Using Precision Medicine to Disentangle Genotype–Phenotype Relationships in Twins with Rett Syndrome: A Case Report
Abstract
:1. Introduction
2. Methods
2.1. Subject Demographics
2.2. Buspirone Administration (Twin A)
2.3. Evaluation of Clinical Severity in Twin A and B
2.4. Measurement of Heart Rate Variability Parameters
2.4.1. Autonomic Heart Rate Variability Parameters
2.4.2. Measurement of Autonomic HRV Parameters
2.5. Targeted Genotyping
2.5.1. Sample Collection
2.5.2. Targeted Genotype Reporting
2.5.3. MECP2
2.5.4. BDNF
2.6. Statistical Analyses
2.7. Informed Consent and Ethics
3. Results
3.1. Longitudinal Monitoring of Clinical Severity and Symptom Frequency
3.1.1. Initiation of Buspirone (Twin A)
3.1.2. Bayesian Inferential Methods: Frequentist Significance Test
3.2. Longitudinal Assessment of HRV Parameters
3.2.1. After Initiation of Buspirone (Twin A)
3.2.2. Non-Parametric Wilcoxon Signed-Rank Tests
3.3. MECP2 and BDNF Genotyping
3.3.1. MECP2
3.3.2. BDNF
4. Discussion
5. Conclusions
6. Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hagberg, B. Clinical manifestations and stages of Rett syndrome. Ment. Retard. Dev. Disabil. Res. Rev. 2002, 8, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Christodoulou, J.; Grimm, A.; Maher, T.; Bennetts, B. RettBASE: The IRSA MECP2 variation database—A new mutation database in evolution. Hum. Mutat. 2003, 21, 466–472. [Google Scholar] [CrossRef]
- Frullanti, E.; Papa, F.T.; Grillo, E.; Clarke, A.; Ben-Zeev, B.; Pineda, M.; Bahi-Buisson, N.; Bienvenu, T.; Armstrong, J.; Martinez, A.R.; et al. Analysis of the Phenotypes in the Rett Networked Database. Int. J. Genom. 2019, 2019, 6956934. [Google Scholar] [CrossRef] [PubMed]
- Cuddapah, V.A.; Pillai, R.B.; Shekar, K.V.; Lane, J.B.; Motil, K.J.; Skinner, S.A.; Tarquinio, D.C.; Glaze, D.G.; McGwin, G.; Kaufmann, W.E.; et al. Methyl-CpG-binding protein 2 (MECP2) mutation type is associated with disease severity in Rett syndrome. J. Med. Genet. 2014, 51, 152–158. [Google Scholar] [CrossRef]
- Fu, C.; Armstrong, D.; Marsh, E.; Lieberman, D.; Motil, K.; Witt, R.; Standridge, S.; Nues, P.; Lane, J.; Dinkel, T.; et al. Consensus guidelines on managing Rett syndrome across the lifespan. BMJ Paediatr. Open 2020, 4, e000717. [Google Scholar] [CrossRef]
- Neul, J.L.; Kaufmann, W.E.; Glaze, D.G.; Christodoulou, J.; Clarke, A.J.; Bahi-Buisson, N.; Leonard, H.; Bailey, M.E.S.; Schanen, N.C.; Zappella, M.; et al. RettSearch Consortium. Rett syndrome: Revised diagnostic criteria and nomenclature. Ann. Neurol. 2010, 68, 944–950. [Google Scholar] [CrossRef]
- Suter, B.; Treadwell-Deering, D.; Zoghbi, H.Y.; Glaze, D.G.; Neul, J.L. Brief report: MECP2 mutations in people without Rett syndrome. J. Autism Dev. Disord. 2014, 44, 703–711. [Google Scholar] [CrossRef]
- Ehrhart, F.; Jacobsen, A.; Rigau, M.; Bosio, M.; Kaliyaperumal, R.; Laros, J.F.J.; Willighagen, E.L.; Valencia, A.; Roos, M.; Capella-Gutierrez, S.; et al. A catalogue of 863 Rett-syndrome-causing MECP2 mutations and lessons learned from data integration. Sci. Data 2021, 8, 10. [Google Scholar] [CrossRef] [PubMed]
- Cosentino, L.; Zidda, F.; Dukal, H.; Witt, S.H.; De Filippis, B.; Flor, H. Low levels of Methyl-CpG binding protein 2 are accompanied by an increased vulnerability to the negative outcomes of stress exposure during childhood in healthy women. Transl. Psychiatry 2022, 12, 506. [Google Scholar] [CrossRef]
- Canton, A.P.M.; Tinano, F.R.; Guasti, L.; Montenegro, L.R.; Ryan, F.; Shears, D.; de Melo, M.E.; Gomes, L.G.; Piana, M.P.; Brauner, R.; et al. Rare variants in the MECP2 gene in girls with central precocious puberty: A translational cohort study. Lancet Diabetes Endocrinol. 2023, 11, 545–554. [Google Scholar] [CrossRef]
- Vidal, S.; Xiol, C.; Pascual-Alonso, A.; O’Callaghan, M.; Pineda, M.; Armstrong, J. Genetic Landscape of Rett Syndrome Spectrum: Improvements and Challenges. Int. J. Mol. Sci. 2019, 20, 3925. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Butler, K.M.; Abidi, F.; Gass, J.; Beisang, A.; Feyma, T.; Ryther, R.C.; Standridge, S.; Heydemann, P.; Jones, M.; et al. Analysis of X-inactivation status in a Rett syndrome natural history study cohort. Mol. Genet. Genom. Med. 2022, 10, e1917. [Google Scholar] [CrossRef] [PubMed]
- Merritt, J.K.; Fang, X.; Caylor, R.C.; Skinner, S.A.; Friez, M.J.; Percy, A.K.; Neul, J.L. Normalized Clinical Severity Scores Reveal a Correlation between X Chromosome Inactivation and Disease Severity in Rett Syndrome. Genes 2024, 15, 594. [Google Scholar] [CrossRef] [PubMed]
- Halbach, N.S.; Smeets, E.E.; van den Braak, N.; van Roozendaal, K.E.; Blok, R.M.; Schrander-Stumpel, C.T.; Frijns, J.; Maaskant, M.A.; Curfs, L.M. Genotype-phenotype relationships as prognosticators in Rett syndrome should be handled with care in clinical practice. Am. J. Med. Genet. A 2012, 158A, 340–350. [Google Scholar] [CrossRef] [PubMed]
- Woolfenden, S.; Farrar, M.A.; Eapen, V.; Masi, A.; Wakefield, C.E.; Badawi, N.; Novak, I.; Nassar, N.; Lingam, R.; Dale, R.C. Delivering paediatric precision medicine: Genomic and environmental considerations along the causal pathway of childhood neurodevelopmental disorders. Dev. Med. Child Neurol. 2022, 64, 1077–1084. [Google Scholar] [CrossRef] [PubMed]
- Boulton, K.A.; Coghill, D.; Silove, N.; Pellicano, E.; Whitehouse, A.J.O.; Bellgrove, M.A.; Rinehart, N.J.; Lah, S.; Redoblado-Hodge, M.; Badawi, N.; et al. A national harmonised data collection network for neurodevelopmental disorders: A transdiagnostic assessment protocol for neurodevelopment, mental health, functioning and well-being. JCPP Adv. 2021, 1, e12048. [Google Scholar] [CrossRef] [PubMed]
- Migovich, M.; Ullal, A.; Fu, C.; Peters, S.U.; Sarkar, N. Feasibility of wearable devices and machine learning for sleep classification in children with Rett syndrome: A pilot study. Digit. Health 2023, 9, 20552076231191622. [Google Scholar] [CrossRef] [PubMed]
- Suresha, P.B.; O’Leary, H.; Tarquinio, D.C.; Von Hehn, J.; Clifford, G.D. Rett syndrome severity estimation with the BioStamp nPoint using interactions between heart rate variability and body movement. PLoS ONE 2023, 18, e0266351. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Ameenpur, S.; Ahmed, R.; Basheer, S.; Chishti, S.; Lawrence, R.; Fiori, F.; Santosh, P. An Observational Study of Heart Rate Variability Using Wearable Sensors Provides a Target for Therapeutic Monitoring of Autonomic Dysregulation in Patients with Rett Syndrome. Biomedicines 2022, 10, 1684. [Google Scholar] [CrossRef]
- Gualniera, L.; Singh, J.; Fiori, F.; Santosh, P. Emotional Behavioural and Autonomic Dysregulation (EBAD) in Rett Syndrome—EDA and HRV monitoring using wearable sensor technology. J. Psychiatr. Res. 2021, 138, 186–193. [Google Scholar] [CrossRef]
- Byiers, B.J.; Merbler, A.M.; Burkitt, C.C.; Beisang, A.; Symons, F.J. Preliminary assessment of the reliability and validity of infrared skin temperature measurements in Rett syndrome. J. Intellect. Disabil. Res. 2023, 67, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Liñares, L.; Méndez, A.J.; Lado, M.J.; Olivieri, D.N.; Vila, X.A.; Gómez-Conde, I. An open source tool for heart rate variability spectral analysis. Comput. Methods Programs Biomed. 2011, 103, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Carroll, M.S.; Ramirez, J.M.; Weese-Mayer, D.E. Diurnal variation in autonomic regulation among patients with genotyped Rett syndrome. J. Med. Genet. 2020, 57, 786–793. [Google Scholar] [CrossRef] [PubMed]
- Weese-Mayer, D.E.; Lieske, S.P.; Boothby, C.M.; Kenny, A.S.; Bennett, H.L.; Ramirez, J.M. Autonomic dysregulation in young girls with Rett Syndrome during nighttime in-home recordings. Pediatr. Pulmonol. 2008, 43, 1045–1060. [Google Scholar] [CrossRef] [PubMed]
- Weese-Mayer, D.E.; Lieske, S.P.; Boothby, C.M.; Kenny, A.S.; Bennett, H.L.; Silvestri, J.M.; Ramirez, J.M. Autonomic nervous system dysregulation: Breathing and heart rate perturbation during wakefulness in young girls with Rett syndrome. Pediatr. Res. 2006, 60, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Validation of Innovative Biosensors for Rett Autonomic Symptom Tracking (VIBRANT). 2024. Available online: https://clinicaltrials.gov/study/NCT06338267 (accessed on 3 May 2024).
- Chen, G.T.; Geschwind, D.H. Challenges and opportunities for precision medicine in neurodevelopmental disorders. Adv. Drug Deliv. Rev. 2022, 191, 114564. [Google Scholar] [CrossRef] [PubMed]
- Posthuma, D.; Polderman, T.J. What have we learned from recent twin studies about the etiology of neurodevelopmental disorders? Curr. Opin. Neurol. 2013, 26, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Einspieler, C.; Marschik, P.B.; Domingues, W.; Talisa, V.B.; Bartl-Pokorny, K.D.; Wolin, T.; Sigafoos, J. Monozygotic twins with Rett syndrome: Phenotyping the first two years of life. J. Dev. Phys. Disabil. 2014, 26, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Titlestad, K.B.; Eldevik, S. Brief Report: Modest but Clinically Meaningful Effects of Early Behavioral Intervention in Twins with Rett Syndrome-A Case Study. J. Autism Dev. Disord. 2019, 49, 5063–5072. [Google Scholar] [CrossRef]
- Scala, E.; Longo, I.; Ottimo, F.; Speciale, C.; Sampieri, K.; Katzaki, E.; Artuso, R.; Mencarelli, M.A.; D’Ambrogio, T.; Vonella, G.; et al. MECP2 deletions and genotype-phenotype correlation in Rett syndrome. Am. J. Med. Genet. A 2007, 143A, 2775–2784. [Google Scholar] [CrossRef]
- Santosh, P.J.; Bell, L.; Fiori, F.; Singh, J. Pediatric Antipsychotic Use and Outcomes Monitoring. J. Child Adolesc. Psychopharmacol. 2017, 27, 546–554. [Google Scholar] [CrossRef] [PubMed]
- Neul, J.L.; Glaze, D.G.; Percy, A.K.; Feyma, T.; Beisang, A.; Dinh, T.; Suter, B.; Anagnostou, E.; Snape, M.; Horrigan, J.; et al. Improving Treatment Trial Outcomes for Rett Syndrome: The Development of Rett-specific Anchors for the Clinical Global Impression Scale. J Child Neurol. 2015, 30, 1743–1748. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Fiori, F.; Law, M.L.; Ahmed, R.; Ameenpur, S.; Basheer, S.; Chishti, S.; Lawrence, R.; Mastroianni, M.; Mosaddegh, A.; et al. Development and Psychometric Properties of the Multi-System Profile of Symptoms Scale in Patients with Rett Syndrome. J. Clin. Med. 2022, 11, 5094. [Google Scholar] [CrossRef] [PubMed]
- Agorastos, A.; Mansueto, A.C.; Hager, T.; Pappi, E.; Gardikioti, A.; Stiedl, O. Heart Rate Variability as a Translational Dynamic Biomarker of Altered Autonomic Function in Health and Psychiatric Disease. Biomedicines 2023, 11, 1591. [Google Scholar] [CrossRef] [PubMed]
- Umetani, K.; Singer, D.H.; McCraty, R.; Atkinson, M. Twenty-four hour time domain heart rate variability and heart rate: Relations to age and gender over nine decades. J. Am. Coll. Cardiol. 1998, 31, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Empatica. Session Start-Time Format and Synchronization. 2018. Available online: https://support.empatica.com/hc/en-us/articles/202800715-Session-start-time-format-and-synchronization (accessed on 18 July 2019).
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/.
- de Looff, P.; Duursma, R.; Koldijk, S.; de Schepper, K.; Noordzij, M.; Jaques, N.; Taylor, S. Package ‘Wearables’12 October 2022. Available online: https://cran.r-project.org/web/packages/wearables/wearables.pdf (accessed on 18 July 2019).
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.; François, R.; Grolemund, G.; Hayes, A.; Hester, J.; Kuhn, M.; et al. Welcome to the tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Van Hees, V.; Migueles, J.; Sabia, S.; Patterson, M.R.; Fang, Z.; Heywood, J.; Pujol, J.C.; Kushleyeva, L.; Chen, M.; Yerramalla, M.; et al. GGIR: Raw Accelerometer Data Analysis. R Package Version 3.1-1. 2024. Available online: https://CRAN.R-project.org/package=GGIR (accessed on 18 July 2019).
- Rietz, M.; Schmidt-Persson, J.; Gillies Banke Rasmussen, M.; Overgaard Sørensen, S.; Mortensen, S.R.; Brage, S.; Kristensen, P.L.; Grøntved, A.; Brønd, J.C. Facilitating ambulatory heart rate variability analysis using accelerometry-based classifications of body position and self-reported sleep. Physiol. Meas. 2024, 45, 055016. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, G.D.; Cordani, R.; Veneruso, M.; Chiarella, L.; Prato, G.; Ferri, R.; Carandina, A.; Tobaldini, E.; Nobili, L.; Montano, N. Predominant cardiac sympathetic modulation during wake and sleep in patients with Rett syndrome. Sleep Med. 2024, 119, 188–191. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Crawford, J.R.; Garthwaite, P.H. Comparison of a single case to a control or normative sample in neuropsychology: Development of a Bayesian approach. Cogn. Neuropsychol. 2007, 24, 343–372. [Google Scholar] [CrossRef]
- Shkundin, A.; Halaris, A. Associations of BDNF/BDNF-AS SNPs with Depression, Schizophrenia, and Bipolar Disorder. J. Pers. Med. 2023, 13, 1395. [Google Scholar] [CrossRef]
- Angoa-Pérez, M.; Anneken, J.H.; Kuhn, D.M. The Role of Brain-Derived Neurotrophic Factor in the Pathophysiology of Psychiatric and Neurological Disorders. J. Psychiatry Psychiatr. Disord. 2017, 1, 252–269. [Google Scholar] [CrossRef]
- Percy, A.K.; Neul, J.L.; Benke, T.A.; Berry-Kravis, E.M.; Glaze, D.G.; Marsh, E.D.; An, D.; Bishop, K.M.; Youakim, J.M. Trofinetide for the treatment of Rett syndrome: Results from the open-label extension LILAC study. Med 2024. In press. [Google Scholar] [CrossRef] [PubMed]
- Neul, J.L.; Percy, A.K.; Benke, T.A.; Berry-Kravis, E.M.; Glaze, D.G.; Marsh, E.D.; Lin, T.; Stankovic, S.; Bishop, K.M.; Youakim, J.M. Trofinetide for the treatment of Rett syndrome: A randomized phase 3 study. Nat. Med. 2023, 29, 1468–1475. [Google Scholar] [CrossRef]
- Glaze, D.G.; Neul, J.L.; Kaufmann, W.E.; Berry-Kravis, E.; Condon, S.; Stoms, G.; Oosterholt, S.; Della Pasqua, O.; Glass, L.; Jones, N.E.; et al. Double-blind, randomized, placebo-controlled study of trofinetide in pediatric Rett syndrome. Neurology 2019, 92, e1912–e1925. [Google Scholar] [CrossRef]
- Leonard, H.; Gold, W.; Samaco, R.; Sahin, M.; Benke, T.; Downs, J. Improving clinical trial readiness to accelerate development of new therapeutics for Rett syndrome. Orphanet J. Rare Dis. 2022, 17, 108. [Google Scholar] [CrossRef] [PubMed]
- DeGiorgio, C.M.; Miller, P.; Meymandi, S.; Chin, A.; Epps, J.; Gordon, S.; Gornbein, J.; Harper, R.M. RMSSD, a measure of vagus-mediated heart rate variability, is associated with risk factors for SUDEP: The SUDEP-7 Inventory. Epilepsy Behav. 2010, 19, 78–81. [Google Scholar] [CrossRef]
- Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur. Heart J. 1996, 17, 354–381. [Google Scholar] [CrossRef]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef]
- Singh, J.; Lanzarini, E.; Santosh, P. Autonomic Characteristics of Sudden Unexpected Death in Epilepsy in Children-A Systematic Review of Studies and Their Relevance to the Management of Epilepsy in Rett Syndrome. Front. Neurol. 2021, 11, 632510. [Google Scholar] [CrossRef]
- Cheng, Y.C.; Huang, Y.C.; Huang, W.L. Heart rate variability in individuals with autism spectrum disorders: A meta-analysis. Neurosci. Biobehav. Rev. 2020, 118, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Bradshaw, J.; O’reilly, C.; Everhart, K.C.; Dixon, E.; Vinyard, A.; Tavakoli, A.; Dail, R.B. Neonatal autonomic regulation as a predictor of autism symptoms in very preterm infants. J. Perinatol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Peroutka, S.J. 5-Hydroxytryptamine receptor subtypes: Molecular, biochemical and physiological characterization. Trends Neurosci. 1988, 11, 496–500. [Google Scholar] [CrossRef] [PubMed]
- Loane, C.; Politis, M. Buspirone: What is it all about? Brain Res. 2012, 1461, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Levy, M.; Berson, A.; Cook, T.; Bollegala, N.; Seto, E.; Tursanski, S.; Kim, J.; Sockalingam, S.; Rajput, A.; Krishnadev, N.; et al. Treatment of agitation following traumatic brain injury: A review of the literature. NeuroRehabilitation 2005, 20, 279–306. [Google Scholar] [CrossRef] [PubMed]
- Giannoni, A.; Borrelli, C.; Mirizzi, G.; Richerson, G.B.; Emdin, M.; Passino, C. Benefit of buspirone on chemoreflex and central apnoeas in heart failure: A randomized controlled crossover trial. Eur. J. Heart Fail. 2021, 23, 312–320. [Google Scholar] [CrossRef] [PubMed]
- Wilken, B.; Lalley, P.; Bischoff, A.M.; Christen, H.J.; Behnke, J.; Hanefeld, F.; Richter, D. Treatment of apneustic respiratory disturbance with a serotonin-receptor agonist. J. Pediatr. 1997, 130, 89–94. [Google Scholar] [CrossRef]
- Dunn, H.G. Importance of Rett syndrome in child neurology. Brain Dev. 2001, 23 (Suppl. S1), S38–S43. [Google Scholar] [CrossRef] [PubMed]
- Andaku, D.K.; Mercadante, M.T.; Schwartzman, J.S. Buspirone in Rett syndrome respiratory dysfunction. Brain Dev. 2005, 27, 437–438. [Google Scholar] [CrossRef] [PubMed]
- Gökben, S.; Ardıç, U.A.; Serdaroğlu, G. Use of buspirone and fluoxetine for breathing problems in Rett syndrome. Pediatr. Neurol. 2012, 46, 192–194. [Google Scholar] [CrossRef]
- Ohno, K.; Saito, Y.; Ueda, R.; Togawa, M.; Ohmae, T.; Matsuda, E.; Fujiyama, M.; Maegaki, Y. Effect of Serotonin 1A Agonists and Selective Serotonin Reuptake Inhibitors on Behavioral and Nighttime Respiratory Symptoms in Rett Syndrome. Pediatr. Neurol. 2016, 60, 54–59.e1. [Google Scholar] [CrossRef]
- Mackay, J.; Downs, J.; Wong, K.; Heyworth, J.; Epstein, A.; Leonard, H. Autonomic breathing abnormalities in Rett syndrome: Caregiver perspectives in an international database study. J. Neurodev. Disord. 2017, 9, 15. [Google Scholar] [CrossRef]
- Smith, A.L.W.; Harmer, C.J.; Cowen, P.J.; Murphy, S.E. The Serotonin 1A (5-HT1A) Receptor as a Pharmacological Target in Depression. CNS Drugs 2023, 37, 571–585. [Google Scholar] [CrossRef] [PubMed]
- Appelberg, B.G.; Syvälahti, E.K.; Koskinen, T.E.; Mehtonen, O.P.; Muhonen, T.T.; Naukkarinen, H.H. Patients with severe depression may benefit from buspirone augmentation of selective serotonin reuptake inhibitors: Results from a placebo-controlled, randomized, double-blind, placebo wash-in study. J. Clin. Psychiatry 2001, 62, 448–452. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, C.B.; Stallworth, J.L.; Joy, A.E.; Dixon, R.E.; Scott, A.E.; Beisang, A.A.; Benke, T.A.; Glaze, D.G.; Haas, R.H.; Heydemann, P.T.; et al. Anxiety-like behavior and anxiolytic treatment in the Rett syndrome natural history study. J. Neurodev. Disord. 2022, 14, 31. [Google Scholar] [CrossRef]
- Martínez, A.; Turon, M.; Callejón-Póo, L.; Sole, E.; Armstrong, J.; Pineda, M. Treatment Response in Behaviour Disorders in Rett Syndrome. J. Behav. Brain Sci. 2013, 3, 217–224. [Google Scholar] [CrossRef]
- Katz, D.M.; Dutschmann, M.; Ramirez, J.M.; Hilaire, G. Breathing disorders in Rett syndrome: Progressive neurochemical dysfunction in the respiratory network after birth. Respir. Physiol. Neurobiol. 2009, 168, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Lanzarini, E.; Santosh, P. Autonomic dysfunction and sudden death in patients with Rett syndrome: A systematic review. J. Psychiatry Neurosci. 2020, 45, 150–181. [Google Scholar] [CrossRef] [PubMed]
- Hodges, M.R.; Richerson, G.B. Contributions of 5-HT neurons to respiratory control: Neuromodulatory and trophic effects. Respir. Physiol. Neurobiol. 2008, 164, 222–232. [Google Scholar] [CrossRef]
- Abdala, A.P.; Bissonnette, J.M.; Newman-Tancredi, A. Pinpointing brainstem mechanisms responsible for autonomic dysfunction in Rett syndrome: Therapeutic perspectives for 5-HT1A agonists. Front. Physiol. 2014, 5, 205. [Google Scholar] [CrossRef]
- Galter, D.; Unsicker, K. Sequential activation of the 5-HT1(A) serotonin receptor and TrkB induces the serotonergic neuronal phenotype. Mol. Cell. Neurosci. 2000, 15, 446–455. [Google Scholar] [CrossRef] [PubMed]
- Lavezzi, A.M.; Corna, M.F.; Matturri, L. Disruption of the brain-derived neurotrophic factor (BDNF) immunoreactivity in the human Kölliker-Fuse nucleus in victims of unexplained fetal and infant death. Front. Hum. Neurosci. 2014, 8, 648. [Google Scholar] [CrossRef] [PubMed]
- Egan, M.F.; Kojima, M.; Callicott, J.H.; Goldberg, T.E.; Kolachana, B.S.; Bertolino, A.; Zaitsev, E.; Gold, B.; Goldman, D.; Dean, M.; et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 2003, 112, 257–269. [Google Scholar] [CrossRef] [PubMed]
- Camuso, S.; La Rosa, P.; Fiorenza, M.T.; Canterini, S. Pleiotropic effects of BDNF on the cerebellum and hippocampus: Implications for neurodevelopmental disorders. Neurobiol. Dis. 2022, 163, 105606. [Google Scholar] [CrossRef]
- Li, W.; Pozzo-Miller, L. BDNF deregulation in Rett syndrome. Neuropharmacology 2014, 76, 737–746. [Google Scholar] [CrossRef] [PubMed]
- Pejhan, S.; Del Bigio, M.R.; Rastegar, M. The MeCP2E1/E2-BDNF-miR132 Homeostasis Regulatory Network Is Region-Dependent in the Human Brain and Is Impaired in Rett Syndrome Patients. Front. Cell Dev. Biol. 2020, 8, 763. [Google Scholar] [CrossRef] [PubMed]
- Pejhan, S.; Siu, V.M.; Ang, L.C.; Del Bigio, M.R.; Rastegar, M. Differential brain region-specific expression of MeCP2 and BDNF in Rett Syndrome patients: A distinct grey-white matter variation. Neuropathol. Appl. Neurobiol. 2020, 46, 735–750. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.G.; Chang, Q.; Lin, Y.; Meissner, A.; West, A.E.; Griffith, E.C.; Jaenisch, R.; Greenberg, M.E. Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science 2003, 302, 885–889. [Google Scholar] [CrossRef]
- Downs, J.; Rodger, J.; Li, C.; Tan, X.; Hu, N.; Wong, K.; de Klerk, N.; Leonard, H. Environmental enrichment intervention for Rett syndrome: An individually randomised stepped wedge trial. Orphanet J. Rare Dis. 2018, 13, 3. [Google Scholar] [CrossRef]
- Zeev, B.B.; Bebbington, A.; Ho, G.; Leonard, H.; de Klerk, N.; Gak, E.; Vecksler, M.; Christodoulou, J. The common BDNF polymorphism may be a modifier of disease severity in Rett syndrome. Neurology 2009, 72, 1242–1247. [Google Scholar] [CrossRef]
- Nectoux, J.; Bahi-Buisson, N.; Guellec, I.; Coste, J.; De Roux, N.; Rosas, H.; Tardieu, M.; Chelly, J.; Bienvenu, T. The p.Val66Met polymorphism in the BDNF gene protects against early seizures in Rett syndrome. Neurology 2008, 70 Pt 2, 2145–2151. [Google Scholar] [CrossRef] [PubMed]
- Haase, F.; Singh, R.; Gloss, B.; Tam, P.; Gold, W. Meta-Analysis Identifies BDNF and Novel Common Genes Differently Altered in Cross-Species Models of Rett Syndrome. Int. J. Mol. Sci. 2022, 23, 11125. [Google Scholar] [CrossRef] [PubMed]
- Ball, N.J.; Mercado, E., 3rd; Orduña, I. Enriched Environments as a Potential Treatment for Developmental Disorders: A Critical Assessment. Front. Psychol. 2019, 10, 466. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Lanzarini, E.; Santosh, P. Organic features of autonomic dysregulation in paediatric brain injury—Clinical and research implications for the management of patients with Rett syndrome. Neurosci. Biobehav. Rev. 2020, 118, 809–827. [Google Scholar] [CrossRef] [PubMed]
- Roberts, T.A.; Wagner, J.A.; Sandritter, T.; Black, B.T.; Gaedigk, A.; Stancil, S.L. Retrospective Review of Pharmacogenetic Testing at an Academic Children’s Hospital. Clin. Transl. Sci. 2021, 14, 412–421. [Google Scholar] [CrossRef]
- Jameson, A.; Fylan, B.; Bristow, G.C.; Sagoo, G.S.; Dalton, C.; Cardno, A.; Sohal, J.; McLean, S.L. What Are the Barriers and Enablers to the Implementation of Pharmacogenetic Testing in Mental Health Care Settings? Front. Genet. 2021, 12, 740216. [Google Scholar] [CrossRef]
Twin A | Twin B | ||||
---|---|---|---|---|---|
Metric | Epoch | Awake | Sleep | Awake | Sleep |
Mean (bpm) HR (min; max) | 01/2022 | 119 (38; 175) | 133 (70; 160) | 130 (67; 175) | 129 (82; 175) |
12/2022 | 125 (59; 160) | 128 (72; 167) | 126 (57; 175) | 131 (98; 160) | |
pNN50 (%) | 01/2022 | 3.33 | 0.18 | 3.34 | 0.534 |
12/2022 | 11.89 | 1.24 | 1.48 | 0.1 | |
SDNN (ms) | 01/2022 | 29.9 | 12.05 | 42.19 | 21.74 |
12/2022 | 39.41 | 21.28 | 42.24 | 24.35 | |
RMSSD (ms) | 01/2022 | 28.76 | 16.61 | 25.89 | 17.91 |
12/2022 | 44.44 | 19.60 | 25.77 | 13.39 |
MECP2 | BDNF | |||
---|---|---|---|---|
Genotype * | Phenotype | Genotype | Phenotype | |
Twin A | Heterozygous c.1160_*5215del p(Pro387_Ser486delinsGln) | Pathogenic | 434C>T C/T (heterozygous for rs6265 T Allele) | Associated with reduced activity-dependent secretion of BDNF from neurons and impaired BDNF signalling |
Twin B | Heterozygous c.1160_*5215del p(Pro387_Ser486delinsGln) | Pathogenic | 434C>T C/C (homozygous for rs6265 C Allele) | Associated with normal activity-dependent secretion of BDNF from neurons and normal BDNF signalling |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, J.; Wilkins, G.; Goodman-Vincent, E.; Chishti, S.; Bonilla Guerrero, R.; Fiori, F.; Ameenpur, S.; McFadden, L.; Zahavi, Z.; Santosh, P. Using Precision Medicine to Disentangle Genotype–Phenotype Relationships in Twins with Rett Syndrome: A Case Report. Curr. Issues Mol. Biol. 2024, 46, 8424-8440. https://doi.org/10.3390/cimb46080497
Singh J, Wilkins G, Goodman-Vincent E, Chishti S, Bonilla Guerrero R, Fiori F, Ameenpur S, McFadden L, Zahavi Z, Santosh P. Using Precision Medicine to Disentangle Genotype–Phenotype Relationships in Twins with Rett Syndrome: A Case Report. Current Issues in Molecular Biology. 2024; 46(8):8424-8440. https://doi.org/10.3390/cimb46080497
Chicago/Turabian StyleSingh, Jatinder, Georgina Wilkins, Ella Goodman-Vincent, Samiya Chishti, Ruben Bonilla Guerrero, Federico Fiori, Shashidhar Ameenpur, Leighton McFadden, Zvi Zahavi, and Paramala Santosh. 2024. "Using Precision Medicine to Disentangle Genotype–Phenotype Relationships in Twins with Rett Syndrome: A Case Report" Current Issues in Molecular Biology 46, no. 8: 8424-8440. https://doi.org/10.3390/cimb46080497
APA StyleSingh, J., Wilkins, G., Goodman-Vincent, E., Chishti, S., Bonilla Guerrero, R., Fiori, F., Ameenpur, S., McFadden, L., Zahavi, Z., & Santosh, P. (2024). Using Precision Medicine to Disentangle Genotype–Phenotype Relationships in Twins with Rett Syndrome: A Case Report. Current Issues in Molecular Biology, 46(8), 8424-8440. https://doi.org/10.3390/cimb46080497