Revisiting One of the Dreaded Outcomes of the Current Pandemic: Pulmonary Embolism in COVID-19
Abstract
:1. Background
2. COVID-19 and Hypercoagulability
3. Derangement in Coagulation Parameters
4. Comparing COVID-19 with Disseminated Intravascular Coagulopathy
5. Pulmonary Embolism in COVID-19
6. Role of Diagnostic Testing
7. Role of Anticoagulants in Prevention of the PE in COVID-19
8. Treatment of Documented PE or Those with Strong Clinical Suspicion
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- WHO. Director-General’s Opening Remarks at the Media Briefing on COVID-19—11 March 2020. 2020. Available online: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19 (accessed on 23 March 2020).
- Wu, C.; Chen, X.; Cai, Y.; Xia, J.; Zhou, X.; Xu, S.; Huang, H.; Zhang, L.; Zhou, X.; Du, C.; et al. Risk Factors Associated with Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern. Med. 2020, 180, 934–943. [Google Scholar] [CrossRef] [Green Version]
- Guo, T.; Fan, Y.; Chen, M.; Wu, X.; Zhang, L.; He, T.; Wang, H.; Wan, J.; Wang, X.; Lu, Z. Cardiovascular Implications of Fatal Outcomes of Patients with Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020, 5, 811–818. [Google Scholar] [CrossRef] [Green Version]
- Cuker, A.; Peyvandi, F. Coronavirus Disease 2019 (COVID-19): Hypercoagulability. Up to Date. 2020. Available online: https://www.uptodate.com/contents/coronavirus-disease-2019-covid-19-hypercoagulability (accessed on 10 August 2020).
- Libby, P.; Lüscher, T. COVID-19 is, in the end, an endothelial disease. Eur. Heart J. 2020, 41, 3038. [Google Scholar] [CrossRef]
- Begbie, M.; Notley, C.; Tinlin, S.; Sawyer, L.; Lillicrap, D. The Factor VIII acute phase response requires the participation of NFkappaB and C/EBP. Thromb. Haemost. 2000, 84, 216. [Google Scholar]
- Magro, C.; Mulvey, J.J.; Berlin, D.; Nuovo, G.; Salvatore, S.; Harp, J.; Baxter-Stoltzfus, A.; Laurence, J.C. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: A report of five cases. Transl. Res. 2020, 220, 1–13. [Google Scholar] [CrossRef]
- Middleton, E.A.; He, X.-Y.; Denorme, F.; Campbell, R.A.; Ng, D.; Salvatore, S.P.; Mostyka, M.; Baxter-Stoltzfus, A.; Borczuk, A.C.; Loda, M.; et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood 2020, 136, 1169–1179. [Google Scholar] [CrossRef]
- Esmon, C.T. Basic mechanisms and pathogenesis of venous thrombosis. Blood Rev. 2009, 23, 225–229. [Google Scholar] [CrossRef] [Green Version]
- Ranucci, M.; Ballotta, A.; Di Dedda, U.; Bayshnikova, E.; Poli, M.D.; Resta, M.; Falco, M.; Albano, G.; Menicanti, L. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J. Thromb. Haemost. 2020, 18, 1747–1751. [Google Scholar] [CrossRef]
- Maier, C.; Truong, A.D.; Auld, S.; Polly, D.; Tanksley, C.-L.; Duncan, A. COVID-19-Associated Hyperviscosity: A Potential Link between Inflammation and Thrombophilia. SSRN Electron. J. 2020, 6, 1758–1759. [Google Scholar] [CrossRef]
- Yuriditsky, E.; Horowitz, J.M.; Merchan, C.; Ahuja, T.; Brosnahan, S.B.; McVoy, L.; Berger, J.S. Thromboelastography Profiles of Critically Ill Patients with Coronavirus Disease 2019. Crit. Care Med. 2020, 48, 1319–1326. [Google Scholar] [CrossRef]
- Hottz, E.D.; Azevedo-Quintanilha, I.G.; Palhinha, L.; Teixeira, L.; Barreto, E.D.A.; Pão, C.R.R.; Righy, C.; Franco, S.; Souza, T.M.L.; Kurtz, P.; et al. Platelet activation and platelet-monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19. Blood 2020, 136, 1330–1341. [Google Scholar] [CrossRef]
- Levi, M.; Toh, C.H.; Thachil, J.; Watson, H.G. Guidelines for the diagnosis and management of disseminated intravascular coagulation. Br. J. Haematol. 2009, 145, 24–33. [Google Scholar] [CrossRef]
- Levi, M.; Thachil, J.; Iba, T.; Levy, J.H. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 2020, 7, e438–e440. [Google Scholar] [CrossRef]
- Guan, W.-J.; Ni, Z.-Y.; Hu, Y.; Liang, W.-H.; Ou, C.-Q.; He, J.-X.; Liu, L.; Shan, H.; Lei, C.-L.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Menter, T.; Haslbauer, J.D.; Nienhold, R.; Savic, S.; Hopfer, H.; Deigendesch, N.; Frank, S.; Turek, D.; Willi, N.; Pargger, H.; et al. Post-mortem examination of COVID19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings of lungs and other organs suggesting vascular dysfunction. Histopathology 2020, 77, 198–209. [Google Scholar] [CrossRef]
- Wichmann, D.; Sperhake, J.P.; Lütgehetmann, M.; Steurer, S.; Edler, C.; Heinemann, A.; Heinrich, F.; Mushumba, H.; Kniep, I.; Schröder, A.S. Autopsy Findings and Venous Thromboembolism in Patients With COVID-19: A Prospective Cohort Study. Ann. Intern Med. 2020, 173, 268. [Google Scholar] [CrossRef]
- Bilaloglu, S.; Aphinyanaphongs, Y.; Jones, S.; Iturrate, E.; Hochman, J.; Berger, J.S. Thrombosis in Hospitalized Patients With COVID-19 in a New York City Health System. JAMA 2020, 324, 799. [Google Scholar] [CrossRef]
- Klok, F.A.; Kruip, M.J.H.A.; van der Meer, N.J.M.; Arbous, M.S.; Gommers, D.A.M.P.J.; Kant, K.M.; Kapteina, F.H.J.; van Paassend, J.; Stals, M.A.M.; Huismana, M.V.; et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb. Res. 2020, 191, 145. [Google Scholar] [CrossRef]
- Helms, J.; Tacquard, C.; Severac, F.; Leonard-Lorant, I.; Ohana, M.; Delabranche, X.; Merdji, H.; Clere-Jehl, R.; Schenck, M.; Gandet, F.F.; et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: A multicenter prospective cohort study. Intensive Care. Med. 2020, 46, 1089. [Google Scholar] [CrossRef]
- Poissy, J.; Goutay, J.; Caplan, M.; Parmentier, E.; Duburcq, T.; Lassalle, F.; Jeanpierre, E.; Rauch, A.; Labreuche, J.; Susen, S.; et al. Pulmonary Embolism in Patients With COVID-19: Awareness of an Increased Prevalence. Circulation 2020, 142, 184. [Google Scholar] [CrossRef]
- Fauvel, C.; Weizman, O.; Trimaille, A.; Mika, D.; Pommier, T.; Pace, N.; Douair, A.; Barbin, E.; Fraix, A.; Bouchot, O.; et al. Pulmonary embolism in COVID-19 patients: A French multicentre cohort study. Eur. Hear. J. 2020, 41, 3058–3068. [Google Scholar] [CrossRef]
- Artifoni, M.; Danic, G.; Gautier, G.; Gicquel, P.; Boutoille, D.; Raffi, F.; Néel, A.; LeComte, R. Systematic assessment of venous thromboembolism in COVID-19 patients receiving thromboprophylaxis: Incidence and role of D-dimer as predictive factors. J. Thromb. Thrombolysis 2020, 50, 211–216. [Google Scholar] [CrossRef]
- Rapkiewicz, A.V.; Mai, X.; Carsons, S.E.; Pittaluga, S.; Kleiner, D.E.; Berger, J.S.; Thomas, S.; Adler, N.M.; Charytan, D.M.; Gasmi, B.; et al. Megakaryocytes and platelet-fibrin thrombi characterize multi-organ thrombosis at autopsy in COVID-19: A case series. EClinicalMedicine 2020, 24, 100434. [Google Scholar] [CrossRef]
- Zhang, L.; Yan, X.; Fan, Q.; Liu, H.; Liu, X.; Liu, Z.; Zhang, Z. D-dimer levels on admission to predict in-hospital mortality in patients with Covid-19. J. Thromb. Haemost. 2020, 18, 1324. [Google Scholar] [CrossRef]
- Thompson, T.B.; Kabrhel, C. Overview of Acute Pulmonary Embolism in Adults. Available online: https://www.uptodate.com/contents/overview-of-acute-pulmonary-embolism-in-adults (accessed on 22 October 2020).
- Spyropoulos, A.C.; Levy, J.H.; Ageno, W.; Connors, J.M.; Hunt, B.J.; Iba, T.; Levi, M.; Samama, C.M.; Thachil, J.; Giannis, D.; et al. Scientific and Standardization Committee communication: Clinical guidance on the diagnosis, prevention, and treatment of venous thromboembolism in hospitalized patients with COVID-19. J. Thromb. Haemost. 2020, 18, 1859–1865. [Google Scholar] [CrossRef]
- Available online: https://www.hematology.org/covid-19/covid-19-and-coagulopathy (accessed on 23 October 2020).
- Available online: https://www.acc.org/latest-in-cardiology/articles/2020/04/17/14/42/thrombosis-and-coronavirus-disease-2019-covid-19-faqs-for-current-practice (accessed on 23 October 2020).
- Peyvandi, F.; Artoni, A.; Novembrino, C.; Aliberti, S.; Panigada, M.; Boscarino, M.; Gualtierotti, R.; Rossi, F.; Palla, R.; Martinelli, I.; et al. Hemostatic alterations in COVID-19. Haematologica 2020. [Google Scholar] [CrossRef]
- Paranjpe, I.; Fuster, V.; Lala, A.; Russak, A.J.; Glicksberg, B.S.; Levin, M.A.; Charney, A.W.; Narula, J.; Fayad, Z.A.; Bagiella, E.; et al. Association of Treatment Dose Anticoagulation with in-Hospital Survival Among Hospitalized Patients With COVID-19. J. Am. Coll. Cardiol. 2020, 76, 122–124. [Google Scholar] [CrossRef]
- Lemos, A.C.B.; Santo, D.A.D.E.; Salvetti, M.C.; Gilio, R.N.; Agra, L.B.; Pazin-Filho, A.; Miranda, C.H. Therapeutic versus prophylactic anticoagulation for severe COVID-19: A randomized phase II clinical trial (HESACOVID). Thromb. Res. 2020, 196, 359–366. [Google Scholar] [CrossRef]
- Rosovsky, R.P.; Grodzin, C.; Channick, R.; Davis, G.A.; Giri, J.S.; Horowitz, J.; Kabrhel, C.; Lookstein, R.; Merli, G.; Morris, T.A.; et al. Diagnosis and Treatment of Pulmonary Embolism During the COVID-19 Pandemic: A Position Paper from the National PERT Consortium. Chest 2020. [Google Scholar] [CrossRef]
- Poor, H.D.; Ventetuolo, C.E.; Tolbert, T.; Chun, G.; Serrao, G.; Zeidman, A.; Dangayach, N.S.; Olin, J.; Kohli-Seth, R.; Powell, C.A. COVID-19 critical illness pathophysiology driven by diffuse pulmonary thrombi and pulmonary endothelial dysfunction responsive to thrombolysis. Clin. Transl. Med. 2020, 10, e44. [Google Scholar] [CrossRef]
- Bikdeli, B.; Madhavan, M.V.; Jimenez, D.; Chuich, T.; Dreyfus, I.; Driggin, E.; Der Nigoghossian, C.; Ageno, W.; Madjid, M.; Guo, Y.; et al. COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up. J. Am. Coll. Cardiol. 2020, 75, 2950–2973. [Google Scholar] [CrossRef]
Study | Study Type | Major Findings |
---|---|---|
Menter T et al. (May 2020) [18] | Autopsy of 21 consecutive deceased patients. Origin of study: Basel, Switzerland. | PE found in 4 individuals, were not on anticoagulation, average age 76 years, average BMI 31 kg/m2, major comorbidities: hypertension, diabetes, cardiovascular diseases. |
Wichmann D et al. (May 2020) [19] | A prospective cohort of 12 deceased patients. Autopsies performed. Origin of study: Hamburg, Germany. | PE in 5 individuals, only 4 out of 12 were on anticoagulation, mean age 73 years, average BMI 28.7 kg/m2, major comorbidities: malignancy, ulcerative colitis, chronic kidney disease (CKD). |
Bilaloglu S et al. (July 2020) [20] | Retrospective chart review of 3334 patients. Origin of study: New York, USA | PE in 3.2% of patients, mean age 63 years, major comorbidities: MI, congestive heart failure, hypertension, diabetes. |
Klok FA et al. (July 2020) [21] | A retrospective study of 184 patients in ICU. Origin of Study: the Netherlands. | PE in 14% of patients, mean age 64 years, mean body weight 87 kg, all patients were on thromboprophylaxis. |
Helms J et al. (May 2020) [22] | A multicenter prospective cohort study of 150 patients. Origin of Study: French territory. | PE in 16.7% of patients, mean age 63 years, all patients were on thromboprophylaxis (70% prophylactic, 30% therapeutic), major comorbidities: malignancy, cardiovascular disease, diabetes. |
Poissy J et al. (April 2020) [23] | Case series of 107 patients in ICU. Origin of study: Lille, France. | PE in 20.06% (n = 22) patients, average BMI 30 kg/m2 (22–53), median age 57 years (29–80), 20 of 22 patients were on prophylactic antithrombotic therapy. |
Fauvel C et al. (August 2020) [24] | Retrospective observational multicenter study of 1240 patients not admitted to ICU. Origin of study: France. | PE in 8.3% patients (n = 103), average age 64 ± 17, BMI 28.1 ± 6.3 kg/m2. 837 were on anticoagulation prophylaxis. Major comorbidities: Hypertension, diabetes, hyperlipidemia, chronic kidney disease, and coronary artery disease. |
Artifoni M et al. (May 2020) [25] | A retrospective study of 71 patients not admitted to ICU. Origin of study: France. | PE in 10% (n = 7) patients, average age 61 years (40.8–79), average BMI 27 kg/m2(25.5–29.1), 70 patients were on prophylactic anticoagulation. Major comorbidities: Hypertension, Diabetes, Malignancy. |
Rapkiewicz AV et al. (July 2020) [26] | Autopsy case series of 7 patients. Origin of study: New York, USA. | PE in all 7 patients despite being on anticoagulation. All the thrombi were megakaryocytes and platelet rich. Average age 57.4 years, 4 females. Major comorbidities: Hypertension, Diabetes, Hyperlipidemia, obesity. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, M.; Surani, S. Revisiting One of the Dreaded Outcomes of the Current Pandemic: Pulmonary Embolism in COVID-19. Medicina 2020, 56, 670. https://doi.org/10.3390/medicina56120670
Sharma M, Surani S. Revisiting One of the Dreaded Outcomes of the Current Pandemic: Pulmonary Embolism in COVID-19. Medicina. 2020; 56(12):670. https://doi.org/10.3390/medicina56120670
Chicago/Turabian StyleSharma, Munish, and Salim Surani. 2020. "Revisiting One of the Dreaded Outcomes of the Current Pandemic: Pulmonary Embolism in COVID-19" Medicina 56, no. 12: 670. https://doi.org/10.3390/medicina56120670
APA StyleSharma, M., & Surani, S. (2020). Revisiting One of the Dreaded Outcomes of the Current Pandemic: Pulmonary Embolism in COVID-19. Medicina, 56(12), 670. https://doi.org/10.3390/medicina56120670