Evaluating Retinal and Choroidal Perfusion Changes After Ocular Massage of Healthy Eyes Using Optical Coherence Tomography Angiography
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Robinson, F.; Riva, C.E.; Grunwald, J.E.; Petrig, B.L.; Sinclair, S.H. Retinal blood flow autoregulation in response to an acute increase in blood pressure. Investig. Ophthalmol. Vis. Sci. 1986, 27, 722–726. [Google Scholar]
- Dumskyj, M.J.; Eriksen, J.E.; Doré, C.J.; Kohner, E.M. Autoregulation in the human retinal circulation: Assessment using isometric exercise, laser Doppler velocimetry, and computer-assisted image analysis. Microvasc. Res. 1996, 51, 378–392. [Google Scholar] [CrossRef] [PubMed]
- Siegfried, F.; Rommel, F.; Rothe, M.; Brinkmann, M.P.; Sochurek, J.A.M.; Freitag, J.; Grisanti, S.; Ranjbar, M. Evaluating diurnal changes in choroidal sublayer perfusion using optical coherence tomography angiography. Acta Ophthalmol. 2019, 97, e1062–e1068. [Google Scholar] [CrossRef] [PubMed]
- Rommel, F.; Rothe, M.; Kurz, M.; Prasuhn, M.; Grisanti, S.; Ranjbar, M. Evaluating diurnal variations in retinal perfusion using optical coherence tomography angiography. Int. J. Retina Vitr. 2020, 6, 22. [Google Scholar] [CrossRef] [PubMed]
- Polska, E.; Simader, C.; Weigert, G.; Doelemeyer, A.; Kolodjaschna, J.; Scharmann, O.; Schmetterer, L. Regulation of choroidal blood flow during combined changes in intraocular pressure and arterial blood pressure. Investig. Ophthalmol. Vis. Sci. 2007, 48, 3768–3774. [Google Scholar] [CrossRef]
- Luo, X.; Shen, Y.; Jiang, M.; Lou, X.; Shen, Y. Ocular Blood Flow Autoregulation Mechanisms and Methods. Available online: https://www.hindawi.com/journals/joph/2015/864871/ (accessed on 23 June 2019).
- Guidoboni, G.; Harris, A.; Cassani, S.; Arciero, J.; Siesky, B.; Amireskandari, A.; Tobe, L.; Egan, P.; Januleviciene, I.; Park, J. Intraocular pressure, blood pressure, and retinal blood flow autoregulation: A Mathematical model to clarify their relationship and clinical relevance. Investig. Ophthalmol. Vis. Sci. 2014, 55, 4105–4118. [Google Scholar] [CrossRef]
- Korenfeld, M.S.; Dueker, D.K. Review of external ocular compression: Clinical applications of the ocular pressure estimator. Clin. Ophthalmol. 2016, 10, 343–357. [Google Scholar] [CrossRef] [Green Version]
- Turner, D.C.; Girkin, C.A.; Downs, J.C. The magnitude of intraocular pressure elevation associated with eye rubbing. Ophthalmology 2019, 126, 171–172. [Google Scholar] [CrossRef]
- Huber-van der Velden, K.K.; Lux, A.; Severing, K.; Klamann, M.K.J.; Winterhalter, S.; Remky, A. Retrobulbar hemodynamics before and after oculopression with and without dorzolamide. Curr. Eye Res. 2012, 37, 719–725. [Google Scholar] [CrossRef]
- Ffytche, T.J. A rationalization of treatment of central retinal artery occlusion. Trans. Ophthalmol. Soc. UK 1974, 94, 468–479. [Google Scholar]
- Beatty, S.; Au Eong, K.G. Acute occlusion of the retinal arteries: Current concepts and recent advances in diagnosis and management. J. Accid. Emerg. Med. 2000, 17, 324–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cugati, S.; Varma, D.D.; Chen, C.S.; Lee, A.W. Treatment options for central retinal artery occlusion. Curr. Treat. Options Neurol. 2013, 15, 63–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schrag, M.; Youn, T.; Schindler, J.; Kirshner, H.; Greer, D. Intravenous fibrinolytic therapy in central retinal Artery occlusion: A patient-level meta-analysis. JAMA Neurol. 2015, 72, 1148–1154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rommel, F.; Siegfried, F.; Kurz, M.; Brinkmann, M.P.; Rothe, M.; Rudolf, M.; Grisanti, S.; Ranjbar, M. Impact of correct anatomical slab segmentation on foveal avascular zone measurements by optical coherence tomography angiography in healthy adults. J. Curr. Ophthalmol. 2018, 30, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Spaide, R.F.; Fujimoto, J.G.; Waheed, N.K.; Sadda, S.R.; Staurenghi, G. Optical coherence tomography angiography. Prog. Retin. Eye Res. 2018, 64, 1–55. [Google Scholar] [CrossRef]
- Rommel, F.; Brinkmann, M.P.; Sochurek, J.A.M.; Prasuhn, M.; Grisanti, S.; Ranjbar, M. Ocular blood flow changes impact visual acuity gain after surgical treatment for idiopathic epiretinal membrane. J. Clin. Med. 2020, 9, 1768. [Google Scholar] [CrossRef]
- Lauermann, J.L.; Woetzel, A.K.; Treder, M.; Alnawaiseh, M.; Clemens, C.R.; Eter, N.; Alten, F. Prevalences of segmentation errors and motion artifacts in OCT-angiography differ among retinal diseases. Graefes Arch. Clin. Exp. Ophthalmol. Albrecht Von Graefes Arch. Klin. Exp. Ophthalmol. 2018, 256, 1807–1816. [Google Scholar] [CrossRef]
- Rommel, F.; Siegfried, F.; Sochurek, J.A.M.; Rothe, M.; Brinkmann, M.P.; Kurz, M.; Prasuhn, M.; Grisanti, S.; Ranjbar, M. Mapping diurnal variations in choroidal sublayer perfusion in patients with idiopathic epiretinal membrane: An optical coherence tomography angiography study. Int. J. Retina Vitr. 2019, 5, 12. [Google Scholar] [CrossRef]
- Gabriel, M.; Esmaeelpour, M.; Shams-Mafi, F.; Hermann, B.; Zabihian, B.; Drexler, W.; Binder, S.; Ansari-Shahrezaei, S. Mapping diurnal changes in choroidal, Haller’s and Sattler’s layer thickness using 3-dimensional 1060-nm optical coherence tomography. Graefes Arch. Clin. Exp. Ophthalmol. Albrecht Von Graefes Arch. Klin. Exp. Ophthalmol. 2017, 255, 1957–1963. [Google Scholar] [CrossRef]
- Esmaeelpour, M.; Kajic, V.; Zabihian, B.; Othara, R.; Ansari-Shahrezaei, S.; Kellner, L.; Krebs, I.; Nemetz, S.; Kraus, M.F.; Hornegger, J.; et al. Choroidal Haller’s and Sattler’s layer thickness measurement using 3-dimensional 1060-nm optical coherence tomography. PLoS ONE 2014, 9, e99690. [Google Scholar] [CrossRef] [Green Version]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Nicolò, M.; Rosa, R.; Musetti, D.; Musolino, M.; Saccheggiani, M.; Traverso, C.E. Choroidal vascular flow area in central serous chorioretinopathy using swept-source optical coherence tomography angiography. Investig. Ophthalmol. Vis. Sci. 2017, 58, 2002–2010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rothe, M.; Rommel, F.; Klapa, S.; Humrich, J.Y.; Nieberding, R.; Lange, T.; Sochurek, J.A.M.; Plöttner, P.; Grisanti, S.; Riemekasten, G.; et al. Evaluation of retinal microvascular perfusion in systemic sclerosis: A case-control study. Ann. Rheum. Dis. 2019, 78, 857–858. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Akhtar, F. Ocular digital massage for the management of post-trabeculectomy underfiltering blebs. J. Coll. Physicians Surg.Pak. 2011, 21, 676–679. [Google Scholar]
- García-Medina, J.J.; del-Río-Vellosillo, M.; Rubio-Velázquez, E.; López-Bernal, M.D.; Zafra-Pérez, J.J. Focal vitreomacular traction: Resolution after ocular massage. Am. J. Ophthalmol. Case Rep. 2019, 14, 61–63. [Google Scholar] [CrossRef]
- Mansour, A.M.; Haddad, R.S. Corneal topography after ocular rubbing. Cornea 2002, 21, 756–758. [Google Scholar] [CrossRef]
- Lam, A.K.C.; Chen, D. Effect of ocular massage on intraocular pressure and corneal biomechanics. Eye 2007, 21, 1245–1246. [Google Scholar] [CrossRef]
- Robbins, R.; Blumenthal, M.; Galin, M.A. Reduction of vitreous weight by ocular massage. Am. J. Ophthalmol. 1970, 69, 603–607. [Google Scholar] [CrossRef]
- Luo, X.; Shen, Y.-M.; Jiang, M.-N.; Lou, X.-F.; Shen, Y. Ocular blood flow autoregulation mechanisms and methods. J. Ophthalmol. 2015, 2015, 864871. [Google Scholar] [CrossRef] [Green Version]
- Puchner, S.; Schmidl, D.; Ginner, L.; Augustin, M.; Leitgeb, R.; Szegedi, S.; Stjepanek, K.; Hommer, N.; Kallab, M.; Werkmeister, R.M.; et al. Changes in retinal blood flow in response to an experimental increase in IOP in healthy participants as assessed with doppler optical coherence tomography. Investig. Ophthalmol. Vis. Sci. 2020, 61, 33. [Google Scholar] [CrossRef] [Green Version]
- Laties, A.M. Central retinal artery innervation. Absence of adrenergic innervation to the intraocular branches. Arch. Ophthalmol. Chic. Ill. 1960 1967, 77, 405–409. [Google Scholar] [CrossRef] [PubMed]
- Riva, C.E.; Sinclair, S.H.; Grunwald, J.E. Autoregulation of retinal circulation in response to decrease of perfusion pressure. Invest. Ophthalmol. Vis. Sci. 1981, 21, 34–38. [Google Scholar] [PubMed]
- Schulte, K.; Wolf, S.; Arend, O.; Harris, A.; Henle, C.; Reim, M. Retinal hemodynamics during increased intraocular pressure. Ger. J. Ophthalmol. 1996, 5, 1–5. [Google Scholar] [PubMed]
- Zhang, Q.; Jonas, J.B.; Wang, Q.; Chan, S.Y.; Xu, L.; Wei, W.B.; Wang, Y.X. Optical coherence tomography angiography vessel density changes after acute intraocular pressure elevation. Sci. Rep. 2018, 8, 6024. [Google Scholar] [CrossRef]
- Riva, C.E.; Hero, M.; Titze, P.; Petrig, B. Autoregulation of human optic nerve head blood flow in response to acute changes in ocular perfusion pressure. Graefes Arch. Clin. Exp. Ophthalmol. Albrecht Von Graefes Arch. Klin. Exp. Ophthalmol. 1997, 235, 618–626. [Google Scholar] [CrossRef]
- Pillunat, L.E.; Anderson, D.R.; Knighton, R.W.; Joos, K.M.; Feuer, W.J. Autoregulation of human optic nerve head circulation in response to increased intraocular pressure. Exp. Eye Res. 1997, 64, 737–744. [Google Scholar] [CrossRef]
- McMonnies, C.W. Abnormal rubbing and keratectasia. Eye Contact Lens 2007, 33, 265–271. [Google Scholar] [CrossRef]
- Zhang, X.; Cole, E.; Pillar, A.; Lane, M.; Waheed, N.; Adhi, M.; Magder, L.; Quigley, H.; Saeedi, O. The effect of change in intraocular pressure on choroidal structure in glaucomatous Eyes. Investig. Ophthalmol. Vis. Sci. 2017, 58, 3278–3285. [Google Scholar] [CrossRef] [Green Version]
- Delaey, C.; Van De Voorde, J. Regulatory mechanisms in the retinal and choroidal circulation. Ophthalmic Res. 2000, 32, 249–256. [Google Scholar] [CrossRef]
- Farjood, F.; Ahmadpour, A.; Ostvar, S.; Vargis, E. Acute mechanical stress in primary porcine RPE cells induces angiogenic factor expression and in vitro angiogenesis. J. Biol. Eng. 2020, 14. [Google Scholar] [CrossRef]
Parameter | Median (Min; Max) |
---|---|
Age (years) | 29 (24; 36) |
Axial length (mm) | 24.13 (23.05; 26.61) |
BCVA (logMAR) | −0.1 (−0.1; 0.0) |
MAP (mmHg) | 94 (85.7; 99.3) |
Parameter | Baseline Median (min;max) | After Ocular Massage Median (min;max) | Wilcoxon Signed-Rank (p-Value) |
---|---|---|---|
IOP (mmHg) | 16 (12;21) | 14 (9;19) | <0.001 |
CMT (µm) | 269 (233;318) | 268 (236;320) | 0.114 |
TMV (mm³) | 10.3 (9.6;11.2) | 10.3 (9.5;11.2) | 0.323 |
SFCT (µm) | 342.7 (194;447) | 367 (187;513) | 0.005 |
RPCP (%) | 45.1 (41.6;47.4) | 44.8 (41.5;46.9) | 0.407 |
SCPP (%) | 27.7 (24.2;32.8) | 30.4 (26.5;37.9) | <0.001 |
DCPP (%) | 38.6 (35.1;40.1) | 38.7 (37.4;42.3) | 0.004 |
CCP (%) | 47.4 (42.5;52) | 48.2 (45;53.9) | 0.008 |
SLP (%) | 59.4 (54.8;64.8) | 59.4 (54.8;63) | 0.304 |
HLP (%) | 62.2 (58.5;84.6) | 62 (57;85.3) | 0.554 |
Parameter | IOP | RPCP | SCPP | DCPP | CCP | SLP | HLP | |
---|---|---|---|---|---|---|---|---|
IOP | CC | 1 | −0.135 | −0.318 | 0.046 | −0.163 | 0.082 | −0.076 |
p | 0.559 | 0.160 | 0.843 | 0.481 | 0.723 | 0.742 | ||
RPCP | CC | −0.135 | 1 | 0.096 | 0.307 | −0.029 | −0.315 | −0.123 |
p | 0.559 | 0.68 | 0.176 | 0.901 | 0.164 | 0.594 | ||
SCPP | CC | −0.318 | 0.096 | 1 | 0.354 | 0.704 | −0.518 | −0.455 |
p | 0.160 | 0.68 | 0.115 | <0.001 | 0.016 | 0.09 | ||
DCPP | CC | 0.046 | 0.307 | 0.354 | 1 | 0.369 | −0.38 | −0.315 |
p | 0.843 | 0.176 | 0.115 | 0.1 | 0.089 | 0.17 | ||
CCP | CC | −0.163 | −0.029 | 0.704 | 0.369 | 1 | −0.373 | −0.56 |
p | 0.481 | 0.901 | <0.001 | 0.1 | 0.095 | 0.008 | ||
SLP | CC | 0.082 | −0.315 | −0.518 | −0.38 | −0.373 | 1 | 0.703 |
p | 0.723 | 0.164 | 0.016 | 0.089 | 0.095 | <0.001 | ||
HLP | CC | −0.076 | −0.123 | −0.455 | −0.315 | −0.56 | 0.703 | 1 |
p | 0.742 | 0.694 | 0.09 | 0.17 | 0.008 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rommel, F.; Lüken, S.; Prasuhn, M.; Kurz, M.; Kakkassery, V.; Grisanti, S.; Ranjbar, M. Evaluating Retinal and Choroidal Perfusion Changes After Ocular Massage of Healthy Eyes Using Optical Coherence Tomography Angiography. Medicina 2020, 56, 645. https://doi.org/10.3390/medicina56120645
Rommel F, Lüken S, Prasuhn M, Kurz M, Kakkassery V, Grisanti S, Ranjbar M. Evaluating Retinal and Choroidal Perfusion Changes After Ocular Massage of Healthy Eyes Using Optical Coherence Tomography Angiography. Medicina. 2020; 56(12):645. https://doi.org/10.3390/medicina56120645
Chicago/Turabian StyleRommel, Felix, Sabine Lüken, Michelle Prasuhn, Maximilian Kurz, Vinodh Kakkassery, Salvatore Grisanti, and Mahdy Ranjbar. 2020. "Evaluating Retinal and Choroidal Perfusion Changes After Ocular Massage of Healthy Eyes Using Optical Coherence Tomography Angiography" Medicina 56, no. 12: 645. https://doi.org/10.3390/medicina56120645
APA StyleRommel, F., Lüken, S., Prasuhn, M., Kurz, M., Kakkassery, V., Grisanti, S., & Ranjbar, M. (2020). Evaluating Retinal and Choroidal Perfusion Changes After Ocular Massage of Healthy Eyes Using Optical Coherence Tomography Angiography. Medicina, 56(12), 645. https://doi.org/10.3390/medicina56120645