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Abstract: The exact molecular pathways underlying the multifactorial natural history of intracranial
aneurysms (IAs) are still largely unknown, to the point that their understanding represents an
imperative challenge in neurovascular research. Wall shear stress (WSS) promotes the genesis
of IAs through an endothelial dysfunction causing an inflammatory cascade, vessel remodeling,
phenotypic switching of the smooth muscle cells, and myointimal hyperplasia. Aneurysm growth is
supported by endothelial oxidative stress and inflammatory mediators, whereas low and high WSS
determine the rupture in sidewall and endwall IAs, respectively. Angioarchitecture, age older than
60 years, female gender, hypertension, cigarette smoking, alcohol abuse, and hypercholesterolemia
also contribute to growth and rupture. The improvements of aneurysm wall imaging techniques
and the implementation of target therapies targeted against inflammatory cascade may contribute to
significantly modify the natural history of IAs. This narrative review strives to summarize the recent
advances in the comprehension of the mechanisms underlying the genesis, growth, and rupture
of IAs.

Keywords: endothelial disfunction; inflammatory cascade; intra-aneurysmal flow; intracranial
aneurysm; subarachnoid hemorrhage; wall shear stress

1. Introduction

Intracranial aneurysms (IAs) are life-threatening cerebrovascular pathologies with an
incidence and prevalence of 1–6% and 3.2%, respectively, in the adult population [1].

IAs are focal enlargements of the arterial wall owing to the destruction of internal
elastic lamina and tunica media. The sudden rupture of these thin-wall regions causes a
subarachnoid hemorrhage (SAH), the latter accounting for more than 25% of strokes [2–4].

The occurrence of the IAs is related to genetic, hemodynamic, and inflammatory
factors, which are responsible for the bulging of the arterial wall and, ultimately, its rupture.

The precise molecular mechanisms underlying these events, however, remain unclear,
although their understanding may theoretically lead to counteract this cascade.

In this study, we overview the most recent advances in the comprehension of the
pathogenesis of IAs, focusing on the implications of gene mutations, inflammation path-
ways, and hemodynamic stress in the growth and rupture of the aneurysm. The role of
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neuroimaging in detecting aneurysm wall inflammation as well as that of target therapies
in preventing rupture are also discussed.

2. Genesis of Intracranial Aneurysms
2.1. Genetic and Extrinsic Risk Factors

Over the last decade, several studies have delineated the structural differences be-
tween sporadic aneurysms and hereditary ones. Among these is the Familial Intracranial
Aneurysm (FIA) study, a multicentric retrospective and prospective trial focused on the
genome reconstruction of 475 families harboring IAs [5]. Results revealed that familial
IAs is a dissimilar entity, with a higher incidence at a young age and a predilection for the
middle cerebral artery (MCA). They are frequently large and multiple, and the patterns of
inheritance include autosomal dominant transmission and anticipation [6–10].

Furthermore, many genetic syndromes were found to be susceptible to IA growth.
Ehlers–Danlos syndrome type IV is a connective tissue disorder caused by the mutation
of the COL3A1 gene, which transcripts for type III procollagen. The abnormal synthe-
sis of collagen results in vascular fragility and then IA formation [11,12]. In patients
affected by adult polycystic kidney disease, the risk of IAs increased by 40%, of which 25%
were multiple [13,14]. The Floating-Harbor, an autosomal dominant genetic syndrome, is
characterized by the SRCAP mutation. SCARP is an SNF2-related chromatin-remodeling
ATPase protein, involved in endothelial integrity and repairing mechanisms [15]. Other
rare hereditary diseases are strongly related to IA growth, such as neurofibromatosis
type I, Marfan’s syndrome, hereditary hemorrhagic telangiectasia, and alpha-1-antitrypsin
deficiency [16–20].

Conversely, the sporadic aneurysms occurred more frequently in females who were
older than 50 years. The higher occurrence during the postmenopausal period is due to the
loss of the anti-inflammatory role of estrogens. The main extrinsic risk factors for IAs are
cigarette smoking, arterial hypertension, hypercholesterolemia, alcohol consumption, drug
abuse, and oral contraceptives. All of these increase the oxidative stress and activation of
the inflammatory cascade, resulting in chronic arterial damage [21].

In addition, abnormalities of specific chromosomal loci are linked to IA genesis.
Genome-wide linkage analysis reported a higher incidence of IAs currently within the mu-
tation of TP53, antisense inhibitor gene/chromosome 9, cyclin-dependent kinase inhibitor
2B, G572C gene of IL-6, and mutation of SOX17/chromosome 8 [22–26].

Particularly, the SOX17 factor is involved in physiological vascular remodeling and
arterial homeostasis. SOX17-deficient rat models treated with angiotensin II (Ang-II)
infusion were proven to be more susceptible to IAs formation [27]. Conversely, in 2014,
Peña Silva et al. reported that the expression of angiotensin 1–7 (Ang-1–7), which binds
Mas receptors and acts against the hypertensive effects of Ang-II, inhibits the aneurysmal
growth. They induced IAs in wild-type and Mas receptor-deficient rats through Ang-II
infusion and intracranial elastase injection. The study group was also treated with Ang-1–7.
Results showed a decreased IAs formation and rupture in the study group. These data
support the protective role of Ang-1–7 with a Mas receptor-dependent mechanism [28].

Moreover, the T786C polymorphism of the nitric oxide synthase (NOs) gene reduces
the vasoprotection mediated by nitric oxide (NO), and the mutation of the endothelin
receptor A gene leads to a dysregulation of the arterial tone. Both of these conditions
significantly increase the risk of IAs [29,30].

In 2007, Pimiento and colleagues investigated the role of endothelial NOS (eNOS) in
IAs formation and growth. They compared aneurysmatic diameters in wild-type and eNOS-
knockout mice and determined that the eNOS expression is related to the enlargement of
the IAs wall [31].

The same year, Abruzzo et al. conducted a study on rat brain circulation specimens
genetically modified with NOS-2, NOS-3, and plasminogen-activator inhibitor (PAI)-1
knockout and treated with left common carotid artery ligation. After histological analysis,
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two IAs were found in NOS-3-knockout rats and none in NOS-2-knockout or PAI-1-
knockout mice, demonstrating that only the former is a potential predisposing factor [32].

2.2. Wall Shear Stress, Endothelial Dysfunction, and Role of Inflammation

Among the hemodynamic mechanisms of brain blood circulation, the wall shear stress
(WSS) is the result of the tangential force impressed on the arterial walls by the pulsatile
blood flow, influenced by the fluid viscosity and velocity. The endothelial function is
regulated by mechanoreceptors, sensitive to the decrease or increase in WSS gradient. Both
low and high WSS cause functional and morphological dysregulation in endothelial cells,
especially at arterial bifurcation sites, triggering the formation of aneurysms [33–36].

The so-called endothelial dysfunction, due to the hemodynamic stress, results in matrix
protein degradation, the production of oxidant and vasoconstrictive agents, inflammatory
activation, leukocyte rolling, and adhesion, followed by vessel remodeling [37–39].

The primum movens of the inflammatory cascade is the transcription of NF-κB, which
induces the expression of COX2, prostaglandin E2, and proinflammatory genes [40].

The proinflammatory signals prompt the secretion of chemokines, such as the mono-
cyte chemoattractant protein-1 (MCP-1) and vascular cell adhesion molecule-1 (VCAM-1),
which recruit leukocytes in the arterial wall. Endothelial-infiltrating lymphocytes and
macrophages amplify the expression of inflammatory mediators, such as matrix metallopro-
teinases (MMPs), interleukins, cytokines, and the tumor necrosis factor-α (TNF-α) [41–43].

The importance of inflammation in IAs progression is also demonstrated by experi-
ments on animal models. In 2017, Aoki and colleagues studied the timing of NF-kB, PGE2,
and prostaglandin E receptor subtype 2 (EP2) activation, and the consequent macrophage
infiltration in the IAs wall. EP2 or NF-kB-knockout mice have shown less immune activa-
tion along the vessel walls and reduced IAs growth [44].

In 2014, Starke highlighted the involvement of TNF-α in IAs progression and rupture.
They induced IAs in TNF-α-knockout mice subsequently treated with TNF-α inhibitor
3,6′dithiothalidomide (DTH), and results showed a decreased incidence of IAs formation [45].

Furthermore, toll-like receptors 4 (TLR4) contribute to the maintenance of immune
response. In 2020, Mitsui et al. demonstrated that TLR4-knockout mice, after aneurysmal
induction, have a lower incidence of aneurysmal rupture than the control littermates [46].

These data support the role of the inflammatory signaling pathway in IAs pathophysiology.
The stochastic amplification of the inflammatory cascade provokes a phenotypic

switching of the vascular smooth muscle cells (VSMCs) from a contractile phenotype to
a secretory one [47–50]. Modified VSMCs are spider-like shaped, split, and incapable of
excreting collagen for the extracellular matrix (ECM). Proinflammatory VSMCs also upreg-
ulate the NF-κβ, IL-1β, TNF-α, and MMPs, leading to ECM transformation, proteolytic
destruction, and thinning of the tunica media [51–54]. VSMCs move to the intima layer
and proliferate, resulting in intimal degeneration, namely myointimal hyperplasia [55,56].

The oscillatory gradient of WSS, endothelial dysfunction, and VSMCs phenotypic
modulation progressively stretch and destroy the arterial wall, contributing to IA genesis
(Figure 1).
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Figure 1. Hemodynamic and molecular mechanisms of intracranial aneurysms formation. COX2, cyclooxygenase-2; ECM, 
extracellular matrix; IL:, interleukin; MCP-1, monocyte chemoattractant protein-1; MMP, matrix metalloproteinase; PGE2, 
prostaglandin E2; ROS, reactive oxygen species; TNF-α, tumor necrosis factor-α; VCAM-1, vascular cell adhesion mole-
cule-1; VSMC, vascular smooth muscle cell; WS, wall shear stress. 

3. Hemodynamic Phenotypes and Patterns of Growth 
Two hemodynamic models support the role of WSS in IA progression, namely the 

high-flow theory and low-flow one [35]. According to the high-flow theory, the abnormal 
increase in WSS causes focal endothelial injuries and structural changes [57]. Prolonged 
biomechanical stimulation stretches collagen and elastic fibers, leading to gradual dilata-
tion and enlargement of the IA wall. Moreover, the pressure load activates the eNOS, pro-
moting a local overproduction of NO that acts as a strong vasodilator [58–60]. The low-
WSS theory hypothesizes the occurrence of a slowing of the blood flow in the arterial lu-
men, which facilitates the recruitment of platelets, lymphocytes, macrophages, and im-
munoglobulins [61]. The degranulation of mast cells and macrophages stimulates the in-
ducible nitric oxide synthase (iNOS) to activate NO and induce the upregulation of MMPs 
and reactive oxygen species (ROS) [62–64]. The oxidative stress and tissue-infiltrating in-
flammatory mediators promote endothelial damage, VSMC phenotypic change, and 
thrombosis, all of them creating the assumption of cell apoptosis and rupture of the aneu-
rysm wall [35,65–67] (Figure 2). 

The aforementioned flow patterns lead to two different IA hemodynamic phenotypes 
[68]. The progressive positive WSS creates a continuous increase in transmural pressure, 
driving the initiation of small, thin-walled, and translucent IAs. Otherwise, the aberrant 

Figure 1. Hemodynamic and molecular mechanisms of intracranial aneurysms formation. COX2, cyclooxygenase-2; ECM,
extracellular matrix; IL:, interleukin; MCP-1, monocyte chemoattractant protein-1; MMP, matrix metalloproteinase; PGE2,
prostaglandin E2; ROS, reactive oxygen species; TNF-α, tumor necrosis factor-α; VCAM-1, vascular cell adhesion molecule-1;
VSMC, vascular smooth muscle cell; WS, wall shear stress.

3. Hemodynamic Phenotypes and Patterns of Growth

Two hemodynamic models support the role of WSS in IA progression, namely the
high-flow theory and low-flow one [35]. According to the high-flow theory, the abnormal
increase in WSS causes focal endothelial injuries and structural changes [57]. Prolonged
biomechanical stimulation stretches collagen and elastic fibers, leading to gradual dilatation
and enlargement of the IA wall. Moreover, the pressure load activates the eNOS, promoting
a local overproduction of NO that acts as a strong vasodilator [58–60]. The low-WSS theory
hypothesizes the occurrence of a slowing of the blood flow in the arterial lumen, which
facilitates the recruitment of platelets, lymphocytes, macrophages, and immunoglobu-
lins [61]. The degranulation of mast cells and macrophages stimulates the inducible nitric
oxide synthase (iNOS) to activate NO and induce the upregulation of MMPs and reactive
oxygen species (ROS) [62–64]. The oxidative stress and tissue-infiltrating inflammatory
mediators promote endothelial damage, VSMC phenotypic change, and thrombosis, all of
them creating the assumption of cell apoptosis and rupture of the aneurysm wall [35,65–67]
(Figure 2).
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Figure 2. Hemodynamic patterns of intracranial aneurysms growth. eNOS, endothelial nitric oxide synthase; IL, interleukin;
iNOS, inducible nitric oxide synthase; MCP-1, monocyte chemoattractant protein-1; MMP, matrix metalloproteinase; NO,
nitric oxide; ROS, reactive oxygen species; TNF-α, tumor necrosis factor-α; VCAM-1, vascular cell adhesion molecule-1;
WSS, wall shear stress.

The aforementioned flow patterns lead to two different IA hemodynamic pheno-
types [68]. The progressive positive WSS creates a continuous increase in transmural
pressure, driving the initiation of small, thin-walled, and translucent IAs. Otherwise, the
aberrant blood stagnation over-activates inflammatory pathways and atherosclerotic-like
processes at the arterial wall, which result in the formation of large, thick-walled, and
thrombosed IAs.

4. Risk of Rupture
4.1. Histopathological Findings

Specific histological hallmarks have been reported for the IA wall: the disruption of
the tunica media and their replacement with modified non-contractile VSMCs, loss of the
fibers of the internal elastic lamina, myointimal hyperplasia, thinned and shattered ECM,
and proinflammatory endothelial cell dysfunction [69–71].

In 2004, Frosen and colleagues described four aneurysmal wall histological subtypes
with a progressively increased risk of rupture. Type A is marked by an endothelialized
wall and non-modified VSMCs; type B harbors modified VSMCs and a thin endothelial
wall; type C is characterized by the hypocellular wall, modified VSMCs, and myointimal
hyperplasia; type D involves hypocellular and destroyed wall with traces of thrombosis [72]
(Figure 3). The reported average risk of rupture is 42%, 55%, 64%, and 100% for type 1,
type 2, type 3, and type 4, respectively [72].

4.2. Size, Angioarchitectural Features, and Intra-Aneurysmal Flow

In 1998, the International Study of Unruptured Intracranial Aneurysms (ISUIA) an-
alyzed the natural history of 2621 IAs, describing a rupture rate of 0.05%/year for IAs
smaller than 10 mm and 1%/year for larger ones [62]. In 2003, the prospective part of the
ISUIA trial established the cut-off size at 7 mm [3]. Later, Morita et al. confirmed that the
risk of rupture progressively increases based on the size, and it becomes relevant over
7 mm [73]. They also found a different likelihood of rupture according to the site, with
a risk of 2%, 1.7%, 1.3%, 0.65%, and 0.2% for the basilar tip, posterior communicating,
anterior communicating, MCA, and paraclinoid internal carotid artery, respectively [73].
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The explanation of these data lies in the distribution of hemodynamic forces in the
different locations of IAs. Based on rheologic properties and relationships with neighboring
arteries, the saccular aneurysms were classified as sidewall (SWA), sidewall with branching
vessels (SWBVA), and endwall (EWA) [74]. The SWAs are the focal outpouching of one
artery where the percentage ratio between the pre- and post-aneurysmal segment is >90%.
The SWBVAs are similar but hold smaller side branches. In EWAs, the so-called bifurcation
aneurysms, the pre- and post-aneurysmal segments, have a different diameter at the neck,
and their percentage ratio is <90% (Figure 4).

Angiographic computational flow techniques allows us to comprehend the intra-
aneurysmal hemodynamic patterns and flow velocity in the different regions of the IA.

The low WSS proved to be responsible for the rupture of SWAs at the neck or
dome [75–77]. Blood stasis has been identified as the major input to the atherosclerotic-like
wall remodeling and formation of intraluminal thrombi via the recruitment of platelets and
inflammatory mediators [76,78–80].

Conversely, high-WSS regions represent the breaking points for EWAs and SWBVAs.
Depending on the angioarchitecture, the points of pressure impingement may mainly
involve bifurcations, narrow necks, or the take-off of collateral branches [81,82].

These findings demonstrated a close relationship between the risk of rupture and
angioarchitecture. The diameter of the neck, aspect ratio (dome/neck ratio), size ratio,
height-width ratio, flow angle, and presence of one or more collateral branches all affect
the risk [75,83,84].
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In addition, age older than 60 years, female gender, hypertension, cigarette smoking,
alcohol abuse, and hypercholesterolemia seem to contribute to the growth and rupture
of the aneurysm [85–87]. In 2012, Greving et al. introduced a grading system with the
aim to predict the five-year risk of rupture for IAs. The PHASES score includes patients’
demographics, clinical data, size and site of aneurysms, and the occurrence of previous
bleeding. A PHASES score rating >3 is highly suggestive of rupture and provides an
indication for treatment [88,89].

5. Future Perspectives: Imaging of Inflammation and Target Therapies

In recent decades, many efforts have been focused on novel diagnostic tools for the
rupture risk stratification and treatment choice. In 2012, Hasan et al. proposed ferumoxytol-
enhanced magnetic resonance imaging (FE-MRI) to predict aneurysm instability. The
ferumoxytol, an intravenous iron oxide employed in anemia and renal failure, is uptaken by
macrophages and lymphocytes with a peak of 24 h. The IA wall enhancement allows the esti-
mation of the inflammatory process at the arterial wall, which reflects the active progression of
aneurysmal remodeling and demolition. Therefore, the FE-MRI can predict the IA instability
and improve the identification of rupture-prone aneurysms [90–92]. The identification of
endangered IAs permits us to choose the most appropriate, tailored management.

As reported by our group, the recent advances in translational medicine, epigenetics,
and immunogenomics in many neurosurgical fields have led to the proposal of new
therapies targeting the inflammatory cascade [93–99].

The most promising approach involves the chronic use of acetylic acid (ASA) as the
primary prevention for IA rupture. ASA not only irreversibly blocks the cyclooxygenase
(COX)-1 and -2 but also the ROS formation, resulting in a decrease in the inflammatory
cascade. In 2011, the same group of Hasan and colleagues reported the results of a
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comparative study on patients enrolled in the ISUIA trial and treated with ASA three times
per weekly or daily. The overall data suggested a lower risk of SAH in the ASA group [100].

Statins were tested in preventing IA rupture, exploiting their ability to block upstream
the inflammatory cascade. They inhibit the NF-κB activation, MMPs, and iNoS expression.
In 2012, Tada and colleagues proved the dose-dependent effects of statins in the treatment
of IAs. Particularly, a low dose of Pravastatin (5 mg/kg per day) was effective in avoiding
the IA rupture, while a high dose of Pravastatin (50 mg/kg per day) may increase cell
apoptosis and arterial wall damage [101].

COX-2 inhibitors, angiotensin receptor blockers, and mast-cell degranulation in-
hibitors are still under evaluation as tailored, preventive therapies to reverse the process of
growth and rupture [102–106].

6. Conclusions

The hemodynamic imbalance and focal variations of the WSS were proven to be
responsible for the genesis of IA.

Abnormal blood flow pulses lead to endothelial dysfunction, which causes a chronic
inflammatory reaction. Leukocyte wall infiltration and the overproduction of proinflam-
matory mediators result in progressive remodeling of the wall, phenotypic switching of
the VSMCs, myointimal hyperplasia, degradation of ECM, and aneurysmal progression.

Familial and genetic susceptibility, morphological features, and angioarchitecture
significantly affect the risk of rupture.

Further advances in imaging techniques for wall instability and target therapies
specifically targeted against the inflammatory pathways may significantly contribute to
the improvement of the management of IA.
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