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Abstract: Background and objectives: The current pandemic of SARS-CoV-2 has not only changed,
but also affected the lives of tens of millions of people around the world in these last nine to ten
months. Although the situation is stable to some extent within the developed countries, approximately
one million have already died as a consequence of the unique symptomatology that these people
displayed. Thus, the need to develop an effective strategy for monitoring, restricting, but especially
for predicting the evolution of COVID-19 is urgent, especially in middle-class countries such as
Romania. Material and Methods: Therefore, autoregressive integrated moving average (ARIMA)
models have been created, aiming to predict the epidemiological course of COVID-19 in Romania
by using two statistical software (STATGRAPHICS Centurion (v.18.1.13) and IBM SPSS (v.20.0.0)).
To increase the accuracy, we collected data between the established interval (1 March, 31 August)
from the official website of the Romanian Government and the World Health Organization. Results:
Several ARIMA models were generated from which ARIMA (1,2,1), ARIMA (3,2,2), ARIMA (3,1,3),
ARIMA (3,2,2), ARIMA (3,1,3), ARIMA (2,2,2) and ARIMA (1,2,1) were considered the best models.
For this, we took into account the lowest value of mean absolute percentage error (MAPE) for March,
April, May, June, July, and August (MAPEMarch = 9.3225, MAPEApril = 0.975287, MAPEMay = 0.227675,
MAPEJune = 0.161412, MAPEJuly = 0.243285, MAPEAugust = 0.163873, MAPEMarch – August = 2.29175
for STATGRAPHICS Centurion (v.18.1.13) and MAPEMarch = 57.505, MAPEApril = 1.152, MAPEMay
= 0.259, MAPEJune = 0.185, MAPEJuly = 0.307, MAPEAugust = 0.194, and MAPEMarch – August = 6.013
for IBM SPSS (v.20.0.0) respectively. Conclusions: This study demonstrates that ARIMA is a useful
statistical model for making predictions and provides an idea of the epidemiological status of the
country of interest.
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1. Introduction

Towards the end of 2019, local hospitals from the Hubei region, Wuhan city begun to report by
the day more and more cases of severe pneumonia with an unknown etiology. It was difficult for
clinicians to establish a diagnosis on the basis of the unique symptomatology that the first patient
had. Fortunately, in a relatively short interval it was revealed that the so-called patient zero was
infected with a novel beta-coronavirus. Already known as severe acute respiratory coronavirus 2
(SARS-CoV-2) after its successor, it was demonstrated that person-to-person transmission ultimately
causes the coronavirus disease (COVID-19) [1–3].
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Intriguingly, 2019-nCoV is a zoonotic family member, and for a long time it was speculated that
Rhinolophus sinicus is the natural host of SARS-CoV. Unfortunately, no clear evidence was found that
incriminates the horseshoe bat, all remaining at a hypothetical stage even after almost a year since the
first case was reported. Most likely, these assumptions were made based on the current knowledge
that the bat is a natural reservoir for pathogens. Because of its novelty, more than fifty people were
confirmed as SARS-CoV-2-infected patients by the beginning of 2020 [4].

In retrospect, humanity has never faced such a crisis since the Spanish flu between 1918 and
1919/1920, with figures indicating that it caused the death of fifty-one hundred million people [5]. Even
if both clinicians and researchers are in a timed battle against this virus, the latest statistics issued
by the World Health Organization (WHO) suggest that over twenty million people are positive, and
approximately eight hundred thousand have died despite their best efforts (https://covid19.who.int/).

Considering the uncontrolled and fulminant spreading of SARS-CoV-2, concomitantly with its
identification it was demonstrated that the elderly and those who have associated chronic diseases
are the most predisposed [6]. However, these figures vary, not because of the lack of data, but rather
the finite capacities in the epidemiological surveillance. Based on the aforementioned, the need for a
reliable and efficient strategy for planning health infrastructure is all more imperative, especially for
mid-class countries. Compared with Westernized countries that have all the resources necessary, in
Romania, on the other hand, the situation may reach the critical point and soon be cataloged as the
second Lombardia.

There is an increasing trend in the current literature regarding the possible epidemiological course
of COVID-19. Both mathematical and statistical models are crucial to determine short and long case
estimates [6]. One example is represented by the AutoRegressive Integrated Moving Average (ARIMA)
model that has been successfully applied in the past to estimate the prevalence and incidence of
numerous other highly infectious diseases (Table 1) [7].

Table 1. Chronological presentation of various studies in which the ARIMA (AutoRegressive Integrated
Moving Average) model was used.

Year of Publication Disease Method Reference

2005 Severe Acute Respiratory Syndrome ARIMA [8]
2009 Malaria ARIMA [9]
2011 Hemorrhagic Fever with Renal Syndrome ARIMA [10]
2013 Hantavirus Pulmonary Syndrome ARIMA [11]
2015 Tuberculosis ARIMA [12]
2018 Influenza ARIMA [13]
2020 Brucellosis ARIMA [14]

Unlike the other studies conducted, the present study aims to estimate COVID-19 cases through
ARIMA using two distinct statistical software (IBM SPSS and STATGRAPHICS) in order to test
their reliability and accuracy. It also aims to present the evolution of the mortality rate in Romania
considering the high, almost double reports between the number of positive cases/deaths in the last
thirty days compared to the same intervals of the previous months.

2. Material and Methods

2.1. Data

The daily prevalence data of COVID-19 was taken from The Ministry of Internal Affairs of Romania
(https://www.mai.gov.ro), and compared to the figures reported by the World Health Organization
(WHO) (https://covid19.who.int/). An MS Excel was used to build a time-series database.

Even though the first case in Romania was reported back on 27 February, we decided the following:
(1) in order to test the accuracy of the ARIMA models, the established interval was divided into small
(1 month) subdivisions with fourteen days forecast of the next month and comparing the numbers
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reported daily by the Romanian Government and WHO; (2) to perform a forecast from the so-called
point zero (27 February) until the present day, 31 August, with also a fourteen days forecast.

Descriptive statistics of the COVID-19 data for the established intervals (1 March–31 March, 1
April–30 April; 1 May–31 May; 1 June–30 June; 1 July–31 July, 1 August–31 August, and 27 February–31
August) are given in Table 2. The current situation in Romania (31 August) is as follows: 85,833
confirmed cases and 3539 deaths. At least thirty observations are recommended for an optimum
ARIMA model [15].

Table 2. Descriptive statistics on the prevalence (a) and incidence (b) of COVID-19 in Romania.

(a) Prevalence

Interval Mean SE Mean St. Dev Minimum Maximum Skewness Kurtosis

1 March–31 March 482.866 118.415 648.588 3 2245 1.49 1.21
1 April–30 April 7603.551 540.324 2909.737 2738 12,240 −0.03 −1.23
1 May–31 May 16,502.933 346.883 1899.957 12,732 19,257 −0.37 −0.90
1 June–30 June 22,776.689 427.610 2302.754 19,517 26,970 0.31 −1.16
1 July–31 July 36,874.3 1287.582 7052.379 27,746 50,886 0.61 −0.94
1 August–31

August 70,602.366 1930.889 10,575.917 53,186 87,540 −0.03 −1.19

1 March–31
August 25,840.071 1751.969 23,700.201 3 87,540 1.04 0.17

(b) Incidence

Interval Mean SE Mean St. Dev Minimum Maximum Skewness Kurtosis

1 March–31 March 74.733 17.058 93.434 0 308 1.33 0.69
1 April–30 April 337.241 16.016 86.250 190 523 0.31 −0.38
1 May–31 May 223 14.369 78.704 124 431 1.08 0.59
1 June–30 June 261.103 16.507 88.896 119 460 0.40 −0.39
1 July–31 July 786.333 59.450 325.623 250 1356 0.19 −1.28
1 August–31

August 1180.966 42.478 232.664 733 1504 −0.63 −0.85

1 March–31
August 478.344 31.352 424.128 0 1504 1.03 −0.24

Thus, the data set was used to conduct and analyze a case estimation model starting from the
assumption according to which it will be useful in the future to predict the evolution of COVID-19
in Romania. Therefore, a time-series containing at least 45 data was used to predict SARS-CoV-2
prevalence in Romania over the next two weeks with a 95% confidence interval (CI).

Initially, the outbreak did not affect Romania significantly, but starting from 23 July, the number of
positive cases exceeded 1000. Since then, only on 4, 11, 18, 24, 25 August were registered <1000 cases
per day, the highest number being reported on 28 August with 1504 confirmed cases and 38 deaths.

2.2. The ARIMA Model

A time-series, as the name suggests, is just a succession of data points indexed in a time
order [16] dedicated to generating statistical data. More precisely, are used to perform predictions
of values of a series [17], ARIMA becoming a simple-to-use algorithm since it was introduced in the
1970s [15]. ARIMA is preferred to the detriment of other models due to the fact it takes into account all
(in)dependent variances. Nevertheless, beyond fitting for a large sphere of data, through seasonality to
cyclicity a temporal dependency can be modeled.

In summary, autoregressive integrated moving average (ARIMA) technique is used for tracking
linear tendencies, the entire concept constituting a mixture or being denoted by three orderly parameters.
Non-seasonal ARIMA’s parameters AR(p) (auto regression) represents the order of autoregression,
MA(q) (moving average) the order of moving average, whereas I(d) is the degree of difference.
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Viewed or described as a time-series, Yt represents a succession of independent arguments on
the basis of a time t [18]. A deterministic/stochastic time-series could be explained by the following
function, Yt = f/X(t), where X is just a random variable. Thus, AR(p) (Equations (1a) and (1b)) predict
the future value based on previous p-time observations as inputs, θ or Φ is the multiplying coefficient,
εt orω is the random error or white noise at a time t and µ, the mean of a series. In cases of a stationary
time-series, the average of the εt orωt is 0, the variance being noted as σ2:

Yt = α+ Φ1Yt−1 + Φ2Yt−2 + · · ·+ ΦpYt−p + εt , (1a)

or:

Yt = µ+

p∑
i=1

(ΦiYt−i) + ωt . (1b)

Here, δ or α have the same value = constant. The polynomial’s MA(q) (Equations (2a) and (2b)
time-series as a qth degree can be found such as follows:

Yt = µ+ εt + θ1 εt−1 + θ2 εt−2 + · · ·+ θq εt−q , (2a)

or:

Yt = µ+

q∑
j=1

(
θjωt−1

)
+ ωt . (2b)

Therefore, AR(p)MA(q)’s expression is obtained by combining p and q, mathematically being
represented in Equations (3a) and (3b) [19]:

Yt = δ+ Φ1Yt−1 + · · ·+ ΦpYt−p + εt + θ1 εt−1 + · · ·+ θq εt−q , (3a)

or:

Yt = µ+

p∑
i=1

(ΦiYt−i) +

q∑
j=1

(θjωt−j) + ωt . (3b)

On the other hand, there are also circumstances when the time-series is not stationary. In such
cases, it should be verified if this condition is satisfied or not; if not, it can be made stationary by
adding another variable d. Once ∆Y “take over” Yt’s non-stationary differences, ∆Y can be explained
as follows: (Equation (4)), with L representing the likelihood of the data:

∆Yt = Yt −Yt−1 = Yt − LYt = Y′t . (4)

For testing the accuracy of our model, we analyzed the performance of three factors known under
the name of root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage
error (MAPE) (Equations (5)–(7)):

MAE =
1
n

n∑
i=1

∣∣∣Yi − Ŷi
∣∣∣ , (5)

MAPE =
100
n

x
n∑

i=1

∣∣∣∣∣∣Yi − Ŷi

Yi

∣∣∣∣∣∣ , (6)

RMSE =

√√ n∑
i=1

ˆ(Yi −Yi )̂2
n

. (7)

For congruity, MAE, MAPE, and MRSE’s values must be low, all analyses being performed using
STATGRAPHICS Centurion (v.18.1.13) and IBM SPSS (v.20.0.0) software with statistically significant
levels of p < 0.05.
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2.3. Mortality Rate

We collected data aiming to determine the mortality rate depending on the sex of each individual,
the median age ranging between <10 as the minimum and >80 as the maximum limit of people
who have died, who had associated comorbidities, and were hospitalized in intensive care units
(ICUs) between the established intervals. All these parameters were calculated using Excel software.
Unfortunately, there are some limitations in this context. More specifically, the figures related to
the sex of patients, the median age, the associated comorbidities, and at ICU are incomplete as a
consequence of lack of management from the Romanian government during this pandemic. Based on
the aforementioned, we were able to collect data from the last several months; 11 June for sex, median
age, and associated comorbidities, and 17 March for ICU patients.

3. Results

Building an ARIMA model for any given time-series involves the checking of four steps: assessment
of the model, estimation of parameters, diagnostic checking, and prediction. The first, which is otherwise
imperative, is to verify if the mean, variance, and autocorrelation of the time-series are consistent
throughout the established interval [20]. Therefore, two-time-series plots, autocorrelation function
(ACF), and partial autocorrelation function (PACF) (Figure 1) graphs were generated to test the
seasonality and stationarity. ACF is a statistical metric that determines whether the prior values are
related to the latest values of not, while PACF the value of the correlation coefficient between its time
lag and the variable [13]. Both are imperative in detecting misspecification, the model performance
being measured by Akaike information criteria expression, and the Bayesian information criterion of
Schwarz (BIC) [21]. Estimated autocorrelations for Romania are presented in Figure 1; the straight
lines indicate the limit of two standard deviations and the bars that extend beyond the lines suggest
statistically meaningful autocorrelations.

Figure 1. Cont.
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Figure 1. The estimated AutoCorrelation Function (ACF) and Partial AutoCorrelation Function
(PACF) graphs to predict the epidemiological trend of COVID-19 in Romania performed by using (a)
STATGRAPHICS Centurion (v.18.1.13) and (b) IBM SPSS (v.20.0.0).

Additionally, a series of ARIMA models were created, and their performances were compared
using various statistical tools. All statistical procedures were performed on the transformed COVID
-19 data. ARIMA models with the lowest MAPE values were considered the most optimum model.
Among the tested models, ARIMA (1,2,1), ARIMA (3,2,2), ARIMA (3,1,3), ARIMA (3,2,2), ARIMA
(3,1,3), ARIMA (2,2,2), ARIMA (1,2,1) were chosen as the best models for Romania. The models where
COVID-19 data fitted are presented in Figure 1 and Tables 3 and 4 with a minimum MAPEMarch = 9.3225,
MAPEApril = 0.975287, MAPEMay = 0.227675, MAPEJune = 0.161412, MAPEJuly = 0.243285, MAPEAugust
= 0.163873, MAPEMarch – August = 2.29175, MAPEMarch = 57.505, MAPEApril = 1.152, MAPEMay = 0.259,
MAPEJune = 0.185, MAPEJuly = 0.307, MAPEAugust = 0.194, and MAPEMarch – August = 6.013, respectively.

Table 3. Comparison of tested ARIMA models.

(a) STATGRAPHICS Centurion (v.18.1.13)

Romania Model RMSE MAE MAPE

March (1,2,1) 40.2064 21.7726 9.3225

(2,2,0) 40.1344 21.8332 9.33149

(2,1,0) 37.1349 22.3392 9.42158

(3,2,0) 40.7137 22.252 9.50679

(3,0,0) 36.317 21.4381 9.58606

April (3,2,2) 84.4845 62.4813 0.975287

(3,2,3) 91.4283 64.3356 0.978607

(3,2,1) 86.0235 63.5418 0.988232

(1,2,3) 86.1254 66.3094 1.03015

(0,2,3) 84.8321 66.818 1.03804

May (3,1,3) 55.1218 35.4972 0.227675

(3,2,3) 51.5543 37.7316 0.233695

(3,2,2) 52.2601 37.5565 0.235246

(3,2,1) 52.0651 37.7596 0.235816

(3,2,0) 51.9334 38.9065 0.243301

June (3,2,2) 53.3883 36.8425 0.161412
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Table 3. Cont.

(a) STATGRAPHICS Centurion (v.18.1.13)

Romania Model RMSE MAE MAPE

(3,2,3) 55.042 36.8814 0.161561

(3,1,3) 66.319 45.2191 0.195068

(2,1,3) 66.8927 47.8626 0.207124

July (3,1,3) 117.982 87.1512 0.243285

(2,1,1) 113.198 88.1797 0.24369

(2,1,2) 115.679 88.7863 0.245774

(1,1,2) 115.307 92.5001 0.256055

August (2,2,2) 153.804 113.314 0.163873

(3,2,2) 155.701 114.742 0.164574

(3,2,3) 159.39 115.195 0.165348

March–August (1,2,1) 121.674 85.2619 2.29175

(3,2,3) 118.411 82.2194 2.37771

(1,2,3) 118.36 82.5649 2.37918

(3,2,1) 113.778 80.2205 2.40063

(3,2,0) 121.301 84.6413 2.41403

(b) IBM SPSS (v.20.0.0)

Romania Model RMSE MAE MAPE

March (1,2,1) 38.127 24.651 57.505

April (3,2,2) 96.089 68.365 1.152

May (3,1,3) 68.403 39.996 0.259

June (3,2,2) 58.588 41.854 0.185

July (3,1,3) 156.476 106.572 0.307

August (2,2,2) 179.309 129.350 0.194

March–August (1,2,1) 121.054 85.524 6.013

Table 4. Parameters of ARIMA models.

(a) STATGRAPHICS Centurion (v.18.1.13)

Romania Parameters Estimate Standard Error t-Statistic p-Value

March (1,2,1) AR(1)
MA(1)

−0.865514
−0.209212

0.194131
0.291261

−4.45841
−0.718298

0.000131
0.478744

April (3,2,2) AR(3)
MA(2)

−0.329312
−0.528086

0.225307
0.247375

−1.46161
−2.13475

0.157377
0.043660

May (3,1,3) AR(3)
MA(3)

0.625887
0.570657

0.145922
0.0544548

4.28918
10.4795

0.000253
0.000000

June (3,2,2) AR(3)
MA(2)

−0.312216
−0.964198

0.209998
0.0269271

−1.48676
−35.8077

0.150660
0.000000

July (3,1,3) AR(3)
MA(3)

−0.560219
−0.0478648

0.258752
0.274587

−2.16508
−0.174315

0.040545
0.863080

August (2,2,2) AR(2)
MA(2)

−0.826566
−0.782937

0.112664
0.171731

−7.33655
−4.5591

0.000000
0.000117

March–August
(1,2,1)

AR(1)
MA(1)

0.479999
0.781228

0.122096
0.0765947

3.93133
10.1995

0.000120
0.000000
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Table 4. Cont.

(b) IBM SPSS (v.20.0.0)

ARIMA Model Parameters

Estimate Standard
Error

Cumulative-Model
(March) Cumulative No

Transformation

Constant 8.881 3.986

AR Lag 1 −0.740 0.206

Difference 2

MA Lag 1 0.037 0.287

t-statistic p-value

Cumulative-Model
(March) Cumulative No

Transformation

Constant 2.228 0.035

AR Lag 1 −3.595 −0.001

Difference

MA Lag 1 0.130 0.898

Estimate Standard
Error

Cumulative-Model
(April) Cumulative No

Transformation

Constant −0.902 1.468

AR
Lag 1 0.210 0.486

Lag 2 −0.216 0.203

Lag 3 −0.268 0.257

Difference 2

MA
Lag 1 1.527 22.293

Lag 2 −0.528 11.600

t-statistic p-value

Cumulative-Model
(April) Cumulative No

Transformation

Constant −0.615 0.545

AR
Lag 1 0.432 0.670

Lag 2 −1.065 0.298

Lag 3 −1.042 0.309

Difference

MA
Lag 1 0.069 0.946

Lag 2 −0.046 0.964

Estimate Standard
Error

Cumulative-Model
(May) Cumulative No

Transformation

Constant 216.917 46.423

AR
Lag 1 −0.013 0.498

Lag 2 0.252 0.348

Lag 3 0.480 0.348

Difference 1

MA
Lag 1 −0.641 3.924

Lag 2 −0.258 4.043

Lag 3 0.591 3.576

t-statistic p-value
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Table 4. Cont.

(b) IBM SPSS (v.20.0.0)

ARIMA Model Parameters

Cumulative-Model
(May) Cumulative No

Transformation

Constant 4.673 0.000

AR
Lag 1 −0.026 0.980

Lag 2 0.725 0.476

Lag 3 1.381 0.181

Difference

MA
Lag 1 −0.163 0.872

Lag 2 −0.064 0.950

Lag 3 0.165 0.870

Estimate Standard
Error

Cumulative-Model
(June) Cumulative No

Transformation

Constant 8.194 1.482

AR
Lag 1 0.161 0.487

Lag 2 −0.159 0.291

Lag 3 −0.451 0.234

Difference 2

MA
Lag 1 0.914 4.922

Lag 2 0.080 0.849

t-statistic p-value

Cumulative-Model
(June) Cumulative No

Transformation

Constant 5.529 0.000

AR
Lag 1 0.332 0.743

Lag 2 −0.549 0.589

Lag 3 −1.928 0.067

Difference

MA
Lag 1 0.186 0.854

Lag 2 0.094 0.926

Estimate Standard
Error

Cumulative-Model
(July) Cumulative No

Transformation

Constant 837.899 505.059

AR
Lag 1 0.274 20.176

Lag 2 0.753 3.824

Lag 3 −0.087 15.011

Difference 1

MA
Lag 1 −0.629 20.192

Lag 2 0.259 14.442

Lag 3 −0.003 3.383

t-statistic p-value
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Table 4. Cont.

(b) IBM SPSS (v.20.0.0)

ARIMA Model Parameters

Cumulative-Model
(July) Cumulative No

Transformation

Constant 1.659 0.111

AR
Lag 1 0.014 0.989

Lag 2 0.197 0.846

Lag 3 −0.006 0.995

Difference

MA
Lag 1 −0.031 0.975

Lag 2 0.018 0.986

Lag 3 −0.001 0.999

Estimate Standard
Error

Cumulative-Model
(August) Cumulative No

Transformation

Constant −4.351 1.253

AR
Lag 1 1.120 0.139

Lag 2 −0.832 0.107

Difference 2

MA
Lag 1 1.978 6.107

Lag 2 −0.995 6.084

t-statistic p-value

Cumulative-Model
(August) Cumulative No

Transformation

Constant −3.474 0.002

AR
Lag 1 8.077 0.000

Lag 2 −7.804 0.000

Difference

MA
Lag 1 0.324 0.749

Lag 2 −0.164 0.871

Estimate Standard
Error

Cumulative-Model
(March–August) Cumulative No

Transformation

Constant 5.885 3.318

AR Lag 1 0.501 0.126

Difference 2

MA Lag 1 0.820 0.084

t-statistic p-value

Cumulative-Model
(March–August) Cumulative No

Transformation

Constant 1.773 0.078

AR Lag 1 3.985 0.000

Difference

MA Lag 1 9.712 0.000

In Table 4, the parameter estimates for the best models are presented. The fitted and predicted
values are presented in Figure 2. As seen in Table 5 for both software, the next two weeks estimate of
confirmed cases may be between 2450.74–5673.29, 12,616.5–16,896.3, 19,400.9–21,280.5, 27,404.9–32,340.9,
52,247.6–75,717.2, 88,483.4–103,777, 88,427.4–101,440, respectively through STATGRAPHICS Centurion
(v.18.1.13). For IBM SPSS (v.20.0.0), the forecast for the next two weeks is as follows: 2478.78–6715.00,
12,599.76–16,756.08, 19,412.18–21,910.55, 27,405.69–33,181.42, 52,168.29–67,467.42, 88,444.38–103,059.41,
and 88,451.83–102,656.81 for March, April, May, June, July, August, and March–August.
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Figure 2. Cont.
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Figure 2. Time-series plots for the best ARIMA models through (a) STATGRAPHICS Centurion
(v.18.1.13) and (b) IBM SPSS (v.20.0.0).
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Table 5. Prediction of total confirmed cases of COVID−19 for the next two weeks through (a)
STATGRAPHICS Centurion (v.18.1.13) and (b) IBM SPSS (v.20.0.0).

(a) STATGRAPHICS Centurion (v.18.1.13)

March (1,2,1)

Lower 95% Upper 95%

Period Forecast Limit Limit

01-4-20 2450.74 2368.24 2533.23

02-4-20 2732.0 2593.82 2870.18

03-4-20 2947.89 2716.13 3179.66

04-4-20 3220.37 2900.32 3540.42

05-4-20 3443.87 3011.65 3876.09

06-4-20 3709.76 3166.05 4253.47

07-4-20 3938.96 3266.6 4611.32

08-4-20 4199.91 3397.23 5002.6

09-4-20 4433.39 3487.15 5379.63

10-4-20 4690.65 3597.86 5783.43

11-4-20 4927.32 3677.29 6177.34

12-4-20 5181.81 3770.81 6592.81

13-4-20 5420.88 3839.91 7001.84

14-4-20 5673.29 3918.22 7428.36

April (3,2,2)

Lower 95% Upper 95%

Period Forecast Limit Limit

01-5-20 12,616.5 12,440.4 12,792.5

02-5-20 12,959.9 12,738.5 13,181.4

03-5-20 13,302.9 13,061.4 13,544.4

04-5-20 13,615.5 13,368.8 13,862.3

05-5-20 13,932.3 13,674.7 14,189.9

06-5-20 14,257.0 13,975.5 14,538.5

07-5-20 14,592.6 14,276.6 14,908.7

08-5-20 14,927.5 14,579.7 15,275.3

09-5-20 15,257.2 14,883.3 15,631.0

10-5-20 15,582.2 15,184.3 15,980.1

11-5-20 15,907.6 15,482.8 16,332.4

12-5-20 16,235.9 15,779.8 16,692.0

13-5-20 16,566.2 16,076.4 17,056.0

14-5-20 16,896.3 16,372.8 17,419.8
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Table 5. Cont.

(a) STATGRAPHICS Centurion (v.18.1.13)

May (3,1,3)

Lower 95% Upper 95%

Period Forecast Limit Limit

01-6-20 19,400.9 19,280.2 19,521.5

02-6-20 19,533.0 19,286.3 19,779.8

03-6-20 19,689.2 19,296.5 20,081.9

04-6-20 19,831.8 19,307.7 20,355.9

05-6-20 19,971.4 19,290.8 20,651.9

06-6-20 20,122.2 19,270.7 20,973.7

07-6-20 20,265.2 19,240.9 21,289.5

08-6-20 20,408.1 19,194.8 21,621.5

09-6-20 20,556.2 19,143.4 21,968.9

10-6-20 20,699.9 19,081.8 22,318.0

11-6-20 20,844.3 19,009.0 22,679.7

12-6-20 20,991.0 18,929.9 23,052.1

13-6-20 21,135.4 18,841.3 23,429.4

14-6-20 21,280.5 18,744.1 23,816.9

June (3,2,2)

Lower 95% Upper 95%

Period Forecast Limit Limit

01-7-20 27,404.9 27,291.5 27,518.3

02-7-20 27,860.4 27,673.0 28,047.7

03-7-20 28,267.6 28,019.4 28,515.8

04-7-20 28,608.4 28,307.9 28,908.9

05-7-20 28,916.8 28,551.9 29,281.8

06-7-20 29,253.3 28,792.0 29,714.6

07-7-20 29,652.8 29,060.9 30,244.7

08-7-20 30,097.5 29,360.4 30,834.6

09-7-20 30,533.1 29,658.3 31,407.9

10-7-20 30,914.6 29,916.3 31,912.9

11-7-20 31,243.0 30,126.4 32,359.6

12-7-20 31,562.8 30,317.0 32,808.5

13-7-20 31,924.0 30,526.8 33,321.1

14-7-20 32,340.9 30,772.3 33,909.5
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Table 5. Cont.

(a) STATGRAPHICS Centurion (v.18.1.13)

July (3,1,3)

Lower 95% Upper 95%

Period Forecast Limit Limit

01-8-20 52,247.6 51,999.2 52,496.1

02-8-20 53,668.7 53,169.6 54,167.9

03-8-20 55,147.3 54,390.9 55,903.6

04-8-20 56,685.2 55,656.5 57,714.0

05-8-20 58,282.6 56,976.8 59,588.5

06-8-20 59,942.3 58,346.7 61,537.9

07-8-20 61,665.3 59,772.1 63,558.4

08-8-20 63,454.6 61,250.0 65,659.3

09-8-20 65,311.9 62,784.7 67,839.2

10-8-20 67,240.4 64,374.9 70,106.0

11-8-20 69,242.1 66,024.5 72,459.8

12-8-20 71,320.4 67,733.2 74,907.6

13-8-20 73,477.6 69,504.9 77,450.3

14-8-20 75,717.2 71,340.0 80,094.4

August (2,2,2)

Lower 95% Upper 95%

Period Forecast Limit Limit

01-9-20 88,483.4 88,163.3 88,803.4

02-9-20 89,735.8 89,186.2 90,285.4

03-9-20 91,171.6 90,521.1 91,822.0

04-9-20 92,553.1 91,883.1 93,223.0

05-9-20 93,723.4 93,050.4 94,396.4

06-9-20 94,707.0 94,020.1 95,393.9

07-9-20 95,660.3 94,899.8 96,420.7

08-9-20 96,734.6 95,825.9 97,643.3

09-9-20 97,966.8 96,901.4 99,032.2

10-9-20 99,272.2 98,093.1 100,451.

11-9-20 100,527. 99,273.2 101,781.

12-9-20 101,667. 100,347. 102,986.

13-9-20 102,721. 101,316. 104,126.

14-9-20 103,777. 102,249. 105,305.
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Table 5. Cont.

(a) STATGRAPHICS Centurion (v.18.1.13)

March–August (1,2,1)

Lower 95% Upper 95%

Period Forecast Limit Limit

01-9-20 88,427.4 88,187.3 88,667.5

02-9-20 89,378.4 88,905.1 89,851.7

03-9-20 90,359.9 89,641.2 91,078.7

04-9-20 91,356.1 90,382.1 92,330.1

05-9-20 92,359.3 91,120.4 93,598.2

06-9-20 93,365.8 91,851.8 94,879.9

07-9-20 94,374.0 92,574.3 96,173.7

08-9-20 95,383.0 93,286.8 97,479.2

09-9-20 96,392.3 93,988.7 98,796.0

10-9-20 97,401.8 94,679.8 100,124.

11-9-20 98,411.4 95,360.3 101,463.

12-9-20 99,421.1 96,030.1 102,812.

13-9-20 100,431. 96,689.5 104,172.

14-9-20 101,440. 97,338.6 105,542.

(b) IBM SPSS (v.20.0.0)

Forecast

Model Day 1 Day 2 Day 3 Day 4 Day 5 Day 6

Cumulative-Model
(March)

Forecast 2478.78 2771.81 3036.46 3337.56 3627.14 3940.69

UCL 2557.11 2895.56 3237.39 3612.37 3992.87 4399.42

LCL 2400.44 2648.06 2835.53 3062.74 3261.42 3481.96

Model Day 7 Day 8 Day 9 Day 10 Day 11 Day 12

Cumulative-Model
(March)

Forecast 4251.96 4580.37 4911.55 5256.13 5606.25 5967.72

UCL 4814.73 5251.20 5698.58 6164.03 6641.61 7135.33

LCL 3689.20 3909.55 4124.53 4348.24 4570.89 4800.11

Model Day 13 Day 14

Cumulative-Model
(March)

Forecast 6336.24 6715.00

UCL 7641.78 8163.17

LCL 5030.71 5266.84

Forecast

Model Day 1 Day 2 Day 3 Day 4 Day 5 Day 6

Cumulative-Model
(April)

Forecast 12,599.76 12,935.87 13,271.55 13,584.87 13,898.80 14,216.66

UCL 12,774.44 13,150.93 13,500.98 13,816.96 14,136.69 14,467.65

LCL 12,425.08 12,720.81 13,042.12 13,352.78 13,660.91 13,965.67

Model Day 7 Day 8 Day 9 Day 10 Day 11 Day 12

Cumulative-Model
(April)

Forecast 14,540.05 14,862.45 15,181.23 15,496.84 15,811.68 16,126.86

UCL 14,808.71 15,145.84 15,475.55 15,800.64 16,125.74 16,452.34

LCL 14,271.39 14,579.05 14,886.92 15,193.03 15,497.61 15,801.38
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Table 5. Cont.

(b) IBM SPSS (v.20.0.0)

Model Day 13 Day 14

Cumulative-Model
(April)

Forecast 16,441.99 16,756.08

UCL 16,779.10 17,104.18

LCL 16,104.88 16,407.98

Forecast

Model Day 1 Day 2 Day 3 Day 4 Day 5 Day 6

Cumulative-Model
(May)

Forecast 19,412.18 19,569.68 19,763.17 19,935.78 20,118.83 20,313.78

UCL 19,543.30 19,816.82 20,130.38 20,397.32 20,688.05 20,989.84

LCL 19,281.05 19,322.54 19,395.96 19,474.23 19,549.62 19,637.71

Model Day 7 Day 8 Day 9 Day 10 Day 11 Day 12

Cumulative-Model
(May)

Forecast 20,501.17 20,696.67 20,895.88 21,093.45 21,295.88 21,499.60

UCL 21,277.17 21,576.47 21,877.30 22,173.28 22,473.47 22,773.08

LCL 19,725.17 19,816.88 19,914.45 20,013.63 20,118.28 20,226.12

Model Day 13 Day 14

Cumulative-Model
(May)

Forecast 21,703.75 21,910.55

UCL 23,071.27 23,369.65

LCL 20,336.23 20,451.44

Forecast

Model Day 1 Day 2 Day 3 Day 4 Day 5 Day 6

Cumulative-Model
(June)

Forecast 27,405.69 27,851.25 28,248.97 28,627.75 29,018.52 29,447.71

UCL 27,520.95 28,038.23 28,481.50 28,874.60 29,273.56 29,714.32

LCL 27,290.42 27,664.28 28,016.44 28,380.90 28,763.48 29,181.10

Model Day 7 Day 8 Day 9 Day 10 Day 11 Day 12

Cumulative-Model
(June)

Forecast 29,901.63 30,359.87 30,809.40 31,257.55 31,716.79 32,193.86

UCL 30,190.48 30,674.74 31,145.84 31,609.14 32,081.24 32,572.50

LCL 29,612.78 30,045.00 30,472.95 30,905.96 31,352.35 31,815.21

Model Day 13 Day 14

Cumulative-Model
(June)

Forecast 32,684.53 33,181.42

UCL 33,079.98 33,594.43

LCL 32,289.08 32,768.41

Forecast

Model Day 1 Day 2 Day 3 Day 4 Day 5 Day 6

Cumulative-Model
(July)

Forecast 52,168.29 53,426.67 54,674.30 55,902.11 57,118.49 58,317.76

UCL 52,449.73 54,031.51 55,633.07 57,264.85 58,911.15 60,573.52

LCL 51,886.84 52,821.82 53,715.54 54,539.37 55,325.84 56,061.99

Model Day 7 Day 8 Day 9 Day 10 Day 11 Day 12

Cumulative-Model
(July)

Forecast 59,505.46 60,678.11 61,839.43 62,987.33 64,124.34 65,249.25

UCL 62,244.36 63,923.34 65,606.40 67,292.68 68,979.84 70,666.96

LCL 56,766.56 57,432.88 58,072.46 58,681.98 59,268.84 59,831.54
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Table 5. Cont.

(b) IBM SPSS (v.20.0.0)

Model Day 13 Day 14

Cumulative-Model
(July)

Forecast 66,363.83 67,467.42

UCL 72,352.60 74,035.96

LCL 60,375.05 60,898.88

Forecast

Model Day 1 Day 2 Day 3 Day 4 Day 5 Day 6

Cumulative-Model
(August)

Forecast 88,444.38 89,634.01 91,015.67 92,372.04 93,537.29 94,506.51

UCL 88,730.43 90,079.75 91,493.00 92,852.85 94,048.38 95,027.52

LCL 88,158.32 89,188.27 90,538.35 91,891.23 93,026.19 93,985.50

Model Day 7 Day 8 Day 9 Day 10 Day 11 Day 12

Cumulative-Model
(August)

Forecast 95,412.10 96,406.37 97,549.71 98,783.13 99,990.33 101,090.16

UCL 95,938.80 96,978.64 98,171.45 99,421.94 100,629.11 101,728.19

LCL 94,885.41 95,834.09 96,927.97 98,144.32 99,351.54 100,452.13

Model Day 13 Day 14

Cumulative-Model
(August)

Forecast 102,088.51 103,059.41

UCL 102,726.16 103,708.74

LCL 101,450.85 102,410.08

Forecast

Model Day 1 Day 2 Day 3 Day 4 Day 5 Day 6

Cumulative-Model
(March–August)

Forecast 88,451.83 89,445.12 90,482.12 91,543.96 92,621.15 93,708.98

UCL 88,690.71 89,912.30 91,185.57 92,489.10 93,813.54 95,154.94

LCL 88,212.96 88,977.94 89,778.67 90,598.81 91,428.77 92,263.03

Model Day 7 Day 8 Day 9 Day 10 Day 11 Day 12

Cumulative-Model
(March–August)

Forecast 94,805.08 95,908.24 97,017.89 98,133.72 99,255.59 100,383.41

UCL 96,511.68 97,883.14 99,269.09 100,669.45 102,084.15 103,513.14

LCL 93,098.47 93,933.34 94,766.69 95,598.00 96,427.02 97,253.68

Model Day 13 Day 14

Cumulative-Model
(March–August)

Forecast 101,517.16 102,656.81

UCL 104,956.35 106,413.66

LCL 98,077.97 98,899.95

Regarding the mortality rate, since 11 June until 31 August a total of 2261 patients were identified,
from which 1356 (59.97%) were male and 905 (40.02%) were female. The most affected age group were
people aged between 70 and 79 years, where SARS-CoV-2 caused the death of 709 people, followed by
people between 60 and 69 years with 621 deaths and >80 with 526 deaths (Figure 3). On the other
hand, a total of 405 people died, from which 260 had between 50 and 59 years, 104 between 40 and 49
years, 30 between 30 and 39 years, 10 between 20 and 29 years, 1 between 10 and 19 years, and 0 with
less than 10 years old. From the total number of 2261 people, 2184 had comorbidities (96.6823%), and
77 not. As well, since 17 March when the first 4 people were confirmed, the total number registered
until 31 August was 506 (Figure 4).
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4. Discussion

Based on our results, it can be concluded that Romania will face an even higher number of
infections which can exceed one hundred thousand. In terms of the number of deaths, these figures
are not comparable with other countries such as Italy, Spain, or France. The probability of exceeding
1000 is very small, especially due to the high longevity rate of people from other states compared
to Romania.

According to the current literature, this is the first study of such a manner. Thus, the idea of
testing the accuracy of the ARIMA model using two distinct statistical software is novel, all the more
so as middle-class countries do not have the resources necessary or a reliable strategy in restraining the
rate of contagion or transmissibility in such conditions. For an unknown reason, most studies have
focused on Westernized or China’s neighboring countries.

Recently, a team of authors proposed three new methods for studying the epidemiological course
of COVID-19. The first one is a universal physics-based model designed to assess the COVID-19
dynamics in Europe. The model folds within the existing curve due to the fact that the results obtained
following simulation indicate an evolution curve related to that describing the current status. This
“overlap” can be explained by the fact that this approach is based on a universal mechanism, having
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as a structural concept, the “diffusion over a lattice”. In this context, it has been successfully applied
for seven European countries, and further offers the chance to study the memory effects through
autocorrelation within the epidemiological dynamical systems [22]. Furthermore, Demertzis et al. [23]
applied an exploratory time-series analysis built on a recent conceptualization. More specific, is
dedicated in detecting connective communities by developing a novel spline regression in which the
knot vector is represented by the community detection in a complex network. Through this approach,
the authors demonstrated the reliability of this exploratory time-series analysis in decision-making in
Greece, mainly because diagnostic testing, services, and resources strategies vary between countries.
Finally, Tsiotas et al. [24] used the modularity optimization algorithm in which the visibility graphs
generated describe a sequence of different typologies that this disease has. According to their results,
the current pandemic in Greece is about to reach the second half in a decreasing manner, whereas the
chances for a “maximum infection” are low due to the saturation point reached.

Quarantine is the first alternative, Chintalapudi et al. [25] demonstrated that in Italy this approach
promoted a reduction up to 35% of the total registered cases, in parallel with a significant percentage
(66%) of recovered cases.

Considering the emphatic nature of humankind, self-isolation or quarantine could have branched
and serious repercussions upon humans’ psychological profile. The psycho-social impact is exponential,
post-traumatic stress disorder (PTSD) and depression representing just two examples [26]. The gut–brain
axis (GBA) component should not be neglected, since it is already known that a long-term loss of host
eubiosis can promote psychiatric or neurodegenerative disorders [27].

Based on the above discussed, from our point of view, a two-sided approach is social confinement.
López et al. [28] considered that social confinement should remain valid for at least 8 weeks because
99% of the current wave was attributed to humans intervention and recommended a resumption
of daily activities up to 50%. Chakraborty et al. [29] sustained the arguments of López taking into
consideration that people >65 years are more prone, and consider the necessity of an adequate medical
center arrangement.

A study conducted by Williamson et al. [30] in which reunited a cohort consisting of over 17
million UK people demonstrated an increased risk among Black and South Asian people, predisposition
attributed to age, sex, and related medical conditions. Miller et al. [31] assumed a case scenario in
which around 20% of the US population will be infected, especially counties compared to the rest of
the country. The authors created this pattern based on a series of assumptions such as transmission,
contact patterns, basic reproductive rate, and how efficient quarantine really is.

Despite that travel restriction and social distancing significantly reduce the risk of transmissibility,
evidence regarding the use of face masks are inconsistent. Regardless of the status of the individual,
even for an asymptomatic carrier, face masks can mitigate the risk [32]. A recent systematic review and
meta-analysis conducted by Chu et al., [33] reunited 172 observations studies across 16 countries with
a cohort consisting of 25,697 patients. As expected, the greater the physical distance than 1 m, the risk
is inversely proportional and vice versa. Intriguingly, even eye protection was positively associated
with less infection.

However, a question arises. Why is there such a significant difference in the total number of
deaths between countries? A cross-sectional dataset comprising 169 countries aiming to investigate
factors associated with cross-country variation revealed that mortality rate is influenced by a series of
variables; government effectiveness, the number of hospital beds, transport infrastructure, and the
most important is the number of tests performed [34].

If all these amendments will not be taken seriously, we could face a second wave much more
severe [35], reflected by the number of deaths reported each day. A similar event has been recorded as
a consequence of the violation of these prevention measures in Romania.

An investigation of 12,343 SARS-CoV-2 genome sequences coming from the individual from 6
distinct geographical regions revealed that ORF1ab 4715L and S protein 614G variants is in direct
correlation with fatality rates. The authors also showed that the bacillus Calmette–Guérin (BCG)
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vaccine and the frequency of several HLA alleles are associated with fatality rates and the number of
infected cases [36].

From our point of view, researchers and clinicians should change the direction of this topic.
Where does the next question come from? “If it is still known that angiotensin-converting enzyme
2 (ACE2) receptors [37,38] are also found in different niches along the digestive tract, why is the
number of studies that aim to identify SARS-CoV-2 using rectal swabs or stool samples limited?” In
several previous occasions, it has been demonstrated the presence of viral signatures in stool samples
starting from day seven, and ranging up to almost two weeks after infection [39–42]. This hypothesis
is also supported by additional evidence that the incidence of gastrointestinal deficiencies varies from
mild [40,43–45] to moderate [46–49].

The temperature could play an important role in the spreading of this virus. Demongeot et al. [50]
concluded that high temperatures restrict the range of action of SARS-CoV-2, but this does not mean
that in the cold season there will not be big question marks as to whether or not a person is infected
with SARS-CoV-2, especially when it will overlap with influenza infections.

In conclusion, Eastern European countries such as Romania are at particular risk because of the
vulnerabilities in the health system, corruption, and emigration of doctors. All these delays and the
poor organization represent the consequences of the communist regime that still makes its mark even
after more than three decades. It should be noted that Romania has also faced several economic crises,
the critical point being reached on February 5 this year, at which point it collapsed [51].

Identical to Western models, and consistent with WHO guidelines (distance between people of
about 1.5 m, wearing a mask, isolation, and massive testing), all these measures have been implemented
also in Romania. Despite the efforts made, the sums allocated for carrying out such tests are insignificant,
the equipment is missing, the staff is not qualified, and the hospitals are at full capacity.

Cumulatively, all these negative aspects are certified by an increasing number of infected people
in contrast to the rest of Europe where the situation has reached the upper limit and is now stabilizing.
What is certain is that Romania does not yet have an effective strategy to reduce the number of patients.

5. Conclusions

Forecasting the prevalence of SARS-CoV-2 is imperative to date, especially for health departments.
As has been described and demonstrated throughout this study, time-series models play a crucial role
in disease prediction. In this study, ARIMA time-series models were applied with success with the aim
of estimating the overall prevalence of COVID-19 in Romania. However, based on our expertise and
although both software have proven effective, Statgraphics has a much wider spectrum of possibilities
in terms of speed, analysis, and utility. To these arguments is added the current pandemic, where
providing a clear perspective in a short interval is vital for every individual.
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