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Abstract: The COL3A1 gene, encoding the pro-alpha chain of type III collagen, has been
implicated in a range of collagen-mediated diseases such as Ehlers–Danlos syndrome and
aortic aneurysms. In this report, we present evidence for the first time associating a single
nucleotide variant p.P517R in exon 22 of COL3A1 with the development of diffuse coronary
aneurysms in a human subject without prior atherosclerotic cardiovascular disease, connec-
tive tissue disorder, or phenotypic characteristics diagnostic for vascular Ehlers–Danlos
syndrome. Computational modeling of this specific variant in AlphaFold and in silico
analyses predict deleterious alterations in the structure and function of the COL3A1 gene
product, alpha 1 chain of type III collagen. This novel phenotype-to-genotype correlation
should prompt further investigation into the mechanistic basis of this association.

Keywords: COL3A1; coronary artery aneurysm; coronary artery ectasia; single nucleotide
variant; collagen matrix protein; extracellular matrix

1. Introduction
Coronary artery aneurysms (CAA) are characterized by the localized dilatation of an

epicardial coronary artery exceeding the diameter of adjacent normal segments by 50%
or more. In contrast, coronary artery ectasias (CAE) are distinguished by their diffuse
extension over more than one-third of the coronary artery length [1–3]. Coronary artery
aneurysms and ectasias involve all three layers of the tunica intima, media, and adventi-
tia [4]. Although their pathogenesis is not fully understood, atherosclerosis is known to
be the most common cause via a mechanism of hyalinization and lipid deposition in the
vessel tunica intima and media, leading to vessel wall weakening. Symptoms can range
from clinically silent, incidental findings on angiogram or computed tomography to the
spectrum of acute coronary syndrome, acute cardiac tamponade, or sudden death [1,4].

While advances in diagnostics have yielded a basic epidemiology of CAA via retro-
spective analysis of large registries, limitations include observational design and variations
in patient inclusion criteria and angiographic criteria [4]. CAA has an estimated incidence
ranging from 0.35% to 4.9%, as reported by studies including the international Coronary
Artery Aneurysm Registry (CAAR) and the Coronary Artery Surgery Study (CASS) [5–7].
The incidence of CAA appears to vary regionally, suggesting influence from genetic and
environmental factors. In one study using national health data, the incidence rate of CAA
and CAE on angiography in Taiwan was found to be 0.87 per 105 person-years from 2005
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to 2011 [8]. Another study performed at a hospital in Shanghai, China, found the overall
incidence of CAA and CAE on angiography to be 1.92% from 2014 to 2022 [9].

CAAs are most commonly develop in the left anterior descending artery (49.6%),
followed by the right coronary artery (31.4%) and the circumflex artery (27.5%), according
to recently published data from the CAAR international registry [10]. While CAAs derived
from atherosclerotic and vasculitis etiologies often affect more than one artery, the involve-
ment of three coronary vessels or the left main is rare [1,11]. Congenital and iatrogenic
CAAs typically affect a single vessel.

While the pathogenesis of CAA and CAE remains under investigation, the underlying
mechanisms appear to contribute to the weakening and dilation of the vessel wall [4].
Known etiologies include atherosclerotic disease, vasculitis disorders such as Kawasaki
disease and Takayasu arteritis, hereditary connective tissue disorders including Marfan
syndrome and Ehlers–Danlos syndrome, infection, iatrogenic injury, and congenital disease.
Current data on the long-term outcomes of a large, multicenter registry of adult patients
with CAAs demonstrated a risk factor profile for atherosclerotic cardiovascular disease
(ASCVD), with 85.6% of the cohort demonstrating concomitant severe coronary artery
disease (CAD) [10]. While the prevalence of connective tissue disorders among the cohort
was low (2%; 35/1729), the exclusion of patients with isolated CAE from the registry may
similarly exclude etiologies leading to a more severe aneurysmal phenotype.

The vascular type of Ehlers–Danlos syndrome (vEDS) is caused by mutations in
COL3A1, which encodes the pro-alpha 1 chain of type III collagen [12]. This severe form of
EDS is characterized by the spontaneous rupture of large arteries and other hollow organs,
which can result in sudden death. COL3A1 mutations are additionally associated with
arterial aneurysms and fibrotic disease. A large Dutch cohort study of 142 individuals with
pathogenic or likely pathogenic COL3A1 variants identified five patients with spontaneous
coronary artery dissections at a mean age of 39 years [13]. Notably, one of the five patients
lacked other phenotypic characteristics highly suggestive of vEDS. To the best of our
knowledge, although few cases have been reported demonstrating spontaneous coronary
artery dissection in patients with COL3A1 variants and without a diagnosis of vEDS,
none have reported coronary artery aneurysm or ectasia formation [14]. Although each
formation is similar in pathophysiology, this report serves as a novel finding of coronary
artery aneurysms and ectasias associated with a COL3A1 variant in a patient who does not
meet clinical criteria for vEDS.

Furthermore, there is limited work that describes any genetic associations between
genes crucial to the extracellular matrix and coronary aneurysms. Genetic variants in
COL3A1 are most associated with aortic aneurysms secondary to the disruption of collagen
integrity in the adventitia and media of the aorta, as demonstrated by a murine model [15].
Given the similarities in the components of the aorta and coronary vasculature, we hypoth-
esize that pathogenic variants in COL3A1 play a role in the development of CAAs and
CAEs in a subset of patients. This report aims to advance the literature associating genetic
variants with CAA and CAE development and prompt further mechanistic investigation
into pathogenesis.

2. Clinical Features
A 67-year-old Caucasian female with risk factors for atherosclerotic vascular disease

(ASCVD), including hyperlipidemia (well controlled on therapy), hypertension, and a
family history of CAD, suffered an inferior ST-elevation myocardial infarction (STEMI)
and underwent primary percutaneous coronary intervention (PCI) of the right coronary
artery with a fifth-generation drug-eluting stent (RCA) at an outside institution. She sought
care in our program and underwent a thorough examination, which yielded no overt joint
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hypermobility, loose skin, or any auscultation abnormalities. Standard biochemical labora-
tories and more advanced parameters, such as a Lipoprotein A level, were within standard
reference ranges. A review of her coronary angiography demonstrated significant coronary
aneurysms in all vessels (Figure 1). The patient’s post-hospitalization echocardiogram
revealed a left ventricle of normal size with an ejection fraction of 60–65% qualitatively and
62% by Teicholz without any significant valvular findings, normal intracardiac pressures,
and normal post-infarct subsegmental wall motion and contractility. By ultrasound, the
ascending aorta measured 32 mm with a normal measurement of the arch and had a normal
Doppler evaluation. Her ostial LAD stenosis (Figure 1) was managed with a step-wise
intensification of medical therapy. After three months of dual antiplatelet therapy, she
underwent a successful and uncomplicated single vessel left internal mammary artery
(LIMA) to left anterior descending (LAD) procedure. Given the diffuse coronary ecta-
sia/aneurysms, she was offered clinical genetic testing to guide longitudinal clinical care,
including surveillance plans for arterial aneurysms elsewhere. Over the patient’s time
of care with us, by ultrasound assessment, her ascending aorta, aortic arch, proximal de-
scending aorta, and carotid/vertebral arteries have had normal pulsatile flow and normal
morphology without aneurysmal changes. Further CT angiographic screening is planned.
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Figure 1. (Left Panel): Angiography of the left coronary circulation with aneurysm. (Middle
and Right Panels): Angiography of the Right coronary circulation demonstrating diffuse
coronary aneurysms.

3. Materials and Methods
3.1. Next-Generation Sequencing Analysis

For genetic testing, we utilized a candidate gene approach with a panel of 35 genes
associated with thoracic aneurysmal and dissection diseases (TAAD) (Table 1) using a
standard commercially available genomic DNA saliva isolation kit comprising standard
lysis/binding solutions, gDNA binding beads, and washing/elution solutions and run in a
96-well format [16]. The commercially available panel of 35 genes we chose represents a
broad consensus of genes encoding endothelial, smooth muscle, and extracellular matrix
components of the entire vascular wall, along with regulatory signaling genes such as the
TGFB superfamily; this panel was updated from that originally reported in 2003 but was
updated in 2023 to remain current to the literature [17]. Genetic sequencing was performed
by Next-Generation or Sanger sequencing of all coding domains and well into the flanking
5′ and 3′ ends of all the introns and untranslated regions. Gross deletion/duplication
analysis determines the gene copy number for the covered exons and untranslated regions
of all genes (excluding CBS and TNXB exons 32–44). Bait-capture methods were utilized to
enrich the coding exon sequences of interest using biotinylated oligonucleotide probes and
subsequent polymerase chain reaction and sequencing, utilizing NCBI reference sequences
(Table 1). Additional Sanger sequencing is performed for any regions missing or with
any insufficient read depth coverage for reliable heterozygous variant detection. Variants
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in regions complicated by pseudogene interference, variant calls not satisfying depth of
coverage, and potentially homozygous variants are verified by Sanger sequencing. Gross
deletion/duplication analyses are performed for all genes using a custom pipeline based
on read-depth from NGS data followed by a confirmatory orthogonal method, as needed.
Sequence analysis of the above genes is based on the NCBI reference sequences, as listed in
Table 1 [16]. The patient was given personalized genetic counseling in our practice.

Table 1. The 35-gene panel and respective NCBI sequences utilized for genetic sequencing of the
subject [16].

Gene Sequence Gene Sequence Gene Sequence

ACTA2 NM_001613.2 FKBP14 NM_017946.2 PRKG1 NM_006258.3

BGN NM_001711.4 FLNA NM_001456.3 SKI NM_003036.3

CBS NM_000071.2 FOXE3 NM_012186.2 SLC2A10 NM_030777.3

CHST14 NM_130468.3 LOX NM_002317.5 SMAD3 NM_005902.3

COL1A1 NM_000088.3 MAT2A NM_005911.5 SMAD4 NM_005359.5

COL1A2 NM_000089.3 MED12 NM_005120.2 TGFB2 NM_003238.3

COL3A1 NM_000090.3 MFAP5 NM_003480.2 TGFB3 NM_003239.2

COL5A1 NM_000093.4 MYH11 NM_002474.2 TGFBR1 NM_004612.2

COL5A2 NM_000393.3 MYLK NM_053025.3 TGFBR2 NM_003242.5

EFEMP2 NM_016938.4 NOTCH1 NM_017617.3 TNXB * NM_019105.6

FBN1 NM_000138.4 PLOD1 NM_000302.3 ZNF469 NM_001127464.1

FBN2 NM_001999.3 PRDM5 NM_018699.2
*: excludes exons 32–44.

3.2. Single Nucleotide Variant Analysis

Data were gathered from the Uniprot database regarding COL3A1 function and do-
mains [18]. The ClinVar database was accessed to investigate and compile data on the
observed single nucleotide variant (SNV) [19]. The observed frequency of this variant
among genetic ancestry groups was obtained from the Genome Aggregation Database
(gnomAD) [20]. The properties of the original and substituted amino acid resulting from
the SNV were compared, including the calculation of the Grantham Score [21,22].

The mutant structure was predicted and modeled in AlphaFold 3 using the COL3A1
FASTA sequence with arginine substituted for proline at amino acid position 517 [23,24].
The top-ranked structure (0.7) was selected out of five predictions. Finally, in silico analysis
was performed using the rare exome variant ensemble learner (REVEL) score, which
combines scores from 13 individual tools, including PolyPhen-2 and MutPred [25]. REVEL
has demonstrated high performance in distinguishing pathogenic variants from rare neutral
variants with allele frequencies less than 0.5%.

4. Results
Genetic Testing

Genetic testing revealed only one variant of unknown significance (VUS) among this
entire panel of 35 genes located in the COL3A1 gene. The p.P517R variant, which is also
known as the c.1550C>G variant, impacts the COL3A1 gene in exon 22 (Figure 2) [18].
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Figure 2. Simplified structure of the COL3A1 gene demonstrating the isolated mutation in our patient,
a proline to arginine substitution on exon 22. This results in the replacement of a non-polar amino
acid with a basic amino acid, potentially responsible for the deleterious effect of the variant on the
coronary arteries [26].

This p.P517R single nucleotide variant (SNV) has been reported five times in the
ClinVar database for varying ECM pathologies, see Table 2 [19]. This variant has been
identified in 56/1,565,758 chromosomes in the general population (0.003577%) by gnomAD,
suggesting that this is not a common variation in the population [20]. The variant is only
demonstrated in the European (non-Finnish) group in gnomAD and has a higher frequency
among genetic females.

Table 2. Reported phenotypes associated with the observed nucleotide variant [19].

Condition Classification Submissions

Ehlers–Danlos syndrome, type 4 Uncertain significance 2

Familial thoracic aortic aneurysm
and aortic dissection Uncertain significance 2

Not provided Uncertain significance 1

The p.P517R SNV results in a missense variant that substitutes a non-polar, ringed
proline amino acid for a basic arginine amino acid at the 517 position, two amino acids with
different properties (Table 3). The Grantham Score, a calculation used to predict the effect
of amino acid substitutions, was 103 [21]. This elevated score is secondary to the varying
properties of the two amino acids and suggests further evolutionary distance.

Table 3. Comparison of amino acid properties present in p.P517R variant [22].

Properties Proline Arginine

Structure Cyclic Linear

Role Introduces kinks in protein structures Involved in hydrogen bonding and
ionic interactions

Polarity Hydrophobic Hydrophilic

Side Chain pKa Non-ionizable ~12.5 (highly basic)

Molecular Weight 115.13 g/mol 174.20 g/mol

In silico prediction suggests this variant may have a deleterious impact on protein
structure and function, as demonstrated by a REVEL score of 0.717 [25]. Protein structure
prediction analysis conducted in AlphaFold demonstrated the possible effect of the variant
amino acid residue (p.P517R), see Figure 3 [23,24].
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Figure 3. Three dimensional illustrative representations of COL3A1 with p.P517R, predicted by
AlphaFold [23,24]. Model color corresponds to per-residue confidence with very high confidence
in dark blue (pLDDT > 90); confident in light blue (90 > pLDDT > 70); low confidence in yellow
(70 > pLDDT > 50); and very low confidence in orange (pLDDT < 50). (a) Structure prediction of
the wild-type COL3A1 protein with proline circled at position 517 in lime green. (b) Focus on the
wild-type proline at position 517 in lime green with surrounding residues within 5 Å. Oxygen atoms
are colored as red, nitrogen atoms as blue, and carbon as gray. (c) Structure prediction of the mutated
COL3A1 protein (p.P517R) with arginine circled at position 517 in lime green. (d) Focus on the variant
arginine at position 517 in lime green with surrounding residues within 5 Å. Oxygen atoms are
colored as red, nitrogen atoms as blue, and carbon as green. AlphaFold structure predictions are
freely available for both academic and commercial use under Creative Commons Attribution 4.0
(CC-BY 4.0) license terms.

5. Discussion
We report for the first time the association of diffuse coronary artery ectasia and

aneurysms with a single nucleotide variant of currently classified unknown significance
(VUS), p.P517R within exon 22 of the COL3A1 (collagen type III alpha 1 chain) gene.
It is crucial to note that diffuse coronary artery aneurysms (CAA) and coronary artery
ectasia (CAE) were present in all coronary vessels, including the left main coronary artery
(Figure 1), which is a rare presentation of coronary aneurysmal dilation only occurring in
an estimated 0.1% of the population [27]. There is increasing clinical interest in viewing
newly identified variants as potential “biomarkers” for the development of these diseases
as pathogenicity is established through further study. There is currently a lack of data
regarding the genetic frequency and impact of variants on the structure and function of
coronary arteries in the context of CAA and CAE development. Placing an emphasis
on understanding how genetic variants can impact the integrity of coronary vasculature,
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similar to our programmatic efforts to characterize the effect of genetic variants on aortic
integrity, will enhance screening methods for CAAs and CAEs prior to their development.

The COL3A1 gene encodes the pro-alpha 1 chain of type III collagen, which is
widely distributed in hollow organs such as blood vessels, gallbladder, bladder, and
the uterus [12,18]. Type III collagen plays a crucial role in providing tensile strength to the
extensible connective tissues within these organs. This property results from its intricate
synthesis process involving the formation of a tri-helix from three pro-alpha 1 chains and
further assembly of multiple tri-helices into a collagen fiber, stabilized by extensive enzyme-
mediated crosslinks. Previous molecular investigations in mice showed that heterozy-
gous COL3A1 knockout or deletions compromised vascular integrity, resulting in aortic
aneurysms, dissections, or decreased aorta strength due to decreased collagen levels or
abnormal collagen structure, while homozygous deletions led to earlier mortality [15,28,29].

Vascular Ehlers–Danlos syndrome (vEDS) is a severe form of EDS caused by het-
erozygous pathogenic variants in COL3A1, with a common phenotypic presentation of
cigarette paper-like scarring, translucent skin, easy bruising over bony protuberances, and
laxity of finger joints [12]. Notably, our patient did not present with these characteristics or
meet minimal criteria suggestive of the disorder, namely a family history of vEDS, arterial
rupture or dissection at less than 40 years of age, unexplained sigmoid colon rupture, or
spontaneous pneumothorax in the presence of other features consistent with vEDS [30].
Although spontaneous coronary artery dissections have been reported in patients with
COL3A1 variants and without a diagnosis of vEDS, this article presents a novel case of
coronary artery aneurysms and ectasias associated with a COL3A1 variant.

Most research on COL3A1 genetic variants in humans has focused on associations
with Ehlers–Danlos syndrome, but several case studies have reported on patients with
pathogenic mutations who are susceptible to aortic or arterial dissections, aneurysms, and
ruptures [12–14,31–33]. In a recent review, Kuivaniemi et al. provided a comprehensive
overview of COL3A1-associated diseases and possible pathogenic mechanisms [12]. These
mechanisms include unstable mRNA products leading to nonsense-mediated mRNA decay
(“null mutation”), increased degradation of the mutant polypeptide via the proteasomal
system, and compromised collagen strength due to the incorporation of mutant polypeptide
chains. Based on these mechanisms, the hypothesized pathogenic process of COL3A1
mutations leading to the specific phenotype of diffuse coronary artery aneurysms and
ectasia is illustrated in Figure 4.
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Our patient’s mutation, p.P517R, is located in exon 22, within the triple helical region
of the gene. A recent study by Pepin et al. analyzed clinical outcomes in 1231 individuals
with heterozygous mutations across the length of the COL3A1 gene [34]. The study found
that single-nucleotide substitutions within the triple helical region, particularly glycine
substitutions, account for over 60% of pathogenic mutations identified and were associated
with the shortest average lifespan of 51 years [34]. This finding highlights the importance
of the triple helical region in collagen fiber structure and integrity. Other locations of
mutations occurring at high frequencies include those at RNA splice donor or acceptor sites
and at the C-terminus due to its role in mediating the trimeric assembly of the procollagen
chains [34–36].

Additionally, it is interesting to note that this patient’s mutation involves the sub-
stitution of a proline residue. The triple-helical domain is characterized by a repeated
Gly-X-Y sequence contributing to the formation of the helical configuration. Proline and
its derivative, hydroxyproline, are expressed in abundance within this region, frequently
occupying the X or Y position in the Gly-X-Y repeat and helping stabilize the collagen chain
via hydrogen bonds with glycine [37,38]. Although the impact of proline substitution has
been studied less than that of glycine, our in silico analysis indicates a high likelihood that
the variant is pathogenic, supporting the notion that this SNV has a deleterious impact
on protein structure and function. Furthermore, the predicted mutant protein structure
demonstrated a change in orientation between the substituted arginine at position 517 and
its neighboring arginine at position 518, likely to minimize steric interactions between the
two positively charged side chains. While further modeling is needed to predict the effect
of this arginine-to-arginine interaction within the triple helix conformation, we hypothesize
that this interaction may impact protein stability.

The aorta and coronary arteries have mostly analogous structures due to their similar
functions as high-pressure vasculature. The walls of both include a tunica intima, media,
and adventitia. The intima consists mostly of endothelial cells over a basement membrane,
with laminin and collagen IV making up most of the layer. The media predominantly
consists of vascular smooth muscle cells, elastin, and collagen I and III. The adventitia
of the aorta and coronary arteries contains a thick connective tissue layer of collagen III
studded with glycoproteins, fibroblasts, and inflammatory cells [39]. Due to the similar
architecture of the vessels, we hypothesize that COL3A1 mutations are associated with
coronary artery aneurysmal disease, similar to their already-known role in the development
of aortic aneurysmal disease. As of this report, no studies have examined the biophysical
and biomechanical effects of specific COL3A1 mutations on the development of CAAs and
CAEs. Using data collected from genetic screening of patients with CAAs and CAEs, we
would anticipate the development of animal transgenic models to probe the mechanistic
relationship further.

6. Conclusions
CAAs and CAEs are localized dilations in the coronary arteries that may present as

fatal acute coronary syndrome. Current literature regarding the genetic basis for CAA
and CAE development is lacking. To the best of our knowledge, this report serves as
the first to make an association between a variant in the COL3A1 gene, which encodes
the structural component of type III collagen, and the development of coronary artery
aneurysms. Our hypothesis is further strengthened by showing that the identified variant
is predicted to have deleterious effects on protein structure through in silico analysis. It is
well-accepted in genetic medicine that single nucleotide variants may directly influence
pathology alterations in encoded proteins or through epigenetic mechanisms that may
influence the observed genotype-to-phenotype relationship. Further research is needed
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to elucidate the specific mechanisms of how mutations in the COL3A1 gene lead to the
development of CAAs and CAEs, which will ultimately advance screening and care for
patients with this disease state.

7. Limitations
This report presents a novel and compelling association between COL3A1 and coro-

nary aneurysms. However, we accept that this is in a single subject and should be confirmed
through study in larger CAA cohorts. We also foresee the characterization of how this vari-
ant in COL3A1 alters the collagen matrix in vivo, establishing a mechanistic basis between
genetic alterations and effects at the cellular and tissue level.
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