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Abstract: Immune thrombocytopenia (ITP) in pediatric patients is a common cause of
isolated thrombocytopenia. Various pathophysiological mechanisms are implicated in
ITP pathogenesis, including the production of autoantibodies against components of
platelets (PLTs) by B-cells, the activation of the complement system, phagocytosis by
macrophages mediated by Fcγ receptors, the dysregulation of T cells, and reduced bone
marrow megakaryopoiesis. ITP is commonly manifested with skin and mucosal bleeding,
and it is a diagnosis of exclusion. In some ITP cases, the disease is self-limiting, and
treatment is not required, but chronic-persistent disease can also be developed. In these
cases, anti-CD20 monoclonal antibodies, such as rituximab and thrombopoietin (TPO)
receptor agonists, can be used. TPO agonists have become standard of care today. It has
been reported in the published literature that the efficacy of TPO-RAs can be up to 80% in
the achievement of several end goals, such as PLT counts. In the current literature review,
the data regarding the impact of TPO agonists in the pathogenesis of ITP and treatment
outcomes of the patients are examined. In the era of precision medicine, targeted and
individualized therapies are crucial to achieving better outcomes for pediatric patients with
ITP, especially when chronic refractory disease is developed.

Keywords: eltrombopag; immune thrombocytopenia; pediatrics; romiplostim; thrombopoietin
receptor agonists

1. Introduction
Immune thrombocytopenia (ITP) is an acquired hematological disorder that is charac-

terized by immune-mediated destruction and the impaired production of platelets (PLT),
causing a notable reduction in PLTs count (less than 100,000/µL). This condition is char-
acterized by hemorrhagic manifestations and, as a result, affects the patients’ quality of
life (QoL) [1]. In the pediatric population, this condition is mostly self-limited, with im-
provement in PLT count after some time [2]. However, sometimes it can progress to chronic
disease, and in these cases, long-term treatment is essential. The pathophysiological mecha-
nisms for ITP in children constitute a field for further research. At the same time, recent
studies have already confirmed the role of thrombopoietin (TPO) and megakaryocyte
biology in the progression of the disease.

TPO is a key regulator for megakaryopoiesis and platelet production because its role
is to bind to its receptor (c-Mpl) in order to stimulate megakaryocyte proliferation and
platelet release from the bone marrow. Levels of TPO are not as increased as might be
expected in ITP patients due to the high rates of platelet destruction, which highlights the
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autoimmune profile of the disease [3]. Also, the antibodies that target the PLTs often inhibit
bone marrow megakaryocytes, leading to the suppression of PLT production. As a result,
there is an important imbalance between the destruction and production of PLTs, which
confirms the importance of TPO receptor agonists (TPO-RAs) usage as an option for ITP
management in children [4].

TPO-RAs, such as eltrombopag and romiplostim, are synthetic agents that stimulate
megakaryocyte activity and increase platelet production [5]. They are used in both pediatric
and adult populations, and they have confirmed their efficacy in increasing PLT counts.
In addition, they appear to have further important effects in managing ITP, such as in the
bone marrow microenvironment, by promoting megakaryocyte maturation and reducing
the immune-mediated inhibition of megakaryopoiesis [6]. Overall effects are of paramount
importance, especially in pediatric patients.

However, a challenging field for research is the impact that TPO-RAs have on the
immune regulation of children since chronic ITP is often associated with a breakdown
of immune tolerance, which results in the production of autoantibodies against platelet
antigens. Some existing studies show that TPO-RAs may help restore immune homeostasis,
but there is no further information concerning pediatric patients [7,8]. A narrative review
of the literature was performed using PubMed and Medline search engines to identify
original articles. In our search, full-text articles published in English were included, and
all the available data were examined critically. The keywords of research were “immune
thrombocytopenia” or “ITP” combined with “pediatric”, “TPO-RA”, “eltrombopag”, or
“romiplostim”.

2. Pediatric ITP: Clinical Approach
2.1. Clinical Manifestations and Epidemiology of Pediatric ITP

ITP in pediatric patients can be divided into the following categories: “newly diag-
nosed ITP” refers to cases in which thrombocytopenia is present for 3 months from the
diagnosis, “persistent ITP” is defined as thrombocytopenia lasting 3 to 12 months, and
“chronic ITP” describes thrombocytopenia lasting for more than 12 months [9,10]. The
term “severe ITP” is used for patients with clinically significant bleeding manifestations at
diagnosis that require treatment and for those with new-onset bleeding tendencies after
diagnosis [9].

In the majority of pediatric patients with ITP, children are asymptomatic or exhibit
bruising, petechiae, or epistaxis [11]. Bleeding in oral mucosal, menorrhagia in adolescents,
macroscopic hematuria, gastrointestinal (GI) bleeding, and rarely intracranial bleeding [12].
The incidence of intracranial hemorrhage is below 1% and is associated with high mortality
and morbidity [13]. Bleeding manifestations are more prevalent in adolescent patients,
while asymptomatic disease is mainly observed between 1 and 3 years old [12]. Fatigue is
also an important issue in children with ITP, contributing to lower quality of life levels [14].

Often in ITP pediatric cases, the disease is self-limited and benign, and in 75% of
patients it resolves within a 6 month period [11]. Kühne and colleagues in their obser-
vational study included 1496 children with ITP and found that the highest incidence of
ITP is observed during spring and early summer [15]. ITP incidence in children has been
described between 1.9 and 8.8 cases per 100,000 [13,16]. Moreover, the median age of
diagnosis might be lower in males in comparison to females [13].

2.2. Diagnosis and Secondary ITP Causes

ITP is a diagnosis of exclusion, and detailed personal and family history for bleeding
and thorough clinical examination is essential [15,17]. In every case of thrombocytopenia,
pseudothrombocytopenia should be excluded through a blood smear examination [18].
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After the establishment of a thrombocytopenia diagnosis, a differential diagnosis of the
causes of ITP should be performed. In over half of ITP cases, a recent infection is reported
in the patient’s history [19]. At the same time, associations between the measles–mumps–
rubella (MMR) vaccine and ITP development have been described [20]. Rarely, COVID-19
infection and vaccination against COVID-19 can cause a syndrome similar to ITP, accompa-
nied by the development of thrombotic events in some cases, known as vaccine-induced
thrombotic thrombocytopenia [21–24]. It is important that ITP in children is differentially
diagnosed by congenital causes of thrombocytopenia, such as Wiskott–Aldrich syndrome,
congenital amegakaryocytic thrombocytopenia, and thrombocytopenia absent radia syn-
drome [25]. These syndromes are often connected with skeletal abnormalities and other
clinical manifestations [26].

In adults with ITP, hepatitis B and C virus, human immunodeficiency virus, and Heli-
cobacter pylori infections should be ruled out, while testing for these pathogens in pediatric
patients is not essential and should be performed based on epidemiological and clinical
data [27,28]. Testing for common variable immunodeficiency with measurement of quantita-
tive immunoglobulins (Ig IgG, IgA, IgM) is recommended for children with ITP [28,29]. In
some cases, ITP might be the result of underlying autoimmune disorders, such as antiphos-
pholipid syndrome or systemic lupus erythematosus (SLE) [30]. Higher titers of antinuclear
antibodies (ANAs) at the timepoint of ITP diagnosis have been associated with SLE devel-
opment [31]. In Table 1, the underlying causes of ITP in children are presented. In Evan’s
syndrome, thrombocytopenia is combined with one or more cytopenias, which commonly
include autoimmune hemolytic anemia. In Evan’s syndrome, direct antiglobulin tests are
positive [32]. Antiplatelet antibodies (glycoprotein GPIIb-IIIa autoantibodies) have a high
specificity for ITP, but their sensitivity is low for the diagnosis of ITP [33]. Thus, testing for
these antibodies is not routinely recommended [17]. Furthermore, bone marrow aspirate and
biopsy are not suggested in children with ITP, unless the exhibit abnormal findings in clinical
or blood smear examinations [17]. Bone marrow examinations might also be indicated for
patients with refractory disease.

Table 1. Underlying causes of ITP in pediatric patients.

Cause Disease Examples

Infections Viral infections (EBV, influenza, VZV,
CMV, HIV, COVID-19)

Vaccinations

MMR and, rarely, vaccinations against
varicella, hepatitis A, pneumococcus,

tetanus–diphtheria–acellular pertussis
vaccines

Autoimmune disorders SLE, APS

Primary immunodeficiency syndromes Common variable immunodeficiency,
DiGeorge (22q11.2 deletion) syndrome

Drugs

Lymphoproliferative disorders and other
malignancies

Leukemia, Myelodysplastic syndrome,
autoimmune lymphoproliferative

syndrome, non-Hodgkin/Hodgkin
Lymphoma

EBV: Epstein–Barr virus, VZV: varicella zoster virus, CMV: cytomegalovirus, HIV: human immunodeficiency
virus, MMR: measles, mumps, and rubella, SLE: systemic lupus erythematosus, APS: antiphospholipid syndrome.
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2.3. Refractory ITP

In the majority of pediatric ITP cases, even in cases with severe thrombocytopenia, PLT
counts are normalized within 12 months of diagnosis [34]. Moreover, in most children with
ITP, spontaneous remission is common, and response rates to first (IVIG and corticosteroids)-
and second (rituximab, TPO-receptor agonists)-line treatments are high [35–37]. However,
despite this, some will have a refractory disease. In the systematic review of Ibrahim et al., 11
studies proposing different definitions for refractory pediatric ITP were identified, without
an agreement among them [38]. Inadequate treatment response and specified PLT count
thresholds were used in most of the published studies to define refractory ITP [38]. Given
the various definitions used in the different studies, it is difficult to estimate the real inci-
dence of refractory ITP. Recently, the Intercontinental ITP Study Group and the Pediatric ITP
Consortium of North America (ICON) proposed a novel definition for refractory ITP [39].
In Table 2, the definition of refractory ITP by the Intercontinental ITP Study Group and the
Pediatric ICON is presented. The authors also highlight that some patients might not belong
to either of these categories. In these patients those who need a longer duration of first-line
treatments to respond and those who relapse while on second-line therapies are included. It
is considered crucial to evaluate the incidence of refractory ITP in real-world settings using
this novel definition.

Table 2. Definition of refractory ITP by the Intercontinental ITP Study Group and the Pediatric ITP
Consortium of North America [39].

Refractory ITP Criteria

Newly diagnosed refractory

Pediatric patients who
• Still require treatment;
• Had no response to at least two first-line agents at standard dosing:

steroids (>1 mg/kg/dose) for 4 days or more and IVIG (0.8–1 g/kg);
• PLTs count < 20 × 109/L, 1 week post-treatment.

Persistent/chronic refractory
Pediatric patients who do not respond to at least two second-line
treatments of different categories (such as rituximab and/or TPO-RA),
independently from the response to first-line treatment.

ITP: immune thrombocytopenia, IVIG: intravenous immunoglobulin, PLTs: platelets, TPO-RA: thrombopoietin-
receptor agonists.

3. Immune Dysregulation in ITP
In the pathophysiology of ITP, both increased destruction-reduced lifespan and de-

creased production of PLTs are implicated [40–43]. Various mechanisms have been pro-
posed as pathogenic in this clinical entity, including the production of antibodies against
PLT components, the apoptosis of PLTs, and the activation of T cell-mediated immunity [44].

Specifically, circulating autoantibodies against glycoprotein Ib and IIb/IIIa, secreted by
B-cells, bind to antigens on the surface of PLTs. These antibody-coated PLTs are destructed
by activated macrophages in the spleen and other reticuloendothelial tissues, such as the
liver [45,46]. The activation of Fcγ receptors through the spleen tyrosine kinase results
in the phagocytosis of PLTs [47,48]. Moreover, the classical pathway activation of the
complement system leads to the destruction of the antibody-coated thrombocytes [49].
Autoantibodies have also been proposed as suppressors of PLT production by bone marrow
megakaryocytes [33,40,47]. Modifications in the glycans, and mainly loss of terminal sialic
acid, might also be implicated in ITP pathogenesis. It has been suggested that antibodies
against glycoprotein Ib lead to loss of sialic acid (desialylation), leading to their uptake by the
Ashwell–Morell receptor, the activation of the JAK2-STAT3 signaling pathway, the increased
production of TPO, and the induction of PLT production in the bone marrow [50–53].
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Macrophages present PLT antigens of the major histocompatibility complex class II
to the T cell receptors of autoreactive T cells [54]. Thus, the T cell regulatory response
is reduced, while the activity of type 1 T-helper (Th1) and 17 T-helper (Th17) types and
cytotoxic T cells is enhanced, leading to the destruction of PLTs and megakaryocytes [55–57].
Zufferey et al., in their study, showed that mature megakaryocytes can present antigens
to CD8+ T (cytotoxic) cells, mediating ITP in vivo [58]. PLT-derived extracellular vehicles
have been shown to promote the differentiation and activation of CD8+ T cells by inserting
antigens with major histocompatibility [59]. Moreover, in ITP patients, increased PLT
apoptosis has been described and might be the result of the dysregulation of Bcl-xL (an
antiapoptotic protein) and Bax expression [50,60,61].

Autoantibodies might play a crucial role in the pathogenesis of ITP, but in up to 40%
of ITP patients, antibodies against PLTs are not detectable, as shown in the metanalysis of
Vrbensky et al. [62]. In such cases, defects in other components of the immune system might
be implicated, such as in cytokines, chemokines, the complement system, and antigen-
presenting, natural killer, and T cells [63–68]. In particular, the dysfunction of T cells might
result in the desialylation of the PLTs [65]. In Figure 1, the basic process of ITP pathogenesis
and the role of targeted therapeutics are summarized.
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4. Treatment of ITP in Pediatrics
Treatment of pediatric ITP can be challenging since there are no clear guidelines

and therapy varies, depending on the patient’s clinical status condition. In most cases,
PLT counts in children normalize after some time. In cases where the condition is not
improved, treatment is needed. ITP treatment options are categorized into front-line
therapies (corticosteroids and IVIg) and second-line therapies (Rituximab and TPO-RA),
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which are preferred to treat chronic or refractory ITP [38]. In very severe and rare cases
only, ITP can be life-threatening. Negative effects on the ITP patient’s QoL, especially in
childhood, have been described [69].

4.1. Front-Line Treatment: Corticosteroids and IVIg

Corticosteroids are commonly used for the treatment of ITP. These, as a first-line
treatment, constitute a therapeutic option for the initial therapeutic period, since most
cases of ITP are considered self-limited. Frequently used corticosteroids are prednisone,
prednisolone, or dexamethasone [70,71]. The efficacy of corticosteroids (improvement in
PLT counts) is confirmed in 70–80% of pediatric cases [10]. This highlights that some-
times corticosteroids can also be part of combined therapy regimens in order to achieve
better therapeutic outcomes. Their aim is to suppress the immune response and reduce
autoantibody production. Corticosteroids decrease the phagocytosis of antibody-coated
platelets through macrophages in the spleen and inhibit the production of platelet-targeting
autoantibodies [72]. Prednisone, the most common corticosteroid used, requires a dose
of 1–2 mg/kg daily for 2 weeks, while dexamethasone (0.6 mg/kg/day) is given for four
consecutive days [73]. However, long-term administration is not suggested due to the side
effects that can present.

In addition to corticosteroids, IVIg can also be an option as a front-line therapy,
especially in children with more severe thrombocytopenia. IVIg reduces PLT destruction
by saturating the Fc receptors on splenic macrophages [74,75]. It is administered as a single
dose (0.8–1 g/kg) or divided into 2 days (0.4/g/kg/day), with PLT counts improving
immediately after administration [73]. IVIg acts faster and is preferred in emergency cases,
but side effects, such as headache, nausea, or even hemolysis after the infusion, have to be
considered [10].

The choice between corticosteroids and IVIg as front-line therapy depends on several
factors, like the urgency of PLT improvement, the clinical manifestation of the patient, and
the severity of the ITP. In both treatments, side effects can be observed, and both have
a risk of failure, especially when using steroids [10]. In their study, Cao and colleagues
used plasma proteomics to predict the prednisolone treatment outcomes in pediatric
ITP and found that myosin heavy chain 9 and fetuin B levels were significantly lower
in prednisolone-resistant patients [76]. Also, another option for emergency cases with
uncontrolled bleeding is to choose a combination treatment with prednisone and IVIg [77].

Regarding the response to IVIG, it has been shown that patients who are homozygous
for the FcGR2B-232I allele (encoding Fc gamma receptor) are more likely to respond
compared to those homozygous for the FCGR2B-232T [35]. In the study by Peng et al., the
presence of anti-glycoprotein Ib/IX antibodies has been associated with lower response
rates to IVIG treatment [78]. Schmidt and colleagues have developed a risk score for the
prediction of response to IVIG treatment, incorporating five variables: hemoglobin, PLT
count, the identification of anti-PLT antibodies, genetic polymorphisms Fc-receptor IIc,
and a history of recent vaccination [79]. Moreover, the Childhood ITP Recovery Score
Calculator, incorporating only clinical variables (age, PLT count at diagnosis, sex, history
of infection, history of vaccination, disease onset, and clinical manifestations), has been
validated as a predictor of transient and persistent ITP in children [80].

Respondents to treatment are considered those who exhibit a doubling of their PLT
count and PLTs between 30 × 109/L and 100 × 109/L, while a complete response is attained
when PLT is over 100 × 109/L. No response is considered when PLT counts are less than
30 × 109/L or half of the PLT values before the treatment initiation. Resolving bleeding
symptoms is also important for the evaluation of response [81].
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4.2. The Role of Anti-CD20 Monoclonal Antibodies

In cases where ITP progresses to a chronic condition, long-term treatment is required.
In such cases, rituximab, a monoclonal CD20 antibody, which causes peripheral B-cell
depletion, is among the most common first-line treatment choices. It has been used in
patients with lymphoma as an anti-neoplastic agent for the past few decades [69]. Rituximab
achieves an initial response rate (platelet count ≥ 50 × 109/L) of 50–60% and a 5-year
sustained response of 25–30% [82]. Its efficacy is underlined in several studies and factors
associated with better treatment outcomes include female gender, younger age, and prior
response to corticosteroids [83,84]. It is generally considered a safe agent, even though there
are some risks that should be evaluated, especially in patients with immunodeficiency or
hypogammaglobulinemia and neutropenia [85]. Rituximab reduces anti-platelet antibody
production, and it is used for various autoimmune disorders beyond ITP [69]. Harris et al.
assessed the effectiveness and safety of rituximab in the pediatric and adult population and
concluded that 58% of patients of < 18 years old met the criteria for complete response [86].
Regarding the effects after the infusion, as seen in several studies with a significant number
of patients, it can be concluded that almost all the adverse effects were mild and only a few
could be characterized as severe [87–89]. The systematic review of Yi Liang et al., which
summarized the published data regarding rituximab use in pediatrics, concluded that the
pooled complete response rate of rituximab was 39% [90]. The response rate of rituximab
was also evaluated in more recent studies [37,91,92].

4.3. TPO-RAs in Pediatric ITP Management

TPO-RAs are also included in the second-line treatment options in pediatric ITP [93].
The main TPO agonists used in children (over 1 year old) are eltrombopag and romi-
plostim [94]. Investigations into the safety and efficacy of avatrombopag have started, but
it is not yet approved for the pediatric population. For both eltrombopag and romiplostim,
it is necessary to monitor for side effect development. At the same time, their efficacy and
safety have been described in various studies [92,95–97].

Eltrombopag is administered orally and is approved for aplastic anemia management
as well as ITP. It binds to the transmembrane region of the TPO receptor, stimulating platelet
production [98]. The dosage for Eltrombopag in children is 25 mg/day if the child’s weight
is less than 27 kg or 50 mg daily if the child’s weight is over 27 kg. Eltrombopag’s safety has
been demonstrated in various studies [95,99,100]. Mainly, monitoring for hepatotoxicity
and bone marrow toxicity is required, while other effects are mild, even though in adult
patients more severe adverse events, such as cataracts, have been described [8,101].

Romiplostim is administered as a subcutaneous injection. For this reason, its use in
pediatric patients might be difficult. It acts as a peptibody that mimics TPO and binds to the
extracellular domain of the TPO receptor [101,102]. It is administered once a week, and the
initial dose is 1 µg/kg/week [103]. Adverse events of romiplostim administration are also
mild, but rare cases of bone marrow fibrosis have been described. Its safety and efficacy
are similar to eltrombopag, as confirmed in several studies [95,99,100]. In the systematic
review of Oliveira et al., 2023, in which two randomized controlled trials were included, it
was shown that romiplostim can improve durable and overall PLT response in children
with ITP, compared to the placebo [104].

For the discontinuation of TPO-RAs treatment, Marcos-Peña et al. suggested that the
general goal is to reach a PLT count of ≥ 80–100 × 109/L for 3 months, or after 9 months
with a response, and the shared-approval of the patient also is essential [100]. A period of
close monitoring is crucial, post treatment discontinuation, to avoid PLT dropping below
20 × 109/L [100]. Eltrombopag and romiplostim present similar efficacy and response
rates, while some minor differences in the mechanism of action and effects have been
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recognized. The choice between them is based on the preferred route of administration
along with the comorbidities of the pediatric patient. Further and larger studies should be
performed on TPO-RAs’ long-term efficacy in children with ITP. Moreover, future research
should focus on the development of predictive models based both on clinical and laboratory
variables for a response to TPO-RAs. Multicenter collaboration is essential in this field. In
Table 3, randomized controlled trials examining the efficacy and safety of eltrombopag and
romiplostim are presented. Moreover, in Figure 2, an algorithm for the management of
pediatric ITP is presented.

Table 3. Randomized controlled trials examining the efficacy and safety of eltrombopag and romiplostim.

First Author, Year
of Publication,

Reference
Agent Number of

Participants Outcomes Adverse Events Limitations

Bussel, 2015, [105] Eltrombopag
45 patients

received
eltrombopag

From weeks 1 to 6, 28
(62%) patients who

received eltrombopag
achieved the primary
endpoint of platelet

count 50 × 109 per L in
comparison to 32% in

the placebo group
(p = 0.011).

Headache, upper
respiratory tract
infections, and

diarrhea

Conservative
approach to the
initial dosing

Grainger, 2015,
[106] Eltrombopag

63 patients
received

eltrombopag

A total of 25 (40%)
patients who received
eltrombopag achieved

the primary outcome of
platelet counts of at least

50 × 109 per L for 6 of
the last 8 weeks of the

trial compared with 3%
patient in the placebo

group (p = 0.0004).

Nasopharyngitis,
rhinitis, upper

respiratory tract
infections, and

cough

Use of the
WHO bleeding

scale

Bussel, 2011, [107] Romiplostim
17 patients

received
romiplostim

A total of 15 of the 17
(88%) patients in the
romiplostim group

achieved the efficacy
endpoints of a platelet
count of 50 × 109/L or

greater for two
consecutive weeks and
an increase in platelet
count of 20 × 109/L or
greater above baseline

for two consecutive
weeks. A significantly

higher number of
patients in the

romiplostim achieved
the two endpoints in

comparison to the
placebo group

(p = 0.0008 for each
endpoint).

Headache,
epistaxis,

oropharyngeal
pain, pyrexia,

contusion, rash,
cough, and
vomiting

Small sample
size, minor
differences

between
control and
romiplostim

group
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Table 3. Cont.

First Author, Year
of Publication,

Reference
Agent Number of

Participants Outcomes Adverse Events Limitations

Tarantino, 2016,
[103] Romiplostim

42 patients
received

romiplostim

A more durable platelet
response was seen in 22

(52%) patients in the
romiplostim group than
in comparison with 10%

in the placebo group
(p = 0.002).

Headache and
thrombocytosis

Disparity
between the
incidence of

serious adverse
events between

the placebo
and control

group
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Figure 2. A practical algorithm for pediatric ITP management. ITP: immune thrombocytopenia; IVIg:
intravenous immunoglobulin; TPO-RA: thrombopoietin receptor agonist.

5. Novel Therapeutics in ITP
Signaling via the Fc-gamma receptor and Syk kinase, as was mentioned above, is of

paramount importance in ITP pathogenesis [108]. Fostamatinib is an oral inhibitor of the
Syk molecule, approved for the treatment of ITP in adult patients by the Food and Drug
Administration (FDA) [109]. In the phase 3 trial of Bussel et al., 146 patients were treated
with fostamatinib and 44% of them achieved an overall response (defined as ≥1 platelet
count ≥50,000/µL between weeks 1–12 of the treatment) [110]. The efficacy and safety of
fostamatinib were confirmed by the open-label extension of this trial [111]. Diarrhea and
hypertension are the main adverse events reported in patients who receive this agent. Use
of fostamatinib is contradicted in children and adolescents with ITP and is limited only to
adulty populations.

Bruton’s tyrosine kinase (BTK) is also expressed by PLTs, and rilzabrutinib, a BTK
inhibitor, which reduces macrophages-induced PLT destruction, has been investigated for
the management of ITP. In a phase 1–2 trial of 60 adult ITP patients, rilzabrutinib was found
to be safe and effective, with a response rate of approximately 40% [112,113]. Recently,
in the 2024 meeting of the American Society of Hematology (ASH), these results were
confirmed in a phase 3 study by Kuter et al. (NCT04562766) in adults and adolescents with
ITP [114]. The most prevalent adverse events included diarrhea, nausea, and headaches.
The efficacy and safety of this agent in children with refractory ITP should be investigated
in future studies.

Avatrombopag, an oral agent acting as a transmembrane TPO receptor agonist, has
shown similar efficacy to eltrombopag, and its use has been approved by the FDA for
adults with ITP [115]. There are emerging data that avatrombopag is a safe and effec-
tive agent for the management of chronic and persistent ITP in pediatrics [116,117]. In
Table 4, the data regarding the use of avatrombopag in pediatric patients are presented.
Recently, daratumumab, an anti-CD38 monoclonal antibody that is used for the treatment
of multiple myeloma, combined with avatrombopag, was used safely and effectively in a
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child with chronic and persistent ITP [118]. Moreover, herombopag, a second-generation
TPO agonist, which has been shown to be effective in post-allogeneic hematopoietic cell
transplantation thrombocytopenia management, is being investigated in children with
chronic and persistent ITP (NCT05685420) [119,120]. Obinutuzumab is the first person-
alized type II glycosylation-engineered CD20 monoclonal antibody, and its safety and
efficacy for pediatric ITP is under examination (NCT06094881) [117,121]. More data regard-
ing the cost-effectiveness and long-term safety of these novel agents in pediatric settings
are essential.

Table 4. Data regarding the use of avatrombopag in pediatrics.

First Author,
Year of

Publication,
Reference

Study Design Number of
Participants

Patients
Characteristics Outcomes Adverse

Events Limitations

An, 2023
[116]

Retrospective
study 20

8 male,
12 females,
median age

7.3 years

At day 90 of therapy, a
platelet response

(≥50 × 109/L) was
observed in 93% of the

patients (p < 0.01
compared to control

group).

One case of
headache,

two cases of
epistaxis and

petechia

Not reported

Cheng, 2023
[122]

Retrospective
studies 11

7 males,
4 females,

median age
8.3 years

Of the patients, 81.8%
(9/11) and 54.6% (6/11)
experienced an overall
and complete response,

respectively. The
median PLT count was
significantly increased
from eltrombopag to

avatrombopag
(p = 0.007).

Vomit,
diarrhea,

headache, na-
sopharyngitis

Retrospective
design, small
study sample

Turudic, 2024
[123] Case report 1

2-year-old,
ANA-positive

ITP

A complete response
was achieved on day
74 (>100 × 109/L).

- Case report

Wang, 2024
[117]

Retrospective
study 34

18 males,
16 females,
mean age
6.3 years

An overall response
was achieved in 79.4%

patients and a
complete response in

67.7%.

Upper
respiratory
infections,
fever, gas-

trointestinal
symptoms

Retrospective
observational

study,
absence of

control group,
small sample

size

ANA: antinuclear antibodies; ITP: immune thrombocytopenia; PLT: platelet.

6. Conclusions
In this review, an up-to-date approach to the impact of TPO agonists in the treatment

and pathophysiology of pediatric ITP was used. In many cases, ITP in children is self-
limiting and treatment is not required, while in other cases, a persistent and chronic disease
could develop. For these cases, beyond anti-CD20 monoclonal antibodies, TPO agonists
have become the standard of care. Improvements have been described, not only in PLT
counts but also in the quality of life of these vulnerable patients. The different outcomes
observed in the different studies could be attributed to regional variations. Multicenter
studies evaluating the efficacy of these agents could be helpful in order to obtain safe
conclusions. Next-generation therapeutics, targeting Fcγ receptors and second-generation
TPO agonists are under investigation for pediatric ITP management. Future studies should
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focus on the development models that will be helpful in the prediction of outcomes of
patients who are treated with TPO agonists.
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