The Japanese Herbal Medicine Yokukansan Exerted Antioxidant and Analgesic Effects in an Experimental Rat Model of Hunner-Type Interstitial Cystitis
Abstract
:1. Introduction
2. Materials and Methods
2.1. YKS
2.2. Antioxidant Capacity of YKS
2.3. Animal Investigations
2.3.1. Animals
2.3.2. Groups and Induction of HIC
2.3.3. Von Frey Test
2.3.4. Measurement of Oxidative Stress
- OH—detected using the ESR spin trapping method, as described above. An aliquot of water (120 μL) was mixed with 20 μL of each bladder sample—20 μL of 1.0 M DMPO, 20 μL of 10 mM FeSO4, and 20 μL of 100 mM H2O2 in a plastic cuvette for 1 min. The subsequent measurements are as described above;
- Reactive oxygen metabolites (ROMs)—oxidative stress level was measured using the diacron reactive oxygen metabolites (d-ROMs) test (d-ROMs Kit; Diacron International S.r.l., Grosseto, Italy) [32]. ROMs of a biological sample, primarily hydroperoxides, are able to generate alkoxyl and peroxyl radicals, according to Fenton’s reaction. These radicals oxidize an alkyl-substituted aromatic amine (N,N-dietylparaphenylendiamine), thus producing a pink-colored derivative that is photometrically quantified at 505 nm using the free radical analytical system (FREE carpe diem; Diacron International S.r.l.) [33]. The concentration of ROMs is directly correlated with the color intensity and is expressed as Carratelli Units (1 CARR U = 0.08 mg hydrogen peroxide/dL) [34];
- 8-hydroxy-2′-deoxyguanosine (8-OHdG)—8-OHdG produced by oxidative damage to DNA by reactive oxygen species (ROS) was detected using enzyme-linked immunosorbent assay and fluorescent immunostaining methods. The concentrations of 8-OHdG in the homogenate samples were measured using a kit (KOG-HS10E, Japan Institute for the Control of Aging, Fukuoka, Japan). The assay sensitivity was <0.125 ng/mL, and the intra- and inter-assay CVs were 2.1% and 7.1%, respectively. All measurement procedures were conducted according to the manufacturer’s instructions.
2.4. Statistical Analysis
3. Results
3.1. OH Scavenging Capacity of YKS
3.2. Animal Investigations
3.2.1. Von Frey Test
3.2.2. Oxidative Stress Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Appendix A
Component Galenicals of YKS | Chemical Compounds | Structure | Chemical Class |
---|---|---|---|
Atractylodes Lancea | 4E,6E,12E-tetradecatriene-8,10-diyne-1,3,14-triol | polyacetylene | |
12-isovaleroyl-2E,8E,10E-triene-4,6-diyne-1,14-diol | polyacetylene | ||
14-isovaleroyl-2E,8E,10E-triene-4,6-diyne-1,12-diol | polyacetylene | ||
atractylodin | polyacetylene | ||
atractylodinol | polyacetylene | ||
acetylatractylodinol | polyacetylene | ||
Cnidium Rhizome | ferulic acid | phenolic acid | |
Ligustilide * | Butenolide | ||
Japanese Angelica | |||
xanthotoxin | coumarin | ||
Uncaria Thorn | geissoschizine methyl ether | indole alkaloid | |
hirsuteine | indole alkaloid | ||
hirsutine | indole alkaloid | ||
Bupleurum | saikosaponin b1 | triterpene saponin | |
saikosaponin b2 | triterpene saponin | ||
Glycyrrhiza | liquiritin | flavonoid | |
liquiritin apioside | flavonoid | ||
isoliquiritin | flavonoid | ||
isoliquiritin apioside | flavonoid | ||
glycyroside | flavonoid | ||
glycyrrhizin | triterpene glycoside | ||
liquiritigenin | flavonoid | ||
formonetin-7-O-glucoside | flavonoid | ||
glycycoumarin | coumarin | ||
formononetin | flavonoid |
References
- Homma, Y.; Akiyama, Y.; Tomoe, H.; Furuta, A.; Ueda, T.; Maeda, D.; Lin, A.T.; Kuo, H.C.; Lee, M.H.; Oh, S.J.; et al. Clinical guidelines for interstitial cystitis/bladder pain syndrome. Int. J. Urol. 2020, 27, 578–589. [Google Scholar] [CrossRef] [PubMed]
- Hanno, P.M.; Erickson, D.; Moldwin, R.; Faraday, M.M. Diagnosis and treatment of interstitial cystitis/bladder pain syndrome: AUA guideline amendment. J. Urol. 2015, 193, 1545–1553. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, Y. Biomarkers in interstitial cystitis/bladder pain syndrome with and without Hunner lesion: A review and future perspectives. Diagnostics 2021, 11, 2238. [Google Scholar] [CrossRef] [PubMed]
- Fall, M.; Nordling, J.; Cervigni, M.; Dinis Oliveira, P.; Fariello, J.; Hanno, P.; Kåbjörn-Gustafsson, C.; Logadottir, Y.; Meijlink, J.; Mishra, N.; et al. Hunner lesion disease differs in diagnosis, treatment and outcome from bladder pain syndrome: An ESSIC working group report. Scand. J. Urol. 2020, 54, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.H.; Pickersgill, N.A.; Vetter, J.M. Hunner lesion phenotype in interstitial cystitis/bladder pain syndrome: A systematic review and meta-analysis. J. Urol. 2020, 204, 518–523. [Google Scholar] [CrossRef]
- Akiyama, Y.; Hanno, P. Phenotyping of interstitial cystitis/bladder pain syndrome. Int. J. Urol. 2019, 26, 17–19. [Google Scholar] [CrossRef] [Green Version]
- van de Merwe, J.P.; Nordling, J.; Bouchelouche, P.; Bouchelouche, K.; Cervigni, M.; Daha, L.K.; Elneil, S.; Fall, M.; Hohlbrugger, G.; Irwin, P.; et al. Diagnostic criteria, classification, and nomenclature for painful bladder syndrome/interstitial cystitis: An ESSIC proposal. Eur. Urol. 2008, 53, 60–67. [Google Scholar] [CrossRef]
- Rawls, W.F.; Cox, L.; Rovner, E.S. Dimethyl sulfoxide (DMSO) as intravesical therapy for interstitial cystitis/bladder pain syndrome: A review. Neurourol. Urodyn. 2017, 36, 1677–1684. [Google Scholar] [CrossRef]
- Colemeadow, J.; Sahai, A.; Malde, S. Clinical management of bladder pain syndrome/interstitial cystitis: A review on current recommendations and emerging treatment options. Res. Rep. Urol. 2020, 12, 331–343. [Google Scholar] [CrossRef]
- Kollerup Madsen, B.; Hilscher, M.; Zetner, D.; Rosenberg, J. Adverse reactions of dimethyl sulfoxide in humans: A systematic review. F1000Research 2018, 7, 1746. [Google Scholar] [CrossRef]
- Kawashima, N.; Deveaux, T.E.; Yoshida, N.; Matsumoto, K.; Kato, K. Choreito, a formula from Japanese traditional medicine (Kampo medicine), for massive hemorrhagic cystitis and clot retention in a pediatric patient with refractory acute lymphoblastic leukemia. Phytomedicine 2012, 19, 1143–1146. [Google Scholar] [CrossRef] [PubMed]
- Sekiguchi, Y.; Azekoshi, Y.; Kawazi, K.; Nagasaki, N.; Nagai, Y.; Kaneko, Y.; Yoshida, M.; Kubota, Y. Four interstitial cystitis/chronic pelvic syndrome (IC/CPPS) cases improved by Kampo medicine. Kampo Med. 2014, 65, 268–272, (In Japanese, English Abstract). [Google Scholar] [CrossRef] [Green Version]
- Kawashima, N.; Ito, Y.; Sekiya, Y.; Narita, A.; Okuno, Y.; Muramatsu, H.; Irie, M.; Hama, A.; Takahashi, Y.; Kojima, S. Choreito formula for BK virus-associated hemorrhagic cystitis after allogeneic hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant. 2015, 21, 319–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, S.; Takei, M.; Nishizawa, O.; Yamaguchi, O.; Kato, K.; Gotoh, M.; Yoshimura, Y.; Takeyama, M.; Ozawa, H.; Shimada, M. Clinical guideline for female lower urinary tract symptoms. Low Urin. Tract. Symptoms 2016, 8, 5–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.L.; Shin, H.K.; Lee, J.Y.; Kwon, O.; Seo, C.S.; Kim, A.R.; Seo, B.N.; Yang, S.W.; Song, K.H.; Lim, J.S. Combination therapy with tamsulosin and traditional herbal medicine for lower urinary tract symptoms due to benign prostatic hyperplasia: A double blinded, randomized, pilot clinical trial. Int. J. Urol. 2022, 29, 503–509. [Google Scholar] [CrossRef]
- Sunagawa, M.; Takayama, Y.; Kato, M.; Tanaka, M.; Fukuoka, S.; Okumo, T.; Tsukada, M.; Yamaguchi, K. Kampo formulae for the treatment of neuropathic pain∼ especially the mechanism of action of yokukansan∼. Front. Mol. Neurosci. 2021, 14, 705023. [Google Scholar] [CrossRef]
- Yamaguchi, K. Traditional Japanese herbal medicines for treatment of odontopathy. Front. Pharmacol. 2015, 6, 176. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, M.; Tanaka, T.; Takamatsu, M.; Shibue, C.; Imao, Y.; Ando, T.; Baba, H.; Kamiya, Y. Effects of the Kampo medicine Yokukansan for perioperative anxiety and postoperative pain in women undergoing breast surgery: A randomized, controlled trial. PLoS ONE 2021, 16, e0260524. [Google Scholar] [CrossRef]
- Suzuki, Y.; Mitsuhata, H.; Yuzurihara, M.; Kase, Y. Antiallodynic effect of herbal medicine yokukansan on peripheral neuropathy in rats with chronic constriction injury. Evid. Based Complement. Alternat. Med. 2012, 2012, 953459. [Google Scholar] [CrossRef] [Green Version]
- Ebisawa, S.; Andoh, T.; Shimada, Y.; Kuraishi, Y. Yokukansan improves mechanical allodynia through the regulation of interleukin-6 expression in the spinal cord in mice with neuropathic pain. Evid. Based Complement. Alternat. Med. 2015, 2015, 870687. [Google Scholar] [CrossRef] [Green Version]
- Nishimura, K.; Osawa, T.; Watanabe, K. Evaluation of oxygen radical absorbance capacity in kampo medicine. Evid. Based Complement Alternat. Med. 2011, 2011, 812163. [Google Scholar] [CrossRef] [PubMed]
- Hirayama, A.; Oowada, S.; Ito, H.; Matsui, H.; Ueda, A.; Aoyagi, K. Clinical significance of redox effects of Kampo formulae, a traditional Japanese herbal medicine: Comprehensive estimation of multiple antioxidative activities. J. Clin. Biochem. Nutr. 2018, 62, 39–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandström, B.E. Effects of quin2 acetoxymethyl ester on H2O2-induced DNA single-strand breakage in mammalian cells: H2O2-concentration-dependent inhibition of damage and additive protective effect with the hydroxyl-radical scavenger dimethyl sulphoxide. Biochem. J. 1995, 305, 181–185. [Google Scholar] [CrossRef]
- Schins, R.P.; Knaapen, A.M.; Cakmak, G.D.; Shi, T.; Weishaupt, C.; Borm, P.J. Oxidant-induced DNA damage by quartz in alveolar epithelial cells. Mutat. Res. 2002, 517, 77–86. [Google Scholar] [CrossRef]
- Japanese Ministry of Health, Labour and Welfare. The Japanese Pharmacopoeia, 18th ed.; Japanese Ministry of Health, Labour and Welfare: Tokyo, Japan, 2021; pp. 2173–2175. Available online: https://www.mhlw.go.jp/content/11120000/000912390.pdf (accessed on 11 May 2022).
- Ichihara, K.; Aizawa, N.; Akiyama, Y.; Kamei, J.; Masumori, N.; Andersson, K.-E.; Homma, Y.; Igawa, Y. Toll-like receptor 7 is overexpressed in the bladder of Hunner-type interstitial cystitis, and its activation in the mouse bladder can induce cystitis and bladder pain. Pain 2017, 158, 1538–1545. [Google Scholar] [CrossRef]
- Tabata, H.; Sasaki, M.; Kataoka-Sasaki, Y.; Shinkai, N.; Ichihara, K.; Masumori, N.; Kocsis, J.D.; Honmou, O. Possible role of intravenous administration of mesenchymal stem cells to alleviate interstitial cystitis/bladder pain syndrome in a toll-like receptor-7 agonist-induced experimental animal model in rat. BMC Urol. 2021, 21, 156. [Google Scholar] [CrossRef]
- Akanuma, Y.; Kato, M.; Takayama, Y.; Ikemoto, H.; Adachi, N.; Ohashi, Y.; Yogi, W.; Okumo, T.; Tsukada, M.; Sunagawa, M. Analgesic efficacy of a combination of fentanyl and a Japanese herbal medicine “Yokukansan” in rats with acute inflammatory pain. Medicines 2020, 7, 75. [Google Scholar] [CrossRef]
- Takemoto, M.; Sunagawa, M.; Okada, M.; Ikemoto, H.; Suga, H.; Katayama, A.; Otake, H.; Hisamitsu, T. Yokukansan, a Kampo medicine, prevents the development of morphine tolerance through the inhibition of spinal glial cell activation in rats. Integr. Med. Res. 2016, 5, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Ackerman, A.L.; Jellison, F.C.; Lee, U.J.; Bradesi, S.; Rodríguez, L.V. The Glt1 glutamate receptor mediates the establishment and perpetuation of chronic visceral pain in an animal model of stress-induced bladder hyperalgesia. Am. J. Physiol. Renal. Physiol. 2016, 310, F628–F636. [Google Scholar] [CrossRef] [Green Version]
- Ding, H.; Chen, J.; Su, M.; Lin, Z.; Zhan, H.; Yang, F.; Li, W.; Xie, J.; Huang, Y.; Liu, X.; et al. BDNF promotes activation of astrocytes and microglia contributing to neuroinflammation and mechanical allodynia in cyclophosphamide-induced cystitis. J. Neuroinflamm. 2020, 17, 19. [Google Scholar] [CrossRef] [Green Version]
- Faienza, M.F.; Francavilla, R.; Goffredo, R.; Ventura, A.; Marzano, F.; Panzarino, G.; Marinelli, G.; Cavallo, L.; Di Bitonto, G. Oxidative stress in obesity and metabolic syndrome in children and adolescents. Horm. Res. Paediatr. 2012, 78, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Alberti, A.; Bolognini, L.; Macciantelli, D.; Caratelli, M. The radical cation of N,N-diethyl-para-phenylendiamine: A possible indicator of oxidative stress in biological samples. Res. Chem. Intermed. 2000, 26, 253–267. [Google Scholar] [CrossRef]
- Trotti, R.; Carratelli, M.; Barbieri, M. Performance and clinical application of a new, fast method for the detection of hydroperoxides in serum. Panminerva Med. 2002, 44, 37–40. [Google Scholar] [PubMed]
- Mashino, T.; Takigawa, Y.; Saito, N.; Wong, L.Q.; Mochizuki, M. Antioxidant activity and xanthine oxidase inhibition activity of reductic acid: Ascorbic acid analogue. Bioorg. Med. Chem. Lett. 2000, 10, 2783–2785. [Google Scholar] [CrossRef]
- Yokukansan Extract Granules for Ethical Use. Available online: https://www.tsumura.co.jp/english/products/pi/JPR_T054.pdf (accessed on 11 May 2022).
- Fact Sheet for Health Professionals Vitamin C. Available online: https://ods.od.nih.gov/factsheets/VitaminC-HealthProfessional/#h6 (accessed on 11 May 2022).
- Li, X.Q.; Cai, L.M.; Liu, J.; Ma, Y.L.; Kong, Y.H.; Li, H.; Jiang, M. Liquiritin suppresses UVB-induced skin injury through prevention of inflammation, oxidative stress and apoptosis through the TLR4/MyD88/NF-κB and MAPK/caspase signaling pathways. Int. J. Mol. Med. 2018, 42, 1445–1459. [Google Scholar] [CrossRef] [Green Version]
- Guan, Y.; Li, F.F.; Hong, L.; Yan, X.F.; Tan, G.L.; He, J.S.; Dong, X.W.; Bao, M.J.; Xie, Q.M. Protective effects of liquiritin apioside on cigarette smoke-induced lung epithelial cell injury. Fundam. Clin. Pharmacol. 2012, 26, 473–483. [Google Scholar] [CrossRef]
- Scott, B.C.; Butler, J.; Halliwell, B.; Aruoma, O.I. Evaluation of the antioxidant actions of ferulic acid and catechins. Free Radic. Res. Commun. 1993, 19, 241–253. [Google Scholar] [CrossRef]
- Sadir, S.; Deveci, S.; Korkmaz, A.; Oter, S. Alpha-tocopherol, beta-carotene and melatonin administration protects cyclophosphamide-induced oxidative damage to bladder tissue in rats. Cell Biochem. Funct. 2007, 25, 521–526. [Google Scholar] [CrossRef]
- Farshid, A.A.; Tamaddonfard, E.; Ranjbar, S. Oral administration of vitamin C and histidine attenuate cyclophosphamide-induced hemorrhagic cystitis in rats. Indian J. Pharmacol. 2013, 45, 126–129. [Google Scholar] [CrossRef] [Green Version]
- Wu, K.-C.; Lin, W.-Y.; Sung, Y.-T.; Wu, W.-Y.; Cheng, Y.-H.; Chen, T.-S.; Chiang, B.-J.; Chien, C.-T. Glycine tomentella hayata extract and its ingredient daidzin ameliorate cyclophosphamide-induced hemorrhagic cystitis and oxidative stress through the action of antioxidation, anti-fibrosis, and anti-inflammation. Chin. J. Physiol. 2019, 62, 188–195. [Google Scholar] [CrossRef]
- Yildirim, I.; Korkmaz, A.; Oter, S.; Ozcan, A.; Oztas, E. Contribution of antioxidants to preventive effect of mesna in cyclophosphamide-induced hemorrhagic cystitis in rats. Cancer Chemother. Pharmacol. 2004, 54, 469–473. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Liu, L.; Li, L.; Liu, J.; Song, E.; Song, Y. Protective effects of lipoic acid and mesna on cyclophosphamide-induced haemorrhagic cystitis in mice. Cell. Biochem. Funct. 2014, 32, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Hiramoto, S.; Tsubota, M.; Yamaguchi, K.; Okazaki, K.; Sakaegi, A.; Toriyama, Y.; Tanaka, J.; Sekiguchi, F.; Ishikura, H.; Wake, H.; et al. Cystitis-related bladder pain involves ATP-dependent HMGB1 release from macrophages and its downstream H(2)S/Ca(v)3.2 signaling in mice. Cells 2020, 9, 1748. [Google Scholar] [CrossRef] [PubMed]
- Medzhitov, R.; Janeway, C., Jr. The toll receptor family and microbial recognition. Trends Microbiol. 2000, 8, 452–456. [Google Scholar] [CrossRef]
- Lund, J.M.; Alexopoulou, L.; Sato, A.; Karow, M.; Adams, N.C.; Gale, N.W.; Iwasaki, A.; Flavell, R.A. Recognition of single-stranded RNA viruses by toll-like receptor 7. Proc. Natl. Acad. Sci. USA 2004, 101, 5598–5603. [Google Scholar] [CrossRef] [Green Version]
- Jenks, S.A.; Cashman, K.S.; Zumaquero, E.; Marigorta, U.M.; Patel, A.V.; Wang, X.; Tomar, D.; Woodruff, M.C.; Simon, Z.; Bugrovsky, R.; et al. Distinct Effector B Cells Induced by Unregulated Toll-like Receptor 7 Contribute to Pathogenic Responses in Systemic Lupus Erythematosus. Immunity 2018, 49, 725–739.e726. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, F.; Means, T.K.; Luster, A.D. Toll-like receptors stimulate human neutrophil function. Blood 2003, 102, 2660–2669. [Google Scholar] [CrossRef]
- McLetchie, S.; Volpp, B.D.; Dinauer, M.C.; Blum, J.S. Hyper-responsive toll-like receptor 7 and 9 activation in NADPH oxidase-deficient B lymphoblasts. Immunology 2015, 146, 595–606. [Google Scholar] [CrossRef]
- To, E.; Broughton, B.R.; Hendricks, K.S.; Vlahos, R.; Selemidis, S. Influenza A virus and TLR7 activation potentiate NOX2 oxidase-dependent ROS production in macrophages. Free Radic. Res. 2014, 48, 940–947. [Google Scholar] [CrossRef]
- Mou, S.Q.; Zhou, Z.Y.; Feng, H.; Zhang, N.; Lin, Z.; Aiyasiding, X.; Li, W.J.; Ding, W.; Liao, H.-H.; Bian, Z.Y. Liquiritin attenuates lipopolysaccharides-induced cardiomyocyte injury via an AMP-activated protein kinase-dependent signaling pathway. Front. Pharmacol. 2021, 12, 1118. [Google Scholar] [CrossRef]
- Wei, W.; Gao, X.; Zhao, L.; Zhuang, J.; Jiao, Y.; Xu, F. Liquiritin apioside attenuates laryngeal chemoreflex but not mechanoreflex in rat pups. Am. J. Physiol. Lung Cell Mol. Physiol. 2020, 318, L89–L97. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.J.; Zhang, Y.M.; Qi, J.P.; Liu, R.; Zhang, H.; He, L.C. Ferulic acid inhibits H2O2-induced oxidative stress and inflammation in rat vascular smooth muscle cells via inhibition of the NADPH oxidase and NF-κB pathway. Int. Immunopharmacol. 2015, 28, 1018–1025. [Google Scholar] [CrossRef] [PubMed]
Official Name (Upper Row) English Name (Lower Row) | Botanical Family | Amount |
---|---|---|
Rhizome of Atractylodes japonica Koidz. ex Kitam. Atractylodes Lancea | Compositae | 4.0 g |
Strain of Pinus densiflora Siebold and Zucc. Poria | Polyporaceae | 4.0 g |
Rhizome of Cnidium officinale Makino Cnidium Rhizome | Umbelliferae | 3.0 g |
Hook-bearing stems of Uncaria rhynchophylla (Miq.) Miq. Uncaria Thorn | Rubiaceae | 3.0 g |
Root of Angelica acutiloba (Siebold and Zucc.) Kitag. Japanese Angelica | Umbelliferae | 3.0 g |
Root of Bupleurum falcatum L. Bupleurum | Umbelliferae | 2.0 g |
Root of Glycyrrhiza uralensis Fisch. Glycyrrhiza | Laguminosae | 1.5 g |
Control (n = 7) | HIC (n = 7) | YKS+HIC (n = 7) | Kruskal–Wallis Test (p-Value) | |
---|---|---|---|---|
DMPO-OH radical (μM) | 0.76 (0.67, 1.04) | 1.11 (1.10, 1.15) | 1.04 (0.75, 1.04) | 0.018 * |
d-ROMs (U.CARR) | 364.15 (333.50, 395.93) | 533.31 (444.64, 579.40) | 314.80 (247.77, 343.79) | 0.019 * |
8-OhdG (pg/mL) | 8.38 (7.71, 9.04) | 10.06 (9.70, 11.47) | 6.74 (6.08, 8.40) | 0.011 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inoue, T.; Tsukada, M.; Tsunokawa, Y.; Maeda, Y.; Fukuoka, S.; Fukagai, T.; Ogawa, Y.; Sunagawa, M. The Japanese Herbal Medicine Yokukansan Exerted Antioxidant and Analgesic Effects in an Experimental Rat Model of Hunner-Type Interstitial Cystitis. Medicina 2022, 58, 810. https://doi.org/10.3390/medicina58060810
Inoue T, Tsukada M, Tsunokawa Y, Maeda Y, Fukuoka S, Fukagai T, Ogawa Y, Sunagawa M. The Japanese Herbal Medicine Yokukansan Exerted Antioxidant and Analgesic Effects in an Experimental Rat Model of Hunner-Type Interstitial Cystitis. Medicina. 2022; 58(6):810. https://doi.org/10.3390/medicina58060810
Chicago/Turabian StyleInoue, Tatsuki, Mana Tsukada, Yoshiki Tsunokawa, Yoshiko Maeda, Seiya Fukuoka, Takashi Fukagai, Yoshio Ogawa, and Masataka Sunagawa. 2022. "The Japanese Herbal Medicine Yokukansan Exerted Antioxidant and Analgesic Effects in an Experimental Rat Model of Hunner-Type Interstitial Cystitis" Medicina 58, no. 6: 810. https://doi.org/10.3390/medicina58060810
APA StyleInoue, T., Tsukada, M., Tsunokawa, Y., Maeda, Y., Fukuoka, S., Fukagai, T., Ogawa, Y., & Sunagawa, M. (2022). The Japanese Herbal Medicine Yokukansan Exerted Antioxidant and Analgesic Effects in an Experimental Rat Model of Hunner-Type Interstitial Cystitis. Medicina, 58(6), 810. https://doi.org/10.3390/medicina58060810