Prospective DNA Methylation Analysis of the CpG GABRA2 Receptor Subunit in Alcohol Dependence during Detoxification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
Alcohol-Dependent Individuals
2.2. Control Group
2.3. Neuronal Cell Cultures
2.4. Promoter CpG Island Analysis
2.5. Sequencing of Genomic DNA
2.6. Statistical Analysis
3. Results
3.1. Sample
3.2. Comparison of GABRA2 Methylation between AD Patients (Admission) and Controls
3.3. Comparison of GABRA2 CpG Methylation Sites over Time in AD Subjects
3.4. Influence of Alcohol Dependence Characteristics on GABRA2 CpG Methylation Sites over Time in AD Subjects
3.5. Neuroblastoma Cell Cultures
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Cell Lines
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, H.; Gelernter, J. Review: DNA methylation and alcohol use disorders: Progress and challenges. Am. J. Addict. 2017, 26, 502–515. [Google Scholar] [CrossRef] [PubMed]
- Starkman, B.G.; Sakharkar, A.J.; Pandey, S.C. Epigenetics-beyond the genome in alcoholism. Alcohol Res. 2012, 34, 293–305. [Google Scholar] [PubMed]
- Koob, G.F. A role for GABA mechanisms in the motivational effects of alcohol. Biochem. Pharmacol. 2004, 68, 1515–1525. [Google Scholar] [CrossRef]
- Kumar, S.; Kralic, J.E.; O’Buckley, T.K.; Grobin, A.C.; Morrow, A.L. Chronic ethanol consumption enhances internalization of alpha1 subunit-containing GABAA receptors in cerebral cortex. J. Neurochem. 2003, 86, 700–708. [Google Scholar] [CrossRef]
- Clapp, P.; Bhave, S.V.; Hoffman, P.L. How adaptation of the brain to alcohol leads to dependence: A pharmacological perspective. Alcohol Res. Health 2008, 31, 310–339. [Google Scholar]
- Bowen, M.T.; Peters, S.T.; Absalom, N.; Chebib, M.; Neumann, I.D.; McGregor, I.S. Oxytocin prevents ethanol actions at δ subunit-containing GABAA receptors and attenuates ethanol-induced motor impairment in rats. Proc. Natl. Acad. Sci. USA 2015, 112, 3104–3109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, J.C.; Knowler, W.C.; Hanson, R.L.; Robin, R.W.; Urbanek, M.; Moore, E.; Bennett, P.H.; Goldman, D. Evidence for genetic linkage to alcohol dependence on chromosomes 4 and 11 from an autosome-wide scan in an American Indian population. Am. J. Med. Genet. 1998, 81, 216–221. [Google Scholar] [CrossRef]
- Bierut, L.J.; Agrawal, A.; Bucholz, K.K.; Doheny, K.F.; Laurie, C.; Pugh, E.; Fisher, S.; Fox, L.; Howells, W.; Bertelsen, S.; et al. Gene, Environment Association Studies Consortium. A genome-wide association study of alcohol dependence. Proc. Natl. Acad. Sci. USA 2010, 107, 5082–5087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enoch, M.A. The role of GABA(A) receptors in the development of alcoholism. Pharmacol. Biochem. Behav. 2008, 90, 95–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edenberg, H.J.; Dick, D.M.; Xuei, X.; Tian, H.; Almasy, L.; Bauer, L.O.; Crowe, R.R.; Goate, A.; Hesselbrock, V.; Jones, K.; et al. Variations in GABRA2, encoding the alpha 2 subunit of the GABA(A) receptor, are associated with alcohol dependence and with brain oscillations. Am. J. Human Genet. 2004, 74, 705–714. [Google Scholar] [CrossRef] [Green Version]
- Haughey, H.M.; Ray, L.A.; Finan, P.; Villanueva, R.; Niculescu, M.; Hutchison, K.E. Human gamma-aminobutyric acid A receptor alpha2 gene moderates the acute effects of alcohol and brain mRNA expression. Genes. Brain Behav. 2008, 7, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Matthews, A.G.; Hoffman, E.K.; Zezza, N.; Stiffler, S.; Hill, S.Y. The role of the GABRA2 polymorphism in multiplex alcohol dependence families with minimal comorbidity: Within-family association and linkage analyses. J. Stud. Alcohol Drugs 2007, 68, 625–633. [Google Scholar] [CrossRef] [Green Version]
- Koulentaki, M.; Kouroumalis, E. GABAA receptor polymorphisms in alcohol use disorder in the GWAS era. Psychopharmacology 2018, 235, 1845–1865. [Google Scholar] [CrossRef]
- Olsen, R.W.; Liang, J. Role of GABAA receptors in alcohol use disorders suggested by chronic intermittent ethanol (CIE) rodent model. Mol. Brain 2017, 10, 45. [Google Scholar] [CrossRef] [PubMed]
- Lindemeyer, A.K.; Shen, Y.; Yazdani, F.; Shao, X.M.; Spigelman, I.; Davies, D.L.; Olsen, R.W.; Liang, J. α2 Subunit-Containing GABAA Receptor Subtypes Are Upregulated and Contribute to Alcohol-Induced Functional Plasticity in the Rat Hippocampus. Mol. Pharmacol. 2017, 92, 101–112. [Google Scholar] [CrossRef] [Green Version]
- Staley, J.K.; Gottschalk, C.; Petrakis, I.L.; Gueorguieva, R.; O’Malley, S.; Baldwin, R.; Jatlow, P.; Verhoeff, N.P.L.G.; Perry, E.; Weinzimmer, D.; et al. Cortical gamma aminobutyric acid type A-benzodiazepine receptors in recovery from alcohol dependence: Relationship to features of alcohol dependence and cigarette smoking. Arch Gen. Psychiatry 2005, 62, 877–888. [Google Scholar] [CrossRef] [Green Version]
- Leung, D.; Jung, I.; Rajagopal, N.; Schmitt, A.; Selvaraj, S.; Lee, A.Y.; Yen, C.; Lin, S.; Lin, Y.; Qiu, Y.; et al. Integrative analysis of haplotype-resolved epigenomes across human tissues. Nature 2015, 518, 350–354. [Google Scholar] [CrossRef] [Green Version]
- Goetjen, A.; Watson, M.; Lieberman, R.; Clinton, K.; Kranzler, H.R.; Covault, J. Induced pluripotent stem cell reprogramming-associated methylation at the GABRA2 promoter and chr4p12 GABAA subunit gene expression in the context of alcohol use disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2020, 183, 464–474. [Google Scholar] [CrossRef] [PubMed]
- Cloninger, C.R.; Sigvardsson, S.; Gilligan, S.B.; von Knorring, A.L.; Reich, T.; Bohman, M. Genetic heterogeneity and the classification of alcoholism. Adv. Alcohol Subst. Abuse. 1988, 7, 3–16. [Google Scholar] [CrossRef] [PubMed]
- AWMG Arbeitsgemeinschaft Medizinisch Wissenschaftlicher Fachgesellschaften. S3-Leitlinie alkoholbezogene Störungen. 2021. Available online: https://www.awmf.org/uploads/tx_szleitlinien/076-001l_S3-Screening-Diagnose-Behandlung-alkoholbezogene-Stoerungen_2021-02.pdf (accessed on 8 August 2022).
- Barann, M.; Ruppert, K.; Göthert, M.; Bönisch, H. Increasing effect of ethanol on 5-HT3 receptor-mediated 14C-guanidinium influx in N1E-115 neuroblastoma cells. Naunyn Schmiedebergs Arch. Pharmacol. 1995, 352, 149–156. [Google Scholar] [CrossRef]
- Basavarajappa, B.S.; Hungund, B.L. Chronic ethanol increases the cannabinoid receptor agonist anandamide and its precursor N-arachidonoylphosphatidylethanolamine in SK-N-SH cells. J. Neurochem. 1999, 72, 522–528. [Google Scholar] [CrossRef] [PubMed]
- Charness, M.E.; Hu, G.; Edwards, R.H.; Querimit, L.A. Ethanol increases delta-opioid receptor gene expression in neuronal cell lines. Mol. Pharmacol. 1993, 44, 1119–1127. [Google Scholar] [PubMed]
- Kelly, E.; Harrison, P.K.; Williams, R.J. Effects of acute and chronic ethanol on cyclic AMP accumulation in NG108-15 cells: Differential dependence of changes on extracellular adenosine. Br. J. Pharmacol. 1995, 114, 1433–1441. [Google Scholar] [CrossRef] [Green Version]
- Rukova, B.; Staneva, R.; Hadjidekova, S.; Stamenov, G.; Milanova, V.; Toncheva, D. Whole genome methylation analyses of schizophrenia patients before and after treatment. Biotechnol. Biotechnol. Equip. 2014, 28, 518–524. [Google Scholar] [CrossRef] [PubMed]
- Nieratschker, V.; Grosshans, M.; Frank, J.; Strohmaier, J.; von der Goltz, C.; El-Maarri, O.; Witt, S.H.; Cichon, S.; Nöthen, M.M.; Kiefer, F.; et al. Epigenetic alteration of the dopamine transporter gene in alcohol-dependent patients is associated with age. Addict. Biol. 2014, 19, 305–311. [Google Scholar] [CrossRef]
- McCarver-May, D.G.; Durisin, L. An accurate, automated, simultaneous gas chromatographic headspace measurement of whole blood ethanol and acetaldehyde for human in vivo studies. J. Anal. Toxicol. 1997, 21, 134–141. [Google Scholar] [CrossRef] [Green Version]
- Choi, M.R.; Cho, S.; Kim, D.J.; Choi, J.S.; Jin, Y.B.; Kim, M.; Chang, H.J.; Jeon, S.H.; Yang, Y.D.; Lee, S.R. Effects of Ethanol on Expression of Coding and Noncoding RNAs in Murine Neuroblastoma Neuro2a Cells. Int. J. Mol. Sci. 2022, 23, 7294. [Google Scholar] [CrossRef]
- Damuka, N.; Orr, M.; Czoty, P.W.; Weiner, J.L.; Martin, T.J.; Nader, M.A.; Bansode, A.H.; Liyana-Pathirannahel, B.S.; Mintz, A.; Macauley, S.L.; et al. Effect of ethanol and cocaine on [11C]MPC-6827 uptake in SH-SY5Y cells. Mol. Biol. Rep. 2021, 48, 3871–3876. [Google Scholar] [CrossRef]
- Getachew, B.; Csoka, A.B.; Garden, A.R.; Copeland, R.L.; Tizabi, Y. Sodium Butyrate Protects Against Ethanol-Induced Toxicity in SH-SY5Y Cell Line. Neurotox Res. 2021, 39, 2186–2193. [Google Scholar] [CrossRef]
- Dolganiuc, A.; Szabo, G. In Vitro and In Vivo models of acute alcohol exposure. World J. Gastroenterol. 2009, 15, 1168–1177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villafuerte, S.; Trucco, E.M.; Heitzeg, M.M.; Burmeister, M.; Zucker, R.A. Genetic variation in GABRA2 moderates peer influence on externalizing behavior in adolescents. Brain Behav. 2014, 4, 833–840. [Google Scholar] [CrossRef]
- Onori, N.; Turchi, C.; Solito, G.; Gesuita, R.; Buscemi, L.; Tagliabracci, A. GABRA2 and alcohol use disorders: No evidence of an association in an Italian case-control study. Alcohol Clin. Exp. Res. 2010, 34, 659–668. [Google Scholar] [CrossRef]
- Irons, D.E.; Iacono, W.G.; Oetting, W.S.; Kirkpatrick, R.M.; Vrieze, S.I.; Miller, M.B.; McGue, M. GABA system genes—No evidence for a role in alcohol use and abuse in a community-based sample. Alcohol Clin. Exp. Res. 2014, 38, 938–947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malhotra, S.; Basu, D.; Khullar, M.; Ghosh, A.; Chugh, N. Candidate genes for alcohol dependence: A genetic association study from India. Indian J. Med. Res. 2016, 144, 689–696. [Google Scholar] [CrossRef] [PubMed]
- Gelernter, J.; Kranzler, H.R.; Sherva, R.; Almasy, L.; Herman, A.I.; Koesterer, R.; Zhao, H.; Farrer, L.A. Genome-wide association study of nicotine dependence in American populations: Identification of novel risk loci in both African-Americans and European-Americans. Biol. Psychiatry 2015, 77, 493–503. [Google Scholar] [CrossRef] [Green Version]
- Lieberman, R.; Kranzler, H.R.; Joshi, P.; Shin, D.G.; Covault, J. GABRA2 Alcohol Dependence Risk Allele is Associated with Reduced Expression of Chromosome 4p12 GABAA Subunit Genes in Human Neural Cultures. Alcohol Clin. Exp. Res. 2015, 39, 1654–1664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lind, P.A.; MacGregor, S.; Montgomery, G.W.; Heath, A.C.; Martin, N.G.; Whitfield, J.B. Effects of GABRA2 variation on physiological, psychomotor and subjective responses in the alcohol challenge twin study. Twin Res. Human Genet. 2008, 11, 174–182. [Google Scholar] [CrossRef] [Green Version]
- Tian, H.; Chen, H.J.; Cross, T.H.; Edenberg, H.J. Alternative splicing and promoter use in the human GABRA2 gene. Brain Res. Mol. Brain Res. 2005, 137, 174–183. [Google Scholar] [CrossRef]
AD Patients | Controls | p | |
---|---|---|---|
Gender (males/females) | 47/0 | 44/0 | |
Age (years, mean ± SD) | 44.83 ± 10.90 | 37.98 ± 12.29 | 0.007 |
Age of onset (years, mean ± SD) | 23.48 ± 9.89 | ||
Mean daily alcohol intake before admission (g/d, mean ± SD) | 190.43 ± 150.90 | 4.54 ± 4.17 | <0.001 |
Maximal daily alcohol intake ever (g/d, mean ± SD) | 395.03 ± 200.93 | ||
Duration of dependence (years, mean ± SD) | 21.92 ± 13.30 | ||
Current withdrawal symptoms (#, mean ± SD) | 3.09 ± 2.36 | ||
DSM-5 criteria (#, mean ± SD) | 5.91 ± 2.66 | ||
Total Oxazepam medication during withdrawal (mg, mean ± SD) | 130.45 ± 296.79 | ||
Tobacco users n | 33 (75%) | 3 (7%) | <0.001 |
AD Patients | p | Controls | p | |
---|---|---|---|---|
CpG Site 1 baseline | −0.061 | 0.687 | 0.205 | 0.182 |
CpG Site 2 baseline | 0.159 | 0.290 | 0.032 | 0.838 |
CpG Site 3 baseline | 0.051 | 0.735 | 0.272 | 0.074 |
CpG Site 4 baseline | 0.102 | 0.499 | 0.415 | 0.005 ** |
AD Patients Non-Smoking | AD Patients Smoking | M-W-U Value, Sign. (2-Sided) | Controls Non-Smoking | Controls Smoking | M-W-U Value, Sign. (2-Sided) | |
---|---|---|---|---|---|---|
Number of individuals | 14 | 33 | 41 | 3 | ||
GABRA2 CpG site 1, baseline | 5.31 ± 0.88 | 4.65 ± 0.85 | 51.0; 0.18 | 5.63 ± 1.29 | 5.63 ± 0.50 | 55.5; 0.79 |
GABRA2 CpG site 1, measure 2 | 5.74 ± 1.61 | 4.91 ± 1.18 | 53.0; 0.53 | |||
GABRA2 CpG site 1, measure 3 | 4.92 ± 0.85 | 4.67 ± 1.43 | 50.0; 0.26 | |||
GABRA2 CpG site 2, baseline | 7.22 ± 0.90 | 6.56 ± 1.93 | 52.0; 0.23 | 7.36 ± 1.25 | 6.66 ± 0.94 | 38.0; 0.29 |
GABRA2 CpG site 2, measure 2 | 8.18 ± 2.04 | 6.84 ± 1.72 | 48.0; 0.15 | |||
GABRA2 CpG site 2, measure 3 | 6.91 ± 0.74 | 6.64 ± 2.08 | 44.0; 0.64 | |||
GABRA2 CpG site 3, baseline | 7.98 ± 1.67 | 7.31 ± 1.48 | 53.5; 0.53 | 8.06 ± 1.17 | 8.51 ± 0.71 | 46.0; 0.50 |
GABRA2 CpG site 3, measure 2 | 9.24 ± 0.91 | 7.73 ± 1.48 | 49.0; 0.20 | |||
GABRA2 CpG site 3, measure 3 | 8.01 ± 1.59 | 7.76 ± 1.53 | 56.0; 0.88 | |||
GABRA2 CpG site 4, baseline | 8.72 ± 1.66 | 7.78 ± 1.44 | 53.0; 0.53 | 8.15 ± 1.25 | 8.14 ± 1.24 | 58.5; 0.89 |
GABRA2 CpG site 4, measure 2 | 8.89 ± 1.15 | 8.30 ± 1.98 | 53.0; 0.53 | |||
GABRA2 CpG site 4, measure 3 | 8.68 ± 1.35 | 7.80 ± 1.77 | 51.0; 0.18 |
AD Patients Alcohol Intake before Admission | ANOVA F-Value, Sign. | AD Patients Number of DSM-5 Criteria | ANOVA F-Value, Sign. | AD Patients Age of Onset | ANOVA F-Value, Sign. | AD Patients Number of Withdrawal Symptoms | ANOVA F-Value, Sign. | |
---|---|---|---|---|---|---|---|---|
GABRA2 CpG site 1, baseline | 4.74 ± 0.69 5.02 ± 1.15 | 0.559 0.590 | 5.05 ± 0.92 5.07 ± 1.70 | 0.351 0.711 | 5.10 ± 1.35 5.07 ± 0.98 | 0.493 0.622 | 4.87 ± 0.74 5.30 ± 1.57 | 0.780 0.482 |
GABRA2 CpG site 1, measure 2 | 5.08 ± 1.51 5.12 ± 0.65 | 5.41 ± 1.45 5.10 ± 1.42 | 5.02 ± 1.29 5.83 ± 1.58 | 5.81 ± 1.61 5.03 ± 1.25 | ||||
GABRA2 CpG site 1, measure 3 | 4.98 ± 0.87 4.63 ± 056 | 5.22 ± 0.93 4.67 ± 1.69 | 5.05 ± 1.51 4.85 ± 0.68 | 5.45 ± 1.08 4.72 ± 1.43 | ||||
GABRA2 CpG site 2, baseline | 6.62 ± 0.69 6.92 ± 1.31 | 0.622 0.558 | 7.13 ± 1.57 6.57 ± 1.93 | 0.199 0.822 | 7.07 ± 1.88 6.92 ± 1.22 | 0.057 0.944 | 6.98 ± 1.75 6.98 ± 1.82 | 0.001 0.999 |
GABRA2 CpG site 2, measure 2 | 7.66 ± 1.95 6.95 ± 1.09 | 7.69 ± 1.94 7.04 ± 1.74 | 7.31 ± 1.57 7.99 ± 2.37 | 7.82 ± 2.43 7.34 ± 1.39 | ||||
GABRA2 CpG site 2, measure 3 | 6.95 ± 0.74 6.26 ± 0.92 | 7.33 ± 1.47 6.32 ± 1.77 | 6.92 ± 1.86 7.00 ± 1.13 | 7.52 ± 1.88 6.56 ± 1.49 | ||||
GABRA2 CpG site 3, baseline | 7.37 ± 1.25 7.72 ± 2.08 | 0.218 0.809 | 7.97 ± 1.37 7.44 ± 2.23 | 0.206 0.817 | 7.50 ± 1.91 8.09 ± 1.55 | 0.179 0.838 | 7.46 ± 0.94 8.10 ± 2.20 | 0.224 0.834 |
GABRA2 CpG site 3, measure 2 | 8.16 ± 1.67 8.28 ± 1.36 | 8.67 ± 1.38 7.83 ± 1.87 | 7.93 ± 1.66 8.84 ± 1.78 | 8.58 ± 1.48 8.39 ± 1.71 | ||||
GABRA2 CpG site 3, measure 3 | 8.08 ± 1.53 7.86 ± 1.64 | 8.62 ± 1.25 7.44 ± 1.85 | 7.79 ± 1.80 8.56 ± 1.38 | 8.54 ± 1.33 8.03 ± 2.21 | ||||
GABRA2 CpG site 4, baseline | 7.63 ± 1.01 8.68 ± 1.97 | 1.763 0.226 | 8.63 ± 1.58 8.06 ± 2.26 | 0.431 0.660 | 8.32 ± 2.20 8.20 ± 1.34 | 0.091 0913 | 8.02 ± 1.27 8.87 ± 2.21 | 0.490 0.625 |
GABRA2 CpG site 4, measure 2 | 8.22 ± 2.00 7.82 ± 1.54 | 8.50 ± 1.62 8.41 ± 2.43 | 8.40 ± 1.85 8.44 ± 2.39 | 8.27 ± 1.99 8.73 ± 2.04 | ||||
GABRA2 CpG site 4, measure 3 | 7.98 ± 1.46 8.94 ± 1.78 | 9.24 ± 1.53 7.95 ± 2.23 | 8.11 ± 2.20 8.97 ± 1.24 | 8.98 ± 1.32 8.85 ± 2.20 |
AD Patients Early Onset (before Age 25) | AD Patients Late Onset (after Age 25) | M-W-U Value; Sign. (2-Sided) | |
---|---|---|---|
Number of individuals | 32 | 15 | |
GABRA2 CpG site 1, baseline | 5.37 ± 1.19 | 6.00 ± 1.60 | 51.0; 0.495 |
GABRA2 CpG site 1, measure 2 | 5.34 ± 1.60 | 5.17 ± 0.86 | 50.0; 0.851 |
GABRA2 CpG site 1, measure 3 | 5.04 ± 1.43 | 4.84 ± 0.79 | 52.0; 0.234 |
GABRA2 CpG site 2, baseline | 7.29 ± 1.48 | 7.53 ± 1.71 | 47.5; 0.754 |
GABRA2 CpG site 2, measure 2 | 7.70 ± 1.97 | 7.08 ± 1.42 | 49.5; 0.753 |
GABRA2 CpG site 2, measure 3 | 7.00 ± 1.79 | 6.79 ± 1.19 | 52.0; 0.234 |
GABRA2 CpG site 3, baseline | 7.83 ± 1.53 | 8.57 ± 2.14 | 51.5; 0.495 |
GABRA2 CpG site 3, measure 2 | 8.13 ± 1.71 | 8.50 ± 1.87 | 49.0; 0.200 |
GABRA2 CpG site 3, measure 3 | 7.75 ± 1.72 | 8.88 ± 1.36 | 43.0; 0.188 |
GABRA2 CpG site 4, baseline | 8.22 ± 1.67 | 8.57 ± 1.65 | 55.0; 0.530 |
GABRA2 CpG site 4, measure 2 | 8.56 ± 1.83 | 8.02 ± 2.53 | 48.0; 0.661 |
GABRA2 CpG site 4, measure 3 | 8.15 ± 2.10 | 9.07 ± 1.41 | 55.0, 0.180 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Preuss, U.W.; Koller, G.; Zill, P. Prospective DNA Methylation Analysis of the CpG GABRA2 Receptor Subunit in Alcohol Dependence during Detoxification. Medicina 2022, 58, 1653. https://doi.org/10.3390/medicina58111653
Preuss UW, Koller G, Zill P. Prospective DNA Methylation Analysis of the CpG GABRA2 Receptor Subunit in Alcohol Dependence during Detoxification. Medicina. 2022; 58(11):1653. https://doi.org/10.3390/medicina58111653
Chicago/Turabian StylePreuss, Ulrich W., Gabriele Koller, and Peter Zill. 2022. "Prospective DNA Methylation Analysis of the CpG GABRA2 Receptor Subunit in Alcohol Dependence during Detoxification" Medicina 58, no. 11: 1653. https://doi.org/10.3390/medicina58111653
APA StylePreuss, U. W., Koller, G., & Zill, P. (2022). Prospective DNA Methylation Analysis of the CpG GABRA2 Receptor Subunit in Alcohol Dependence during Detoxification. Medicina, 58(11), 1653. https://doi.org/10.3390/medicina58111653