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Abstract: In this study, the effects of different combinations of the genes Vegf, Ang, and Gdnf injected
both using direct virus-mediated injection (adenovirus, Ad5) and umbilical cord blood mononuclear
cells (UCBCs) on the processes of stimulation of post-ischemic innervation, angiogenesis, and regen-
eration in skeletal muscle were investigated in a rat hindlimb chronic ischemia model. It was shown
that more pronounced stimulation of angiogenesis and restoration of post-ischemic innervation were
achieved both in the early (28 days post-ischemia, dpi) and late (42 dpi) terms of the experiment in the
calf muscle when UCBCs delivered the combination of Ad5-Vegf and Ad5-Ang compared to the direct
injection of the same vector combination into the area of ischemia. At the same time, the inclusion of
Ad5-Gdnf in the combination of Ad5-Vegf and Ad5-Ang directly injected or administered by UCBCs
provided a significant increase in the number of centronuclear muscle fibers, indicating stimulation
of post-ischemic reparative myogenesis. This study allowed us to determine the most effective gene
combinations for angiogenesis and neurogenesis, which, in the future, may serve as the basis for the
development of gene and gene cell products for the treatment of chronic lower limb ischemia.

Keywords: chronic lower limb ischemia; rats; Gdnf ; Vegf ; Ang; adenoviral vector; umbilical cord
blood mononuclear cells

1. Introduction

Chronic lower limb ischemia is a pressing medical and social issue. Chronic limb
ischemia is a very common condition. For example, on the European continent, the
prevalence is 5.3%, in relation to the 750 million inhabitants of Europe. In the European
Union itself, there are an estimated 17 million patients with lower limb ischemia, which is
3.4% of the EU’s 500 million inhabitants. The total prevalence of the disease worldwide is
about 202 million people [1]. Separately, chronic limb ischemia is closely associated with
diabetes mellitus and often leads to limb amputations [2,3].

Conservative treatment of this condition is often ineffective, and many patients have
limitations to limb revascularization due to distal lesions or severe somatic diseases [4].
The possibility of overcoming post-ischemic disturbances is related to the introduction of
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angiogenesis stimulators into the area of ischemia [5]. The most studied angiogenesis stim-
ulators are injected into the ischemic area to restore blood flow in the limb in experiments.
It was found that combinations of angiogenic factors work better than the factors adminis-
tered separately, suggesting a synergistic effect. Several clinical studies have shown the
angiogenic effects of virus-mediated delivery angiogenin (Ang) and vascular endothelial
growth factor (Vegf ) which have improved muscle perfusion, increased pain-free walking
distance, reduced the recovery time of baseline blood flow parameters, and improved
patients’ quality of life [5,6].

Interest in the role of innervation in the development of ischemia and overcoming its
consequences has been around for a long time [7]. However, the few rigorous confirma-
tions of the influence of nerves on ischemic tissue have been made recently. In one, the
combination of limb ischemia with denervation showed a decrease in capillary density and
endothelial cell proliferation and increased secretion of nerve growth factor (NGF) and
VEGF on day 28 compared to the ischemia group without denervation, indicating the par-
ticipation of nerve fibers in overcoming the effects of ischemia [8]. One hypothesis explains
the change in the vascular tone of denervated arteries. Another hypothesis suggests that
one of the functions of sympathetic innervation is to stabilize the phenotype of vascular
wall cells, which can lead to thickening of the intima and reduced blood flow [9].

A close histogenetic relationship between nerve fibers and blood vessels has been
demonstrated. Nerves and blood vessels follow each other closely, and during formation,
they respond to common signals such as semaphorins, netrins, and ephrins, which stimulate
the growth of nerve fibers and blood vessels. The observed deterioration of tissue repair
in ischemia may also be due to impaired nerve fiber function caused by the ischemia
itself. Sensitive nerve fibers are the most vulnerable and are damaged in ischemia first,
compared to motor fibers [10]. Ischemia reduces the rate of impulse conduction along
sensitive nerve fibers [11]. If we consider that angiogenesis is impaired during arterial
denervation, the application of neurotrophic factor genes encoding the synthesis of glial
neurotrophic factor (GDNF) and/or NGF, which support neuronal survival and nerve fiber
growth, may stimulate restoration of blood flow in the limb.

Currently, gene and gene cell therapies are considered the most promising methods
for stimulating angiogenesis, neurogenesis, and regeneration of skeletal muscle in limb
ischemia. Since VEGF and ANG are well-known stimulators of angiogenesis, their use in
ischemic tissue injury is justified. The role of the neurotrophic component in these processes
should be considered. It is recommended to include GDNF in the therapeutic strategy due
to its neurotrophic effect and direct influence on ischemic skeletal muscle and target cells in
the vessel wall [12,13]. Previously, it was found that when embryonic stem cells of amniotic
fluid were transduced with an adenoviral vector carrying the Gdnf gene, they expressed
the endothelial cell marker von Willebrand factor and CD31 and were able to differentiate
into endothelial cells in vitro. Recombinant GDNF stimulated this process [12]. GDNF
has a proangiogenic effect, activating endothelial cell proliferation by binding to receptors
of neurotrophic factors, tropomyosin receptor kinases A and B, GFRα1, and c-Ret [13].
The effect of GDNF on the activation of the STAT3 signaling pathway, which is a direct
transcriptional activator of VEGF, has been shown [14].

From the perspective of choosing a cell source for gene cell therapy in skeletal muscle
ischemia, the use of umbilical cord blood seems promising. The absence of legal, ethical,
and religious prohibitions associated with umbilical cord blood mononuclear cell (UCBC)
transplantation is also an important factor. This population of cells is able to secrete
numerous growth and trophic factors and can produce specialized cells from various
tissues, stimulating angiogenesis [15,16]. Therefore, it becomes clear from the above-
mentioned studies that the combination of angiogenic and neurotrophic factors may be the
most effective for overcoming the consequences of skeletal muscle ischemia and requires
further research.

Currently, there are two main methods for introducing genetic constructs: virus-
mediated direct gene therapy and gene cell therapy. The method of direct gene delivery
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involves delivering them directly into damaged tissue cells. Cell transplantation, or gene
cell therapy, is another approach for stimulating angiogenesis in chronic ischemia of the
lower extremities. Cell transplantation is safe and effective in treating ischemic lesions
of the lower extremities and has been shown to increase not only blood flow but also the
formation of new blood vessels [17].

The aim of this work is to determine the most effective combination of genes admin-
istered directly or with stem cells to stimulate angiogenesis, neurogenesis, and skeletal
muscle regeneration. In this study, the effects of various combinations of angiogenic and
neurotrophic factors (VEGF, ANG, GDNF) on the processes of post-ischemic innervation,
stimulation of angiogenesis, and regeneration in ischemic skeletal muscle were investigated.
The results obtained may serve as a basis for developing innovative drugs for treating
conditions associated with circulatory insufficiency and the need to enhance reparative
processes in skeletal muscle tissue.

2. Materials and Methods
2.1. Creation of Adenoviral Vectors

To obtain recombinant Ad5-Vegf, Ad5-Ang, and Ad5-Gdnf adenoviruses, an adenoviral
vector plasmid was linearized using the restriction enzyme PacI. The purified linear plas-
mid was used to genetically modify HEK293A cells using TurboFect transfection reagent
(Thermo Scientific, Waltham, MA, USA). After transfection, the medium was replaced every
2–3 days with fresh medium until cytopathic changes in cell morphology appeared. On day
10 after transfection, cell suspensions were collected into 2 mL sterile tubes and subjected to
several freeze/thaw cycles and then centrifuged to obtain crude viral lysate. The viral stock
was stored at −80 ◦C. To obtain preparative amounts of adenoviral vectors, HEK293A cells
were infected with crude viral lysate. After 72 h, cell lysates were collected in 15 mL tubes
and subjected to several freeze/thaw cycles, and then centrifuged to obtain viral stock. The
supernatant was filtered and then purified using two rounds of gradient cesium chloride
centrifugation, dialyzed against 50 mM Tris-HCl, pH 7.5, 150 mM NaCl, and then titrated
according to the manufacturer’s recommendations for the pAd/CMV/V5-Dest system
(Invitrogen, Carlsbad, San Diego, CA, USA).

2.2. Isolation and Genetic Modification of Human Umbilical Cord Blood Mononuclear Cells

This study, including the collection of mononuclear blood cells from the human umbil-
ical cord, was approved by the local ethics committee of Kazan State Medical University
(excerpt from the minutes of meeting no. 2 of 20 February 2018). Cord blood was collected
after informed consent of the pregnant woman and prenatal screening for contraindications
to blood donation. All blood manipulations were performed in the laboratory of Kazan
Federal University.

Nucleated blood cells were isolated in 50 mL tubes. Each tube was filled with 25
mL of Ficoll solution (PanEco, Moscow, Russia) with a density of 1.077 g/mL, to which
an equal volume of cord blood with anticoagulant (the blood and anticoagulant ratio
ranged from 1:1 to 3:1) was carefully added using an automatic dispenser. Blood was
centrifuged at 720× g for 20 min and clear separation of blood into 4 fractions was obtained:
erythrocytes, Ficoll, leukocytes, and plasma. The leukocyte fraction was taken in a separate
tube, resuspended in sterile 1:2 DPBS solution, and centrifuged at 305× g for 15 min. The
resulting cell sediment was resuspended in 10 mL of DPBS solution and centrifuged at
305× g for 15 min. To remove red blood cells, cells were resuspended in hypotonic lysis
buffer (0.168 M NH4Cl, 0.1 M KHCO3, 1.27 mM EDTA pH 7.3) and, in the final step, cells
were washed with DPBS solution. Blood mononuclear fraction cells, after isolation, were
kept in low-adhesion dishes (d = 10 cm) with RPMI-1640 medium supplemented with
10% FBS and a mixture of penicillin and streptomycin antibiotics (100 U/mL; 100 µg/mL)
(PanEco, Moscow, Russia).

Human cord blood mononuclear cells were genetically modified with recombinant
adenoviruses Ad5-Vegf, Ad5-Ang, and Ad5-Gdnf immediately after cell isolation according
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to the protocol described previously [18]. Cells were infected with previously dialyzed
adenovirus with a viral particle titer of 10 (MOI 10). After the virus addition, cells were
maintained in RPMI1640 + 10% FBS solution for 16–18 h in a CO2 incubator with 5%
CO2. Subsequently, the cells were washed with DPBS and resuspended in a physiological
solution.

2.3. Modeling of Ischemia in the Hindlimb

The experiments were carried out on 100 white pubescent laboratory rats of the Wistar
line (Pushchino, Moscow, Russia), females and males, weighing 200–250 g. Rats were
anesthetized with a Telazol/Xyla mixture (Zoetis, Parsippany, NJ, USA). The position of the
animal on the operating table was lying on the back, and the upper and lower extremities
were fixed. In the area of the operating field on the inner surface of the thigh of the left
hindlimb, the hair was shaved. Ischemia of the limb was created by placing two ligatures
made of non-absorbable Ethicon Prolene thread (40) (Miami, FL, USA), 3 mm apart in
the femoral artery with a diameter of 2 mm (Supplementary Figure S1) [19]. The area
between the ligatures was sectioned. Visual control of hemostasis was performed. The
wound was sutured with Ethicon Vicril (30) absorbable suture material. Animals received
a single injection of 1 mL of ceftriaxone antibiotic diluted in physiological solution (Borisov
Plant for Medical Preparations, Belarus) into the thigh muscle of the contralateral limb
immediately after surgery to prevent postoperative infectious complications. To determine
the occurrence of ischemia, the intensity of blood flow was measured using an Easy LDI
microcirculation measuring device (Aïmago SA, Lausanne, Switzerland). Measurements
expressed in absolute perfusion units (apu) were performed before surgery, on the next day,
and on the fifth day after surgery. In addition, calf muscle was collected from the control
group of animals for histological analysis 1 day after ischemia was created.

On 14 and 28 days after the surgical intervention to create hindlimb ischemia, rats were
injected with gene or gene cell constructs into the distal part of the calf muscle at 4 points.
On 28 and 42 days after modeling ischemia, the animals were euthanized (Figure 1).
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The experiments were carried out in full compliance with the ethical principles es-
tablished by the European Convention for the Protection of Vertebrate Animals Used for
Experimental and Other Scientific Purposes (adopted in Strasbourg on 18 March 1986 and
confirmed in Strasbourg on 15 June 2006).

2.4. Experimental Groups

Fourteen days after the creation of hindlimb ischemia, the animals were randomly
divided into 2 experimental groups: group 1—with direct virus-mediated gene injection
(n = 40) and group 2—with cell-mediated gene delivery using UCBCs (n = 40). Each of
these experimental groups included 4 subgroups with intramuscular injection of different
genetic constructs or their combinations in the variant of direct or cell-mediated delivery.
Furthermore, a control group (n = 10) was formed, whose animals were injected with 0.9%
NaCl (Dalchimpharm, Russia, Moscow) under similar experimental conditions.

Animals in experimental group 1 were injected with adenoviruses carrying different
combinations of genes—Ad5-Vegf (n = 10), or Ad5-Ang (n = 10), or Ad5-Vegf + Ad5-Ang
(n = 10), or Ad5-Vegf + Ad5-Ang + Ad5-Gdnf (n = 10) by 2 × 1010 virus particles in 60 µL of
0.9% NaCl in the distal part of the calf muscle at 4 points of 15 µL each.

Animals in experimental group 2 received a similar injection of UCBC transduced
adenoviruses—UCBC Ad5-Vegf (n = 10), or UCBC Ad5-Ang (n = 10), or UCBC
Ad5-Vegf + Ad5-Ang (n = 10), or UCBC Ad5-Vegf + Ad5-Ang + Ad5-Gdnf (n = 10) by
2 × 106 cells in 60 µL of 0.9% NaCl. For primary screening of the expression of genes
encoding recombinant proteins, additional experimental groups of animals were formed,
which were injected intramuscularly with Ad5-Egfp (n = 5) or UCBC Ad5-Egfp (n = 5) under
similar experimental conditions on the 14th day after modeling ischemia.

Twenty-eight and forty-two days after modeling ischemia, the animals were eutha-
nized. For this purpose, the animals were anesthetized and transcardially perfused with a
4% paraformaldehyde solution (4 ◦C).

2.5. Histological and Immunohistochemical Methods

For analysis, the distal part of the calf muscle was sampled and embedded in paraffin
using standard methods. Transverse muscle slices, 5 µm thick, were prepared on a mi-
crotome (PFM Medical GmbH Rotary 3002, Berlin, Germany) and used for subsequent
morphometric and immunohistochemical analysis.

For the morphometric analysis of muscle fibers and the counting of centronuclear
muscle fibers (CNMFs), hematoxylin staining of transverse sections was used (BioVitrum,
Saint Petersburg, Russia). To evaluate ischemic skeletal muscle damage, hematoxylin and
eosin-stained muscle tissue was microscopically evaluated. Assessment of capillary density
and count of the number of CNMFs were performed in the area of ischemia and at a
distance within 500 µm from the area of insertion of the genetic constructs. Morphometric
analysis was performed using Image Scope software (Aperio ImageScope x64 1.50i).

Immunofluorescence analysis using CD31 antibodies was performed in transverse
sections of the calf muscle (Table 1). Donkey secondary antibodies against rabbit IgG
conjugated to Alexa Fluor 555 were used for visualization. The nuclei were stained with
DAPI (Lumiprobe, Moscow, Russia). Fluorescence images were obtained using a laser
confocal microscope, LSM 700 (Carl Zeiss, Jena, Germany), at a magnification of ×630.
To identify nerve fibers, immunohistochemical analysis was performed with antibodies
against the Schwann cells marker protein S100b and the axon marker β3-tubulin. The
application of antibodies to the slices was carried out after dehydration and dewaxing
of the slices followed by antigen demasking in Tris-EDTA (pH = 9.0, Merck, Darmstad,
Germany). Antigen detection was carried out using the Novolink system (Leica Biosystems,
Nussloch, Germany). Visualization was performed with aminoethylcarbazole chromogen.
The nuclei were stained with hematoxylin. Slices were encapsulated under coverslips using
glycerogel (Tverskaya Pharmafabrik, Tver, Russia). The light images were digitized using
an Aperio CS2 scanner (Leica Biosystems, Nussloch, Germany).
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Table 1. Primary and secondary antibodies used in immunohistochemical and immunofluorescence
analyses.

Antibody Host Dilution Source

CD31 Rabbit 1:150 Abcam (Cambridge, UK)
Alexa Fluor 555 Goat 1:2000 Thermo Fisher Scientific (Waltham, MA, USA)
β3-tubulin Rabbit 1:100 Abcam (Cambridge, UK)
S100b Mouse 1:100 Invitrogen (Carlsbad, CA, USA)

2.6. Statistical Processing

Statistical analysis and visualization of the data obtained were performed using the
R 3.6.3 statistical computing environment (R Foundation for Statistical Computing, Vienna,
Austria). Descriptive statistics for quantitative variables are presented as mean (standard
deviation) and median (1st and 3rd quartiles). In the comparison of the studied groups,
one-factor analysis of variance and the Kruskal–Wallis test were used; Welch’s t-test and
Dunn’s test were used as post hoc methods, respectively; differences were considered
statistically significant at p < 0.05.

3. Results

In the hindlimbs of the rats, a persistent decrease in blood flow by 45% was recorded
immediately after surgical intervention and by 41% (from baseline) 5 days after the ischemia
creation. After surgery, blood flow in the operated limbs decreased significantly from
123 ± 0.8 to 56 ± 0.5 apu. Subsequently, blood flow values remained stable at 62 ± 1.3 apu
until the introduction of genetic constructs on the 14th day after the creation of ischemia
(see Supplementary Figure S2).

Histological analysis of the calf muscle of the operated limb on the first day showed
insignificant ischemic changes. The number of capillaries in contact with one muscle fiber
was noted to range from 2 to 5. The muscle fibers completely preserved their characteristic
structure. CNMFs were present in an insignificant amount. On the 14th day after the cre-
ation of ischemia, pronounced ischemic changes were observed. The muscle was infiltrated
with polymorphonuclear leukocytes, muscle fibers with eosinophilic and disintegrated
sarcoplasm were present, some muscle fibers showed a loss of transverse striation and lym-
phohistocytic infiltration, and destructive muscle tissue was replaced by connective tissue
in a significant volume. There was a decrease in the density of the capillaries surrounding
the muscle fibers and also the presence of CNMFs (Figure 2A,B).
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Figure 2. Distal part of the calf muscle in different terms after modeling ischemia. (A)—1 day after the
creation of ischemia, ischemic damage to the muscle in the form of minor destruction of muscle fibers
(arrows), cross section. (B)—14 days after the creation of ischemia, muscle fibers with disintegrated
sarcoplasm disappear, transverse striation disappears, numerous CNMFs (arrows) appear, cross
section. Hematoxylin and eosin staining. Light microscopy.
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3.1. Expression of Egfp upon Intramuscular Administration of Ad5-Egfp and UCBC Ad5-Egfp

On the 28th day of the experiment, in the Ad5-Egfp injection group of animals (14 days
after injection), specific glowing EGFP was observed in the distal part of the calf muscle,
which corresponded to injection points. The glow was most intense in the periphery of
muscle fibers near the sarcolemma and in the region of muscle fiber nuclei (Figure 3A–C).
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Figure 3. Distal part of the calf muscle at a distance of 500 µm from the injection area at 14 days
after injection of Ad5-Egfp (A–C) or UCBC Ad5-Egfp (D) into the muscle. (A) Transverse slice;
EGFP luminescence (green) contours the muscle fiber profile. (B,C) Lengthwise section; EGFP
luminescence in the form of clusters distributed along the length of the fiber. (D) Lengthwise
section; EGFP luminescence in cells in contact with muscle fibers. Nuclei stained with DAPI (blue).
Confocal microscopy.

On the 28th day of the experiment, in the group of animals with UCBC Ad5-Egfp
transplantation, the presence of these cells in the injected area and their efficient expression
of EGFP were established (Figure 3D). The data obtained indicate that the activity of genetic
constructs with transgene expression is maintained for at least 14 days when Ad5-Egfp or
UCBC Ad5-Egfp is injected into the area of ischemia.

3.2. Assessment of Capillary Density in the Area of Ischemia of the Experimental Groups

On the 28th day, in experimental group 1, the highest capillary density, assessed
by the number of CD31+ cells, was recorded in the Ad5-Vegf + Ad5-Ang subgroup
(Figure 4A). However, significant differences were not found between other experimental
groups with the direct introduction of genetic constructs and the control group. During
the same time period, with cell-mediated gene delivery, the maximum capillary density
was observed in the UCBC Ad5-Ang group. In the UCBC Ad5-Ang group, the capillary
density in the distal part of the calf muscle was 2.0 times (p < 0.05) higher than in the
control group (NaCl). Thus, 28 days after ischemia modeling (14 days after the moment of
gene and gene cell therapy), according to the capillary density criterion, in the calf muscle
of the ischemic limb, the expression of this index decreased in the following sequence:
UCBC Ad5-Ang → UCBC Ad5-Vegf + Ad5-Ang → Ad5-Vegf + Ad5-Ang → Ad5-Ang →
Ad5-Vegf + Ad5-Ang + Ad5-Gdnf → UCBC Ad5-Vegf → Ad5-Vegf → UCBC Ad5-Vegf +
Ad5-Ang + Ad5-Gdnf (Figure 4). It should be noted that significant differences with the
NaCl control group were observed only in the UCBC Ad5-Ang and UCBC Ad5-Vegf +
Ad5-Ang groups, where the number of CD31+ cells was higher (p < 0.05) (Figure S3).

At 42 days after ischemia modeling, the highest capillary density in the calf muscle
of the ischemic limb was recorded in the Ad5-Vegf group to which gene constructs were
administered directly, while the highest capillary density was recorded in the UCBC Ad5-
Vegf + Ad5-Ang group on which cell-mediated gene delivery was performed (Figure 4B).

According to this measure, UCBC-mediated delivery of Ad5-Vegf and Ad5-Ang was
2.5- and 1.4-fold (p < 0.05) more effective (p < 0.05) than direct delivery of
Ad5-Vegf + Ad5-Ang or NaCl injection, respectively. Therefore, 42 days after ischemia
modeling (28 days from the moment of gene and gene cell therapy), according to the
capillary density criterion in the calf muscle of the ischemic limb, the expression of
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this index decreased in the following sequence: UCBC Ad5-Vegf + Ad5-Ang → UCBC
Ad5-Vegf + Ad5-Ang + Ad5-Gdnf → Ad5-Vegf → UCBC Ad5-Vegf → Ad5-Vegf + Ad5-Ang
+ Ad5-Gdnf → UCBC Ad5-Ang → Ad5-Vegf + Ad5-Ang → Ad5-Ang. Furthermore, it
should be noted that significant differences with the NaCl control group were observed
only in the UCBC Ad5-Vegf + Ad5-Ang and UCBC Ad5-Vegf + Ad5-Ang + Ad5-Ang +
Ad5-Gdnf groups, where the number of CD31+ cells was higher (p < 0.05) (Supplementary
Figure S4).
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3.3. Analysis of Normal Muscle Fibers in the Ischemia Area of the Experimental Groups

According to the criterion of the number of normal muscle fibers at 28 days after
ischemia modeling, the most pronounced positive effect was registered in the UCBC Ad5-
Vegf + Ad5-Ang group, where this index was 1.5–2 times (p < 0.05) higher compared to
other groups where cell-mediated gene delivery was performed (Figure 4C). The expression
of the above-mentioned index decreased in the following sequence: UCBC Ad5-Vegf +
Ad5-Ang → Ad5-Vegf + Ad5-Ang→ Ad5-Vegf + Ad5-Ang + Ad5-Gdnf → Ad5-Ang → Ad5-
Vegf → UCBC Ad5-Vegf + Ad5-Ang + Ad5 Gdnf → UCBC Ad5-Ang → UCBC Ad5-Vegf. It
should be noted that a significant difference was observed with the NaCl control group
only in the Ad5-Vegf +Ad5-Ang + Ad5-Gdnf group, where the number of normal muscle
fibers was greater (p < 0.05).

According to the criterion of maintaining the number of normal muscle fibers at
42 days after ischemia modeling, the most pronounced positive effect was recorded in
the Ad5-Vegf group, which showed significant differences compared to the NaCl con-
trol group (Figure 4D). The Ad5-Vegf group exhibited a 3.3-fold increase in the number
of normal muscle fibers compared to the Ad5-Ang group (p < 0.05). The expression of
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the above-mentioned index decreased in the following sequence: Ad5-Vegf → UCBC
Ad5-Vegf +Ad5-ANG + Ad5-Gdnf → UCBC Ad5-Vegf +Ad5-Ang → Ad5-Vegf +Ad5-Ang
→ UCBC Ad5-Ang → Ad5-Vegf + Ad5-Ang + Ad5-Gdnf → Ad5-Ang → UCBC Ad5-Vegf.

3.4. Analysis of the Capillary/Muscle Fiber Ratio in the Ischemia Area of the Experimental Groups

At 28 days after the ischemia modeling, the capillaries per normal muscle fiber ratio
showed the highest value in the UCBC Ad5-Ang group, which showed increases of 1.4-
and 1.5-fold (p < 0.05) in this index compared to the NaCl control group and the Ad5-Ang
group (Figure 5A). Forty-two days after modeling ischemia, the highest capillary value per
normal muscle fiber ratio was found in the Ad5-Vegf + Ad5-Ang + Ad5-Gdnf group, where
there was a significant difference of 1.6 times with the control group. In the UCBC Ad5-Vegf
group, this index was 1.2 times higher than in the control group. An increase in the value
of this indicator by 1.6 times was revealed in the UCBC Ad5-Ang group compared to the
Ad5-Ang group (Figure 5B).
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Figure 5. Ratio of capillaries per normal muscle fiber (A,B) and number of centronuclear muscle fibers
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3.5. Analysis of CNMF in the Area of Ischemia of the Experimental Groups

According to the CNMF quantity criterion, 28 days after ischemia modeling, the most
pronounced effect was recorded in the Ad5-Ang and UCBC Ad5-Ang groups, where these
indices were 37.3 and 30 times higher (p < 0.05) in comparison with the NaCl control group,
respectively (Figure 5C). The expression of the above-mentioned index decreased in the
following sequence: Ad5-Ang → UCBC Ad5-Ang → Ad5-Vegf → Ad5-Vegf + Ad5-Ang →
UCBC Ad5- Vegf + Ad5-Ang → UCBC Ad5-Vegf → UCBC Ad5-Vegf + Ad5-Ang + Ad5-Gdnf
→ Ad5-Vegf + Ad5-Ang + Ad5-Gdnf.
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At 42 days after modeling ischemia, the number of CNMFs was maximal in the Ad5-
Vegf +Ad5-Ang + Ad5-Gdnf group, where this index was 81 times higher (p < 0.05) when
compared to the NaCl control group (Figure 5D). The expression of the above-mentioned
index decreased in the following sequence: Ad5-Vegf + Ad5-Ang + Ad5-Gdnf → Ad5-Ang
→ UCBC Ad5-Vegf + Ad5-Ang + Ad5-Gdnf → Ad5-Vegf → UCBC Ad5-Vegf → UCBC
Ad5-Ang → UCBC Ad5-Vegf + Ad5-Ang → Ad5-Vegf + Ad5-Ang.

3.6. Number of S100b+ Cells in the Area of Ischemia in Experimental Groups

In terms of the number of S100b+ cells (Schwann cells), maximum values were
achieved 28 days after modeling ischemia in the groups with cell-mediated delivery of the
genetic constructs UCBC Ad5-Vegf + Ad5-Ang and UCBC Ad5-Vegf + Ad5-Ang + Ad5-Gdnf
(Figure 6A). However, only in the UCBC Ad5-Vegf + Ad5-Ang group did the number of
S100b+ cells have a significant difference (2.5 times) compared to the NaCl control group.
The expression decreased in the following sequence: UCBC Ad5-Vegf + Ad5-Ang → UCBC
Ad5-Vegf + Ad5-Ang + Ad5-Gdnf → UCBC Ad5-Vegf → Ad5-Vegf → Ad5-Ang → Ad5-Vegf
+ Ad5-Ang → UCBC Ad5-Ang → Ad5-Vegf + Ad5-Ang + Ad5-Gdnf (Figure 6A).
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At 42 days after modeling ischemia, the highest number of S100b+ cells was registered
in the UCBC Ad5-Vegf + Ad5-Ang group, where this index was 2.4 times higher (p < 0.5)
in comparison with the NaCl control group (Figure 6B). At the same time, other groups
with cell-mediated gene delivery had significant differences in the numbers of S100b+ cells
compared to the corresponding groups with direct gene therapy and the control group.
The expression decreased in the following sequence: UCBC Ad5-Vegf + Ad5-Ang → UCBC
Ad5-Vegf + Ad5-Ang + Ad5-Gdnf → UCBC Ad5-Vegf → Ad5-Vegf → Ad5-Vegf + Ad5-Ang
+ Ad5-Gdnf → UCBC Ad5-Ang → Ad5-Vegf + Ad5-Ang → Ad5-Ang.

3.7. Number of Nerve Fibers in the Ischemic Area of the Experimental Groups

The number of nerve fibers analyzed by β3-tubulin expression was assessed on day 42
in the groups with cell-mediated and direct delivery of Ad5-Vegf + Ad5-Ang or Ad5-Vegf +
Ad5-Ang + Ad5-Gdnf. The maximum number of β3-tubulin+ nerve fibers was recorded at
the injection site of UCBC Ad5-Vegf + Ad5-Ang and UCBC Ad5-Vegf+ Ad5-Ang + Ad5-Gdnf,
which is correlated with the data on the number of S100b+ cells (Figure 7).
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4. Discussion

To objectively assess the effects of gene and gene cell constructs on angiogenesis and
the regeneration of muscle tissue, it is necessary to obtain confirmation of the adequacy
of the modeled chronic ischemia of the lower limbs. During the evaluation of the applied
model of chronic ischemia of the lower limbs of the rats, we performed an instrumental
assessment of the level of blood flow, which confirmed a significant decrease in perfusion
in the operated limbs. Surgical ischemia of the limb resulted in the development of typical
pathological changes in the state of the transverse striated skeletal muscle tissue. At the
same time, we did not observe extreme manifestations of ischemia, gangrene formation, and
self-amputation of the limb. This complex of morphological changes in skeletal muscle was
stably reproduced in the experiment, which allows us to consider the chosen experimental
model as suitable for testing the effect of transgenes on overcoming the consequences
of ischemia.

To fully achieve the main therapeutic goals of direct gene and cell-mediated therapy, it
is important to maximize the presence of the adenoviral vector or transplanted cells and
the angiogenesis and regeneration stimulator genes they deliver in the injured tissue for as
long as possible.
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The data obtained in this work indicate that human UCBCs transplanted into the
area of rat limb ischemia survive for at least 14 days with the possibility of expressing
recombinant gene products. On day 14 of the experiment, we observed specific fluorescence
in the ischemic muscle after injection of an adenoviral vector containing EGFP. This indicates
the expression of the recombinant gene during this period in the case of direct gene
therapy. Our data confirm previous studies in which similar adenoviral vectors and
transduced cells were injected into other tissues and organs [20–23]. Research has shown
that genetically modified UCBCs can survive for at least 4 weeks under xenotransplantation
conditions [22,24]. This suggests that the transplanted cells themselves and the transgenes
they express may influence virtually all stages of post-ischemic reparative myogenesis,
from the early events immediately after injury to the formation of definitive muscle fibers
that restore damaged tissue and skeletal muscle function.

Although the first signs of post-ischemic muscle regeneration appear within a few
hours after the onset of ischemia, this process is prolonged, resulting in a slow recovery
of muscle function. In our study, we found that the gene and gene cell constructs we
used had different effects on muscle fiber preservation, angiogenesis, and post-ischemic
innervation 14 and 28 days after their injection (28 and 42 days after the modeled ischemia).
In this respect, it seems more promising to use those approaches that lead to more effective
tissue regeneration in the delay period, taking into account the duration of the possible
regeneration of muscle tissue and restoration of its functional characteristics.

Chronic ischemia of the lower extremities results in muscle fiber damage and degen-
eration with overgrowth of connective tissue. The results of our experiments showed no
significant changes in the number of preserved muscle fibers in the experimental groups
with direct or cell-mediated gene therapy compared to the control group. On the contrary,
most of the experimental groups (except UCBC Ad5-Vegf + Ad5-Ang + Ad5-Gdnf and
Ad5-Vegf ) had a reduced number of preserved muscle fibers up to 42 days after ischemia.
It can be assumed that this effect is associated with an increase in the number of CNMFs,
indicating reparative regeneration of muscle tissue [25,26], in the experimental groups
compared to the control group.

However, this possibility is not excluded only for the groups with direct or cell-
mediated delivery of the Vegf, Ang, and Gdnf genes, where the number of CNMFs was
significantly higher compared to the control group. Taken together, these features suggest
that in chronic hypoxic injury, the mechanism of reparative myogenesis is most actively
stimulated by a combination of all three transgenes studied.

In general, satellite cells and other myogenic progenitor cells interact closely with
endothelial cells during muscle regeneration, which stimulates myogenic cell growth
and, conversely, differentiating myogenic cells promote angiogenesis. The results of our
experiments showed the greatest positive effect on angiogenesis of the cell-mediated
delivery of therapeutic transgenes, where the index of the number of CD31+ cells was
highest 42 days after ischemia in groups with the combined delivery of genes encoding
angiogenic factors (UCBC Ad5-Vegf + Ad5-Ang) or their combination with neurotrophic
factor (UCBC Ad5-Vegf + Ad5-Ang + Ad5-Gdnf ). Gdnf plays an important role in VEGF-
driven revascularization of ischemic muscle, including endothelial cell outgrowth and
vascular maturation [27].

The role of GDNF in endothelial cell adhesion and migration, leading to the restoration
of a functional vascular network, may be mediated by the adhesion molecule integrin β1,
which together with other partners is involved in signaling through the GDNFRα-1 receptor
and is critical for vascular pattern formation and remodeling of the vascular network [28,29].

The low rate and degree of post-ischemic muscle regeneration were not associated with
a specific loss of satellite cells, nor with a decrease in capillary density or expression of the
main growth factors controlling myogenesis [30]. However, these negative manifestations
during reparative myogenesis may be a consequence of the prolonged inflammation and
oxidative stress that occur during muscle ischemia and reperfusion. We also evaluated the
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ratio of capillaries per normal muscle fiber, the highest value of which was observed at
42 dpi in the group with direct delivery of the Vegf, Ang, and Gdnf genes.

In this group, the positive effect of the expression of the VEGF transgene was constantly
manifested. The most obvious explanation for the stimulatory effect of VEGF on reparative
myogenesis is based on the well-studied effect of this factor on angiogenesis and reperfusion
of blood vessels in muscle, leading to improved trophism of muscle tissue. At 42 dpi, the
more pronounced effect of VEGF with direct vector injection compared to its cell-mediated
delivery may be due to a decrease in the number of genetically modified UCBCs caused by
their increasing death rate.

The sympathetic nervous system plays an important role in angiogenesis [31]. Ac-
tivation or inhibition of adrenergic receptors (mainly β-adrenergic receptors) expressed
on endothelial cells and pericytes significantly affects the formation of new blood vessels.
According to the criterion of maintaining the number of Schwann cells, cell-mediated deliv-
ery was found to be more effective than direct injection of any of the gene combinations
studied at 28 and 42 days after ischemia. The maximum number of S100b+ cells was ob-
served in groups with the combined delivery of genes encoding angiogenic factors (UCBC
Ad5-Vegf + Ad5-Ang) or their combination with neurotrophic factor (UCBC Ad5-Vegf +
Ad5-Ang + Ad5-Gdnf ). When the number of nerve fibers was evaluated at 42 dpi by im-
munohistochemical reaction with antibodies against β3-tubulin in the Ad5-Vegf + Ad5-Ang,
Ad5-Vegf + Ad5-Ang + Ad5-Gdnf, UCBC Ad5-Vegf + Ad5-Ang, and UCBC Ad5-Vegf +
Ad5-Ang + Ad5-Gdnf groups, the maximum number of nerve fibers was observed, which
corresponds to the data on the number of nerve fibers when stained with antibodies
against S100b.

It has previously been shown that exogenous Vegf increases Gdnf expression in dam-
aged skeletal muscle, which in turn stimulates nerve fiber regeneration and recovery of
function [27]. Overexpression of GDNF in skeletal muscle leads to a significant increase in
the number of neuromuscular synapses [32]. GDNF not only promotes motor neuron mat-
uration, but also supports regeneration of damaged axons and modulates neuromuscular
transmission by acting at both pre- and postsynaptic levels. Consequently, the addition of
Vegf leads to angiogenic and neurogenic responses that affect axon growth directly or indi-
rectly through increased expression of GDNF by cells of the reorganized vascular network.
The expression of these responses may vary depending on the stage of regeneration and the
predominance of one or the other component in a particular area of regeneration. Therefore,
cell-mediated combined delivery of genes encoding angiogenic and neurotrophic factors
to ischemic tissue may have a direct stimulatory effect on nerve fiber regeneration and
may also stimulate this process indirectly by enhancing the effect of GDNF. Therefore, the
restoration of innervation and perfusion contributes to the normalization of skeletal muscle
structure and function in the post-ischemic period, which was most pronounced in the
UCBC Ad5-Vegf + Ad5-Ang + Ad5-Gdnf group.

In conclusion, we would also like to note the gradual spread of gene therapy using a
combination of different genes in such nosologies as limb ischemia plus diabetes. It was
shown that the use of pIRES/VEGF165/HGF plasmid in patients with lower limb ischemia
and diabetes significantly improved vascularization of the affected limb [33]. Another
study showed enhanced migration of CD34+ cells upon intramuscular administration of
plasmids with a combination of ANG1/VEGF genes [34]. The above studies suggest a
possible potentiating effect of gene combination compared to monotherapy with a single
therapeutic gene.

This study shows that of eight combinations of three transgenes, Vegf, Ang, and Gdnf,
injected directly or via human umbilical cord blood mononuclear cells into the region
of ischemia, cell-mediated delivery of the combination of Ad5-Vegf, Ad5-Ang, and Ad5-
Gdnf stimulates revascularization, reparative myogenesis, and nerve fiber regeneration
more effectively up to 42 days after ischemia. The beneficial effects of specific transgenes
encoding angiogenic and neurotrophic factors on the regeneration of ischemic skeletal
muscle vary depending on the stage of the process.
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chemia model; Figure S2: Laser flowmetry of blood flow intensity in intact and ischemic hind limbs
on the 14th day of the experiment; Figure S3: Immunohistochemical visualization of CD31+ cells in
the distal part of calf muscle at 28 dpi; Figure S4: Immunohistochemical visualization of CD31+ cells
in the distal part of the calf muscle at 42 dpi.
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