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Abstract

Molecular phylogenetic trees are constructed in
three dimensions relative to the distribution of MW
and pl classes and immunocrossreactivity against
polyclonal antibodies to lens crystallins, as well as
multiple sequence alignment between amino acid
sequences, coding nucleotide sequences and the gene
nucleotide sequences for $-globin. Euclidian distances
are estimated to position species in x, y, z space by
multidimensional scaling and merged with bootstrap-
tested branching pattern of Fitch & Margoliash plots
to obtain 3-D phylogenetic tree. Compared to single
attributes, phylogenetic trees based on multiple
parameters allow significant repositioning of rodents,
chiroptera and primates.

Introduction

Since Darwin (1859), phylogenetic trees of living organisms
have been constructed on the basis of palaeontological,
morphological, embryological, physiological, ecological,
genetic (Myer, 1970) and, more recently, molecular
evidence, often dealing with single trait/character. The
distinction between two nearest species depends on
changes in multiple parameters before one can establish
their near-neighborly or genealogical position. Although
data are available for polypeptide amino acid sequences,
their biochemical properties and immunocrossreactivity
as well as nucleotide sequences of many genes and their
RNA intermediates, two dimensional phylogenetic trees
are constructed based on one attribute using unweighted
pairs grouping (Fitch and Margoliash, 1967) or maximum
likelihood (see, for review, Schadt et al., 1998). Thus,
depending on the parameter, the same species/strain
often places at different distance and position within the
same test group (Patwardhan, 1992; Milner et al., 2003).
For example, a tree based on manipulated or restricted
nucleotide sequence offers number of solutions for even
relatively simple genomes like HIV (Rambaut et al., 2001).
The degenerate triplet code, coding sequences interrupted
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by introns, alternate splice sites and variable promoter
sequences in genes make it difficult to fit sequence data
in a uniparametric trees. Here we display and discuss
and apply a multiparametric method (Milner et al., 2003)
to construct phylogenetic trees based on (a) biochemical
and immunocrossreactive properties of vertebrate lens
crystallins and (b) sequence data for the gene, cDNA and
polypeptide for p-globin. The 3-D trees can be viewed
from any angle each furnishing better understanding of
the relative position and evolutionary distance of each
species.

Data and Methodology

Electrophoretic profiles of MW and pl of 18 vertebrate
lens crystallins, their isoelectric focusing pattern and
immunocrossreactivity to polyclonal antibodies against
crystallins of the mouse, chiropterans Rousettus leschnaulti
or Megaderma lyra (Bansode, 1985; Patwardhan, 1990;
Patwardhan et al., 1990, 1992) were compared to estimate
similarity coefficients (S value) (Brown et al., 1979) by the
equation [S =Z | (X+Y-Z)], where, the similarity coefficient
S = fraction of shared bands, X = total number of bands
in species A, Y = total number of bands in species B and
Z= number of bands common to species A and B and
the number of changes per molecule (P value) (Upholt,
1977; Brown et al., 1979) by the equation P = - [InS] / N,
where N is 3 for a, 3, and y or § crystallins, InS is the
natural logarithm of S value. The phylogenetic trees were
constructed by unweighted pair groupings method (Fitch
and Margoliash, 1967; King & Jukes, 1969; Goodman et
al., 1971) using the software Mega (Molecular evolutionary
genetics analysis software, MEGA version 2.1, S.Kumar, et
al., 2001). In case of immunocrossreactivity the reactivity
was estimated by the equation R =Z/X where R = reactivity,
Z = the number of precipitin lines in the heterologous
reaction and X = the number of precipitin lines in the
homologues reaction. From the reactivity, P values were
calculated by the equation P = - [InR] / N, where N is 3
for a, B, and y or § crystallins, InR is the natural logarithm
of R value. We compared vertebrate lens crystallins
from Shark (Scoliodon sorrakowah, order Lamniformes,
subclass Chondropterygii, Class Pisces), Pomfret (Pampus
argenteus, order Perciformes, Subclass Teleostei, Class
Pisces), Frog (Rana tigerina, order Anura, Class Amphibia),
Garden lizard (Calotes versicolour, order Lacertilia, Class
Reptilia), Chick (Gallus domesticus, order Galliformes,
Class Aves), Mouse (Mus musculus, order Rodentia, Class
Mammalia), Rat (Rattus norvegicus, order Rodentia, Class
Mammalia), Bandicoot (Bandicota indica, order Rodentia,
Class Mammalia), Squirrel (Funambulus pennanti, order
Rodentia, Class Mammalia), 4 microchiroptera with 3
species under the Genus Hipposideros (Hipposideros
speoris, Hipposideros bicolor, Hipposideros cineraceus,
sub-order Microchiroptera, order Chiroptera, Class
Mammalia), Miniopterus (Miniopterus schreibersii, sub-
order microchiroptera, order Chiroptera, Class Mammalia),
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Figure 1. A schematic drawing showing “star” (____ ) Euclidian distances
between the species (spheres) at the origin (0,0,0) and those in the 3-D
space, and “network” (_ _ _ ) Euclidian distances among different species
excluding that at the origin.

Megaderma (Megaderma lyra, sub-order Microchiroptera,
order Chiroptera, Class Mammalia) and Taphozous
(Taphozous longimanus, sub-order microchiroptera, order
Chiroptera, class Mammalia), megachiroptera Rousettus
(Rousettus leschnaulti, sub-order megachiroptera,
order chiroptera, class Mammalia), Pteropus (Pteropus
giganteus, sub-order megachiroptera, order chiroptera,
class Mammalia), and Cynopterus (Cynopterus sphinx, sub-
order megachiroptera, order chiroptera, class Mammalia)

Table 1. Euclidean (star) distances in 3—D plots relative to distribution
IC against polyclonal antibodies to lens crystallins from 3 mammals,
pl and MW.

Species Mouse Rousettus Megaderma
H. cineraceus 0.174 0.236 0.253

H. speoris 0.170 0.217 0.250

H. bicolor 0.187 0.248 0.262
Miniopterus 0.173 0.205 0.242
Megaderma 0.071 0.106 0.000
Taphozous 0.079 0.041 0.035
Rousettus 0.089 0.000 0.076
Cynopterus 0.076 0.076 0.090
Pteropus 0.076 0.076 0.072
Mouse 0.000 0.192 0.071
Rat 0.182 0.268 0.189
Bandicoot 0.142 0.292 0.139
Squirrel 0.162 0.193 0.246
Chick 0.902 1.090 0.948
Calotes 0.876 0.955 0.905
Frog 0.750 0.975 0.819
Shark 0.950 1.399 0.934
Pomfret 0.848 1.302 0.836

to obtain the similarity co-efficient [S] or R values and
number of changes per protein [P]. The P values for MW
and pl of 18 vertebrates were subjected to unweighted
pair grouping as above to obtain the phylogenetic trees.
The P values for precipitin lines after crossreacting against
three polyclonal antisera in immunoelectrophoresis were
plotted in X, Y and Z axes in a 3-D space (Figure 1b, c;
Megaderma, not shown). Using the formula D = v {(x4-x2)2
+ (y1-y2)? + (z1-z2)%}, where D is the Euclidian distance
between two species and (x4,y1,z1) & (X2,¥2,22) are the
3-D coordinates for any two species, “star” and “network”
Euclidian distances were estimated from these 3-D plots
as shown in Figure 1. Star distances are those between
the species at origin (0,0,0) and others in the x, y, and z
3-D space while the “network” distances are those among
all species within the x, y, and z space excluding the one
at the origin. The data are expressed with SD whenever
applicable (Table 1) Phylogenetic trees were constructed
using Mega software as before and assessed by 1000
normal bootstrap trials (Efron, 1979; Felsenstein, 1985)
to obtain estimates of the probability and confidence limit
calculated by the formula CL =P * 1.960, where CL is the
Confidence limit, P is the probability of observing trees
similar to mean distances tree and the o =V (P (1-P)/n for
n number of samples.

From the “star” distances a 3D plot was constructed
using the “star” distances of between mouse antigen-
antibody homologues reaction as reference (0,0,0),
17 heterologous anti-mouse reactions on x-axis, anti-
Rousettus reaction on y-axis and anti-Megaderma
reaction along z-axis. The Euclidian distances were
measured between all pairs from these 3D plots and
processed by unweighted pair grouping method to obtain
phylogenetic relationship between 18 species. In the 3D
plot the species were joined in stem-branch formation as
in the phylogenetic tree (Milner et al., 2003). Phylogenetic
trees were constructed from the network distances alone
as well as “star + network” distances. Mean Euclidian
network + star distances (Table 2) were subjected to MDS
(version 1.13, http://www.let.rug.nl/Okleiweg/levenshtein,
Multidimensional scaling) to fix individual species in an
X, Y, Z space. The 3-D distances between all pairs were
re-estimated from MDS plot and the stem-branch pattern
obtained from the constructed phylogenetic tree was
merged with the MDS plot. The Euclidian distances re-
estimated from the MDS plots, were compared with the
actual distances to determine the standard error. MDS
plots give single measurement of Euclidean distance so
that confidence limits were not estimated.

Amino acid sequence of B-globin polypeptide, the
coding nucleotide sequence (cDNA) for p-globin and
the gene nucleotide sequence were scanned from NCBI
(http://www.ncbi.nlm.nih.gov/). Only 12 species yielded all 3
attributes for 3-globin, which were then retrieved namely the
primates the Human (Homo sapiens, order Primates, class
Mammalia), Gorilla (Gorilla gorilla, order Primates, class
Mammalia) and Tarsius (Tarsius syrichta, order Primates,
class Mammalia), Rabbit (Oryctolagus cuniculus, order
Lagomorpha, class Mammalia), the Ungulates namely
Bovine (Bos taurus, order Artiodactyla class Mammalia) and
Goat (Capra hircus, order Artiodactyla class Mammalia),
the rodents including Mouse (Mus musculus, order
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BFish. Frog. Chick & Calotes @Rodents @ laphozous & Megaderma, @ Megachiroptera, @ Microchiroptera

Figure 2. Three-dimensional molecular phylogenetic trees for lens crystallins (a-f). [a] positioning species in 3-D against P values for distribution of pl (y
axis), crystallin immunocrossreactivity (IC) against antibody to mouse crystallin (x axis) and MW (Z axis) of crystallins; [b] positioning species in against P
value of crystallin pl, MW and IC against antibody to Rousettus crystallin (x axis); [c] 3-dimensional repositioning of “star” Euclidian distances in a, b and
anti-Megaderma plots along ‘X', ‘Y’ and ‘Z’ axes, respectively. Species are joined by transposing the nearest-neighbor data in Figure 3c to form the tree with
the stem positioned midway between mammals and lower vertebrates. The thickness of the Stem decreases as one moves towards mammalian species.
[d] A magnified view of the distal portion of the 3-D tree in ¢ and slightly rotated showing the right cluster with 3 megachiroptera, mouse and presumed
microchiroptera Taphozous sp. and Megaderma sp., while 4 microchiroptera and squirrel form a separate cluster to the left. Notice the distinct blossoms
with Cynopterus and Pteropus which is farthest away from those bearing Bandicoot and rat, or microchiroptera under genus Hipposideros,. Also notice that
the diameter of a sphere (species position) is largest for the species immediately in the foreground and smallest when farther away. [e] a 3-D tree based
on MDS of “network + star” distances in x, y and z space- again species positions were joined as in the 2-dimensional phylogenetic tree in Figure 3e; [f]
magnified and slightly rotated view of the mammalian branches in 2e again showing a discrete clusters for mega- and microchiroptera as in d and distinct
blossoms for Taphozous and Megaderma along with megachiroptera and away from that for microchiroptera. Notice the rat and Bandicoot pair near mouse
and megachiroptera unlike in d.
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Mouse

Human —

®Ungulate, @ Rodents, @ Rabbit, 8 Primates, @ Biy

Figure 4. Three-dimensional molecular phylogenetic trees for $-globin. [a] P values derived from the MSA of human (positioned at 0,0,0) 3-globin gene nucleotide
sequence (y axis), p-globin coding nucleotide sequence (z axis) and $-globin amino acid sequence (x axis) against 11 other species; [b] MSA comparison
in 3-D as in h but against Xenopus laevis p-globin (at 0,0,0); [c] 3-D plot of “star” Euclidian distances by MDS combined with the phylogenetic tree in Figure
5d. [d], a magnified and slightly rotated view of the mammalian branch and sub branches positioning primate-blossom with the rodent G. crassicaudatus
and distant from rat-mouse, and cow-goat blossoms. [e] 3-D MDS of “network + star” Euclidian distances combined with phylogenetic tree in Figure 5h. [f] a
magnified and slightly rotated view of mammalian branch with primate and G. crassicaudatus (rodent) blossoms distant from rat-mouse and ungulates.



Rodentia, Class Mammalia), Rat (Rattus norvegicus, order
Rodentia, Class Mammalia) and Dormouse (Graphiurus
crassicaudatus, order Rodentia, Class Mammalia), two
species under the Genus Xenopus (Xenopus laevis, and
Xenopus tropicalis, Order Anura Class Amphibia), and the
bivalve Anadara (Anadara trepezia, order Arcoida, Class
Pteriomorphia, Phylum Mollusca). The gene sequences
were scored beginning with 5° proximal TATA box till the
3’ polyadenylation site and inclusive of exons and introns.
Data for all pairs were subjected to multiple sequence
alignment (MSA) by CLUSTALW (Thompson et al.,
1994) to estimate the percent similarity coefficient and P
values as above. Similarly, coding nucleotide sequence
and polypeptide amino acid sequences were subjected
to MSA to obtain P values. Individual phylogenetic trees
were constructed from P values for the amino acid
sequence, gene nucleotide sequence and the coding
nucleotide sequence. With a different reference species
at the position (0,0,0), species were positioned in 12
different 3-D plots with P for amino acid sequence on x-
axis, P for coding nucleotide sequence on y-axis and gene
nucleotide sequence on z-axis and examples of human,
mouse, X. laevis and A. trepezia are shown in Figure 1.
From each plot Euclidian “star” and “network” distances
were estimated as before (Figure 1a) along with standard
deviation distances wherever applicable. The phylogenetic
trees were constructed with “network” and “star +network”
distances were tested by bootstrap as before. The “star”
or “network + star” distances were then used to fix each
species in a 3-dimensional space by MDS and, from re-
estimated Euclidian distances, the branching pattern in
the phylogenetic tree was merged with the MDS plot. The
standard error was calculated as before.

Results and Discussion

Vertebrate lens crystallin homology

First, we have plotted P values among pl, MW
immunocrossreactivity (IC) of vertebrate crystallins against
polyclonal antibodies to mouse (Figure 2a) Rousettus
(Figure 2b) or Megaderma (not shown). Euclidian distances
were estimated and the “star” distance data are shown in
Table 1 while the combined Euclidian “network” and “star”
distances are shown in Table 2. From the network distances
alone (not shown) and “network + star” distances (Table
1) phylogenetic trees were constructed (Figure 3d-e),
tested by bootstrap which gave the probability of fit with
confidence limit of 0.73+ 0.039 for trees using “network” as
compared to 0.61 + 0.043 for “network + star” distances.
The phylogenetic trees were also constructed for individual
attributes pl (Figure 3a) and MW (Figure 3b) that exhibit
the substantially different genealogical arrangement as
compared to the trees based on multiple parameters. We
then plot in 3-D Euclidean “star” distances (Table 1) for
mouse (x-axis), Rousettus (y-axis) and Megaderma (z-
axis) (Figure 2c). Euclidian distances were re-estimated
among all pairs of species (Table 3) from which another
phylogenetic tree is constructed (Figure 3c) and resulting
connectivity is transposed over the 3-D plot in Figure
2c to obtain a 3-D phylogenetic tree. Thus, from the
hypothetical vertebrate stem, mammals cluster on one
branch, which is farther away from that leading to other
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vertebrates. A magnified view (Figure 2d) shows that
the mammalian cluster further bifurcates with the closer
one bearing the mouse, Taphozous, Megaderma and all
megachiroptera while the Rat, Bandicoot, Squirrel and
microchiroptera Miniopterus and 3 species under the
Genus Hipposideros, are positioned further away over
the second branch. The closer branch then bifurcates
between mouse and the remaining chiroptera blossom
separately in the sequence Megaderma, Rousettus and
Taphozous on one hand, and the Cynopterus-Pteropus pair
on the other. Thus, Taphozous and Megaderma, previously
classified as microchiroptera on the basis of classical
taxonomic and geographic considerations (Romer 1945,
Suthers et.al. 1970, Honacki et.al. 1982), may actually be
closer to the megachroptera & mouse and distant from
the sub-branches with Bandicoot and rat, 3 species under
Genus Hipposideros, and squirrel. The data in Table 2 are
subjected to MDS in order to position the 18 species in X,
y, z space (Figure 2e-f). The Euclidian distances (Table
4) from the resultant x, y and z coordinates were used
to reconstruct the phylogenetic tree (Figure 3e) and the
branching pattern was again transposed to visualize a 3-
D tree (Figure 2e,f). This tree also exhibits segregation of
mammals from other vertebrates and the mammalian stalk
bifurcates into the closer one bearing squirrel, Miniopterus
and 3 species under Genus Hipposideros while further
away on the second branch are sequentially positioned
the rodents followed by Taphozous and Megaderma while
the Pteropus, Cynopterus and Rousettus (megachiroptera)
blossom out further away. We again conclude that
Megaderma lyra and Taphozous longimanus are probably
closer to Megachiroptera than the Microchiroptera and
probably constitute the link between the latter and Rodentia.
Most microchiroptera are cave dwelling and insectivorous
with a well developed echolocation apparatus. Taphozous
and Megaderma do not share the last two attributes with
microchiroptera in addition to being distant in terms of the
distribution pl, MW and of crystallins and IC to 3 distinct
antigens. We, therefore, reclassify Taphozous and
Megaderma under the sub-order megachiroptera or as a
separate suborder minichiroptera.

The phylogenetic tree based on “network” distances
for 5 parameters or attributes, namely, pl, MW, and IC to
mouse antiserum, Rousettus antiserum and Megaderma
antiserum (Figure 3d) is in all essential features similar
to that for MDS “network + star” distances, while those
based on unique attributes such as MW (Figure 3a) or pl
(Figure 3b) are considerably different. For example, from pl
(Figure 3a), the lizard Calotes and the chick position on the
rodent-megachiroptera branch while from MW (Figure 3b)
considerable positional intermixing is found among rodents,
megachiroptera and microchiroptera. Thus, unlike single
attributes (Figure 3a,b) multiple attributes (Figure 3c-e)
provide a more rational representation of parsimony and
allow these to be viewed in three-dimensional plots.

B-globin homology

To build multiparametric 3-D phylogenetic trees based on
sequence data for 12 species, we retrieved (see, materials
and methods) complete amino acid sequence, coding
nucleotide sequence and gene nucleotide sequence for
p-globin from 11 vertebrates and a bivalve. In order to
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Figure 5. (a) P values of multiple sequence alignment score for 3-globin Amino acid, (b) P values of multiple sequence alignment score for -globin coding
segments nucleotide sequence, (c) P values of multiple sequence alignment score for 3-globin gene nucleotide sequence, (d) p-globin “star” distances (e)
B-globin “network+star” distances (f) Re-estimated Euclidian distances from p-globin “star” MDS plot (g) Re-estimated Euclidian distances from f3-globin
“network” MDS plot (h) Re-estimated Euclidian distances from B-globin “network + star” MDS plot. Q Rodents, ¢ Primates.

Table 6. “Network+star” distances from multiple sequence alignment of 3-globin.
Species Human Mouse Rabbit Bovine |R.norvegicus| Gorilla |A.trepezia| X.laevis |X.tropicalis| T.syrichta | G.crassi- | Goat
caudatus
Human 0.00
Mouse 0.25+0.17| 0.00
Rabbit 0.13+0.10| 0.18 % 0.00
0.12
Bovine 0.17+£0.12] 0.26 0.15 % 0.00
0.22 0.12
R.norvegicus|0.21 £ 0.15] 0.13 0.17 = 0.21+ 0.00
0.18 0.16 0.21
Gorilla 0.14+0.13] 0.26 0.17 0.18 + 0.24 £0.24 0.00
0.20 0.14 0.15
A.trepezia |2.19+0.78| 2.07 £ 213+ 212+ 212+0.76 |2.11£0.77 0.00
0.73 0.74 0.75
X.laevis 0.97£0.44| 084+ 091+ 0.88 0.85+0.42 0.89 £ 1.65+ 0.00
0.39 0.39 0.43 0.40 0.71
X.tropicalis |0.98 £0.43| 0.82 0.89 + 0.89 £ 0.91+0.38 0.88 £ 159+ |0.30+0.46 0.00
0.40 0.41 0.41 0.44 0.57
T.syrichta 0.08 £0.10| 0.27 0.15+ |0.18+0.12| 0.20+0.13 0.20 + 220+ |0.95+0.45(0.99+0.39] 0.00
0.17 0.15 0.15 0.80
G.crassi- 0.11% 0.25 0.14 0.13 0.22+0.17 0.14+ |1.66+0.69| 0.91+0.42 [0.92+0.43| 0.13% 0.00
caudatus 0.12 0.21 0.12 0.08 0.10 0.14
Goat 0.22+0.15] 0.30* 0.21+ 0.09 + 0.20 +0.22 0.22 + 1.64 + 0.84 £0.45 [0.89 £+ 0.40| 0.83 % 0.17+ | 0.00
0.25 0.18 0.10 0.20 0.71 0.41 0.12
+ Standard deviation in the mean.
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restrict the analysis to the phene-relevant portion of -
globin, the beginning of the gene was taken from the 5’
proximal TATA box and terminating with polyadenylation
signal 3’ of the coding sequence. We carried out the
multiple sequence alignment (MSA) in a 12x12 matrix
separately for the polypeptide, coding sequence and the
gene to estimate the percent similarity and P values (see
methods, computed data not shown). With reference to
the species positioned at (0,0,0), the P values of remaining
11 species were plotted in a 3-D along the x (amino acid
sequence)- y- (gene nucleotide sequence) and z- (coding
nucleotide sequence) axes, thereby yielding 12 plots and,
as representative plots we show those for human (Figure
4a), mouse (not shown) Xenopus laevis (Figure 4b) and
the bivalve Anadara trepezia (not shown). From these,
Euclidean “star” (Table 5) and “network” distances were
estimated (see, methods). Table 6 summarizes "network
+ star” distances and 2-D phylogenetic trees were
constructed (Figure 5d e); the relative species positions
in the tree for “network” distances alone is similar to that in
Figure 5e, however the estimated evolutionary distances
differ between the two trees. Therefore, we have subjected
both data sets to bootstrap analysis and find that the trees
fit the data with probability of 0.84 + 0.032 for “network +
star” distances as compared to 0.80 + 0.035 for “network”
distances alone.

Euclidean distance data in Tables 5 and 6 were
subjected to MDS (Figure 4f). and the re-estimated
Euclidean distances (Table 7) were used to construct a
phylogenetic tree (Figure 4d). However, the bi-directional
“star” distances being identical, bootstrap was not
necessary. After transposing the branching pattern
(Figure 5f) to the MDS plot, we obtain a 3-D tree (Figure
4f) in which two branches originating from the stem reach
the bivalve and vertebrates, respectively. The vertebrate
branch bifurcates between Xenopus sp. and mammals with
the latter branching off to ungulates, rodents, the rabbit,
the dormouse and primates, in that order. Except for the
switched positions between ungulates and rodents, the
2-D trees are similar for Euclidean “star” and “star-MDS”
distances (Figure 5d, and e). When the mammalian branch
is magnified (Figure 4d) it sub-branches sequentially into
ungulates, rodents, rabbit and primates with Human
and Gorilla as a separate blossom from the Tarsius sp.
and dormouse. MDS based on Euclidean “network”
distances alone (not shown) gave a tree (Figure 5h)
which is considerably different from that based on original
“network” distances (Figure 5e) data were Euclidean “star
+ network” distances (Table 6) were placed in x, y and z
space by MDS and the 2-D tree constructed from the re-
estimated Euclidean distances (Table 8) by unweighted
pair grouping (Figure 5g) was transposed over MDS plot to
obtain 3-D phylogenetic trees (Figure 4e,f). The mammalian
branching pattern is somewhat different with ‘star-MDS”.
Thus, ungulates lead to rodents and gorilla-dormouse pair,
followed by the rabbit and primates T. syrichta and the
human. Furthermore, the mammalian p-globin blossom
exhibits ungulates, rat and mouse as distant from primates
among whom the Homo sapiens share closeness with
either gorilla or Tarsius.

Finally, the pB-globin phylogenetic tree based on the
amino acid sequence (Figure 5a) is similar to that using
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coding nucleotide sequence (Figure 5b). In contrast, the tree
for gene nucleotide sequence (Figure 5c) is substantially
different with the rat, mouse and rabbit positioned farther
to primates than ungulates. Thus, as expected, mutations
appear to change the gene nucleotide sequence, inclusive
of 5’ and 3’ noncoding regions and introns, and determine
the phylogenetic distance at molecular level.

One of the issue concerns the choice of Euclidean
distances as compared to the Mahalanobis distance,
which is a squared distance between two points in a
multidimensional space. Earlier (Milner et al., 2003), we
have examined the 3-D positioning of 8 vertebrates on
the basis of the Mahalanobis distance that did not give
satisfactory fits. However, for a heterogeneous population
of organisms, this method should be kept in view. For
positioning 8 vertebrates in 3-D space, we also used
(Milner et al., 2003) a Sequential Positioning method,
which gave good fits but requires extensive computations
and the software program, is now being developed.
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