer tumors [77]. It has been implicated in quadruple-
negative breast cancer and basal-like breast cancer [78–80]. Our findings could potentially
expand its scope of relevance to treatment-resistant ER+ breast cancer. We believe that
future validation experiments should be performed to confirm these differential expres-
sion results.

4.2. Intracellular Signaling Pathways

Our analysis found four notable intracellular pathways that were significantly modi-
fied among non-responders. This analysis predicted the “PLK1 signaling events”, “Syndecan-
1 mediated signaling events”, and “FOXM1 proliferation transcription factor network”
pathways to be activated; the “HIF-1-alpha transcription factor network” was predicted to
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be inhibited. Although the number of pathways is relatively small compared to other algo-
rithms, we believe that applying a Bonferroni p-value correction minimized the number of
false results. It is possible that this approach could be complemented by other approaches
in future studies.

PLK1-related signaling was our most significantly impacted intracellular signaling
pathway (activated among non-responders vs. responders) and is primarily involved in cell
mitosis. PLK1 contributes to many functions, including controlling the G2/M checkpoint,
coordinating the cell cycle, and serving as a regulator of cell division in eukaryotes, as
well as in both DNA replication and chromosome segregation [81,82]. In general, the
overexpression of PLK1 has been associated with various cancer types, including ER+
breast cancer [82,83]. PLK1 inhibition has been shown to exhibit anti-tumoral activity by
blocking mitosis in cells with higher PLK1 expression, making it an attractive target for
cancer therapy [84,85]. PLK1 knockdown in hormone-independent ER+ breast cancer has
been associated with decreased cell viability and sensitization to radiation treatment [86].
These past studies serve to partially validate our significant pathway findings and lend
credence to ongoing research into PLK1 inhibition as a potential treatment for patients with
ER+ breast cancer.

The pathway for Syndecan-1 (SDC1, CD138) signaling was activated in non-responders.
SDC1 is a transmembrane heparan sulfate proteoglycan responsible for maintaining typical
cell morphology and is found abundantly in epithelial cells [87]. The SDC1 pathway is
generally involved in cell proliferation, cell–matrix interactions, growth factor signaling,
and angiogenesis [88,89]. SDC1 overexpression tends to correlate with more aggressive
tumors, and it has an inverse correlation with ER expression [90]. This inverse correlation
between ER expression and SDC1 signaling could help explain why Letrozole was inef-
fective for at least a subset of non-responders and merits further experimentation. Our
analysis also showed MMP-7 as a highly significant DEG, which has been shown to anchor
itself to syndecans and results in the shedding of important membrane-bound ligands,
such as EGF and TGF-a, leading to cell invasion [69]. Future follow-up experiments to
validate these findings could include using CRISPR-i (or similar) systems and/or drugs to
affect these pathways.

4.3. Target Prioritization and Repurposing

Our approach to predicting potential therapeutic targets by combining public data
with analysis-specific pathway information and a customizable weighted scoring method
is unique. While this approach has been useful in the past [32,33], other approaches exist
that could complement our findings. Specifically, since the target data comprise more
antagonists than agonists, this could potentially be a limitation. Vascular endothelial
growth factor A (VEGFA) was the top potential target identified by our prioritization
algorithm, which has already been approved for certain indications, including breast cancer.
This growth factor belongs to a ligand family composed of six related proteins and plays
an important role in breast cancer and other forms of cancer [91]. The primary role of
this protein is to stimulate angiogenesis, which facilitates tumor growth [91,92]. Our
computational prediction of VEGFA as a relevant target warrants future experimentation
and serves as at least a partial validation of our approach.

Estrogen Receptor 1 (ESR1) encodes the estrogen receptor and was identified as a
therapeutic target. Of note, ESR1 has been found to encode gain-of-function mutations that
promote tumor metastasis and resistance to endocrine therapy [93–95] and can be detected
with a liquid biopsy [94]. The detection of ESR1 as a therapeutic target is logical given that
resistance to AI treatment enables the continued activation of signaling pathways that are
modulated by ESR1.

Two additional highly ranked targets identified by our algorithm were Matrix Met-
allopeptidase 9 (MMP9) and Matrix Metallopeptidase 2 (MMP2), both members of the
extracellular matrix metalloproteinase family (MMPs). MMPs assist in extracellular matrix
remodeling through the activation of substrates via enzymatic cleavage [96]. They are



Curr. Issues Mol. Biol. 2024, 46 7125

involved in a variety of normal processes in the body, and their dysregulation plays a vital
role in processes such as aging. Their dysregulation also plays a role in several abnormal
conditions, including preeclampsia among pregnant women and breast cancer [96–98].
Higher levels of MMP9 have been correlated with higher tumor grades and resistance
to endocrine therapy [96]. MMP9 was further characterized as a vital component of the
metastatic cascade early in tumorigenesis that promotes colonization in the lungs [99].
Other studies have implicated MMP2 with tumor metastasis to other organs, including the
brain [100,101]. Overall, both MMP9 and MMP2 have been identified as promising markers
for predicting the prognosis of patients with breast cancer [102,103]. Interestingly, a phase
III clinical trial targeting MMP proteins with marimastat sought to reduce tumor blood
flow in patients with metastatic breast cancer [104]. Although MMP7 was identified as a
significant DEG, it was not predicted as a useful target in this analysis. However, MMP7
is one of the several MMPs that are inhibited by doxycycline, which is a commonly used
treatment for various forms of cancer.

Fibroblast growth receptor 3 (FGFR3) belongs to a family of four highly conserved,
transmembrane receptor tyrosine kinases. Once activated, they initiate intracellular cas-
cades that carry out a variety of functions, including promoting cellular proliferation and
survival [105]. This gene has been reported in other studies to be significantly upregulated
in breast cancer [106]. FGFR3 is a known target of microRNA-593-3p, and the overex-
pression of miR-593-3p down-regulates FGFR3 expression, which slows breast cancer
progression [107]. Various inhibitors of FGFR3 are at various stages in phase I and phase II
clinical trials for breast cancer.

Another potential target we identified was AKT Serine/Threonine Kinase 1 (AKT1).
AKT1, AKT2, and AKT3 are all isoforms of protein kinase B (AKT), an essential member
of the PI3K/AKT signaling pathway [108]. Both AKT1 and AKT2 have been implicated
in breast cancer previously, with some mixed results regarding their specific function.
However, it is generally accepted that AKT1 plays an important role in the early stages
of tumor development (tumor initiation and proliferation), while AKT2 primarily assists
in tumor metastasis [108,109]. The original study for this dataset identified PI3K as an
important player in AI treatment [20], which is supported in other studies [110]. Regardless
of its specific function, AKT1 has a well-documented correlation with breast cancer and is
an appropriate target for pharmaceutical intervention. Additional work at the discovery,
pre-clinical, and clinical stages is needed to determine whether such treatments could
reduce the effect of Letrozole resistance in breast cancer patients.

4.4. Mechanistic Transcriptional Marker Analysis

Our DEG analysis identified expressed genes that significantly differed between the
two groups of samples (resistant vs. sensitive). In contrast, the aim of our mechanistic
marker analysis was to determine the expressed genes that most consistently differed
between the two groups of samples. Although the input for both analyses was the read
counts, we employed a tree-based machine learning model for the mechanistic marker
analysis that does not incorporate traditional statistics. Consequently, we did not expect a
complete overlap between the DEGs and our predicted biomarkers.

Peroxiredoxin-4 (PRDX4), which was an up-regulated gene among non-responders,
was the top transcriptional mechanistic marker identified in our analysis. This gene product
belongs to a family of six small antioxidant isozymes and is generally localized in the
endoplasmic reticulum [111]. PRDX4 plays an essential role in maintaining localized redox
homeostasis and is upregulated when cells are under oxidative stress [112]. PRDX4 has
been described as having a tumor-promoting effect that is well-documented among various
forms of cancer, including lung and renal cancer, leukemia, and glioblastoma [113,114].
Prior work has shown the overexpression of PRDX4 to be associated with poor overall
survival rates, shorter relapse-free survival among breast cancer patients [115,116], and
metastasis. PRDX4 has also been shown to be associated with more advanced breast cancer
tumors [117], which could also contribute to treatment resistance. Interestingly, PRDX4 was
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also identified as a potential therapeutic target for prostate cancer, suggesting a possible
shared mechanism for androgens in both prostate and breast tissues [118,119]. Thus, the
role of PRDX4 as a potential mechanistic marker and potential target in treatment-resistant
breast cancer deserves future exploration.

Early Region 2 Binding Factor (E2F8), an up-regulated DEG from our study, was
another potential mechanistic marker identified by our machine learning analysis. E2F8 is
a member of the E2F family, which assists in assembling the core transcriptional machinery,
making it crucial for cell division [120]. E2F8 has also been shown to promote angiogenesis,
which helps establish the tumor microenvironment and is positively correlated with tumor
malignancies [121,122]. E2F8 has been associated with CDK4/6 inhibitor resistance [123],
is overexpressed in patients with breast cancer, and has been significantly correlated
with poor patient survival and cancer progression [124,125]. E2F8 has been suggested
as a marker of breast relapse-free survival and distant metastasis-free survival in breast
cancer patients [126]. Interestingly, a prior study in HER2- has identified a different
E2F Transcription Factor (E2F4) as having a role in treatment resistance in ER+ breast
cancer [127] and also in the original analysis of our same ER+ cohort [48]. As such, we
believe that the role of E2F8 as a mechanistic marker, specifically in aromatase-resistant
breast cancer, warrants further exploration.

We acknowledge inherent deficiencies in training and applying a machine learning
approach to a relatively small dataset. Unfortunately, although the GEO database had other
bulk RNA-sequencing datasets that characterized HER2+ samples, there were no other
public ER+ Letrozole-treated clinical samples. Consequently, augmenting our model with
additional data was not possible. Additional wet lab validation experiments using qRT-PCR
or similar transcriptional assays will be required in one or more distinct patient populations
to better quantify the accuracy and performance of our predicted mechanistic markers.

4.5. Potential Treatment Resistance Mechanisms

Unfortunately, the original dataset only included samples from responsive and non-
responsive tumors. As such, it was not possible to directly and accurately analyze and
assess the pre-treatment state of the tumor. Similarly, we believe it would not be justified
to incorporate additional comparisons from other datasets that evaluated triple-negative
or ER- breast cancers given the distinct patient populations, enrollment criteria, and other
experimental variables. Even so, our protein network analysis did identify a set of gene
products that may contribute to an increased understanding of the intracellular transcrip-
tional response to Letrozole treatment.

We recognize that a subset of the genes we identified in our analysis of this dataset
are opposite of what has been reported in prior work, specifically MMP9 and ESR1, as
being upregulated in Letrozole-resistant breast cancer tumors, which agrees with our find-
ings [128]. Another study found that estrogen is known to attract and activate neutrophils,
which consequently upregulates the expression of both S100A8 and S100A9, in agreement
with our findings [129]. Multiple immunoglobulin lambda genes, which were upregulated
in our analysis, agree with prior work in humans and mice that showed a similar response
in resistant samples [130,131]. SOX11 has been reported to be downregulated due to epi-
genetic effects in some breast cancer tumors after treatment with Letrozole [52]; however,
SOX11 was found to be upregulated in our analysis. The fact that SOX11 was included in
our protein network suggests that changes in its bulk RNA-seq expression could be driven
by Letrozole treatment, though we are unsure whether this upregulation primarily takes
place within tumor cells or in the tumor-associated immune cells [129]. We anticipate that
additional experiments in cell culture and/or clinical cohorts will be necessary to validate
these findings.

4.6. Study Limitations

We are aware that our analysis was not able to incorporate at least some of the relevant
covariates due to the lack of publicly available metadata, which could have impacted the
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accuracy of our findings. A subset of these covariates could include the patient’s age, tumor
size, clinical stage, ER and progesterone receptor status, and histologic subtype. In addition
to these covariates, there are some questions that could not be answered because of the
original study design that involved surgically collecting samples after treatment. As such,
a direct analysis of samples collected before and after treatment is not possible.

We purposefully selected our cutoff criteria in the various analyses such that the
statistical significance value was primarily used to determine the threshold. Our decision
to not impose a fold-change cutoff enabled us to identify genes with relatively small but
statistically significant changes in gene expression. This approach at least partially accounts
for the cellular heterogeneity in bulk RNA-seq experiments [42,130,131]. We anticipate
that adjusting our fixed threshold approach to a different set of cutoff values could alter
the results.

Although our use of robust and established large-scale statistical methods should
improve confidence in our results, the possibility of false-positives is inevitable. Conse-
quently, we anticipate follow-up experiments in the wet lab to further validate our results.
Additional studies that compare our results to those from triple-negative and/or ER- breast
cancer patients could also be beneficial in efforts to anticipate precision medicine efforts.

5. Conclusions

Our analysis identified genes, pathways, and mechanistic transcriptional markers
that could contribute to improved understanding, prognostics, and characterization of
mechanisms for Letrozole resistance in ER+ breast cancer patients. Future work is needed
to better characterize the identified gene products that do not display a well-understood
function to better understand how the tumor microenvironment interacts with Letrozole.
Further analysis of our predicted biomarkers could also yield clinical applications that
enable treatment regimens specified to particular subsets of patients.
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