Factors Influencing the Desirability, Acceptability, and Adherence of Patients with Diabetes to Telemedicine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Patient Recruitment
2.3. Patient Assessment
- The desirability sub-score was the sum of Q6–Q8 with a score ranging from 24 to 120;
- The acceptability sub-score was the sum of Q1–Q5 with a score ranging from 5 to 25;
- The adherence sub-score was the sum of Q3, Q9 (minimum score: 8, maximum score: 40);
- The total scores ranged from 34 to 185.
2.4. Studied Sample Baseline Characteristics
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Magliano, D.J.; et al. IDF Diabetes Atlas, 10th ed.; International Diabetes Federation: Brussels, Belgium, 2022. [Google Scholar]
- Kutz, T.L.; Roszhart, J.M.; Hale, M.; Dolan, V.; Suchomski, G.; Jaeger, C. Improving comprehensive care for patients with diabetes. BMJ Open Qual. 2018, 7, e000101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Telemedicine Definition. World Health Organization. Available online: https://www.who.int/docs/default-source/wpro---documents/countries/viet-nam/careers/2020/036-call-for-proposal_telemedicine1.pdf?sfvrsn=ae26d07c_5 (accessed on 25 May 2022).
- Iyengar, V.; Wolf, A.; Brown, A.; Close, K. Challenges in diabetes care: Can digital health help address them? Clin. Diabetes 2016, 34, 133–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aberer, F.; Hochfellner, D.A.; Mader, J.K. Application of Telemedicine in Diabetes Care: The Time is Now. Diabetes Ther. 2021, 12, 629–639. [Google Scholar] [CrossRef]
- Alromaihi, D.; Alamuddin, N.; George, S. Sustainable diabetes care services during COVID-19 pandemic. Diabetes Res. Clin. Pract. 2020, 166, 108298. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; White-Means, S. Evaluating the potential use of smartphone apps for diabetes self-management in an underserved population: A qualitative approach. Int. J. Environ. Res. Public Health 2021, 18, 9886. [Google Scholar] [CrossRef]
- Ashrafzadeh, S.; Hamdy, O. Patient-Driven Diabetes Care of the Future in the Technology Era. Cell Metab. 2019, 29, 564–575. [Google Scholar] [CrossRef] [Green Version]
- Haynes, S.C.; Kompala, T.; Neinstein, A.; Rosenthal, J.; Crossen, S. Disparities in Telemedicine Use for Subspecialty Diabetes Care During COVID-19 Shelter-In-Place Orders. J. Diabetes Sci. Technol. 2021, 15, 986–992. [Google Scholar] [CrossRef]
- Lee, J.Y.; Chan, C.K.Y.; Chua, S.S.; Paraidathathu, T.; Lee, K.K.C.; Tan, C.S.S.; Nasir, N.; Lee, S.W.H. Using telemedicine to support care for people with type 2 diabetes mellitus: A qualitative analysis of patients’ perspectives. BMJ Open 2019, 9, e026575. [Google Scholar] [CrossRef]
- Patrascu, R.; Albai, A.; Braha, A.; Gaita, L.; Lazar, S.; Potre, O.; Timar, B. Instrument for assessing patients’ desirability, acceptability, and adherence to telemedicine in diabetes: Development, validity, and reliability. Patient Prefer. Adherence 2021, 15, 2705–2713. [Google Scholar] [CrossRef]
- Stoian, A.P.; Pricop-Jeckstadt, M.; Pana, A.; Ileanu, B.V.; Schitea, R.; Geanta, M.; Catrinoiu, D.; Suceveanu, A.I.; Serafinceanu, C.; Pituru, S.; et al. Death by SARS-CoV 2: A Romanian COVID-19 multi-centre comorbidity study. Sci. Rep. 2020, 10, 21613. [Google Scholar] [CrossRef]
- Sim, R.; Lee, S.W.H. Patient preference and satisfaction with the use of telemedicine for glycemic control in patients with type 2 diabetes: A review. Patient Prefer. Adherence 2021, 15, 283–298. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.W.H.; Chan, C.K.Y.; Chaiyakumapruk, N. Comparative effectiveness of telemedicine strategies on type 2 diabetes management: A systematic review and network meta-analysis. Sci. Rep. 2017, 7, 12680. [Google Scholar] [CrossRef] [PubMed]
- Katulanda, P.; Dissanayake, H.A.; Ranathunga, I.; Ratnasamy, V.; Wijewickrama, P.S.A.; Yogendranathan, N.; Gamage, K.K.K.; de Silva, N.L.; Sumanatilleke, M.; Somasundaram, N.P.; et al. Prevention and management of COVID-19 among patients with diabetes: An appraisal of the literature. Diabetologia. 2020, 63, 1440–1452. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Griffith, M.L.; Murphy, E.J.; Greenlee, C.; Boord, J.; Gabbay, R.A. Innovations in Diabetes Care for a Better “New Normal” Beyond COVID-19. J. Clin. Endocrinol. Metab. 2021, 106, e377–e381. [Google Scholar] [CrossRef] [PubMed]
- Bäuerle, A.; Teufel, M.; Musche, V.; Weismüller, B.; Kohler, H.; Hetkamp, M.; Dörrie, N.; Schweda, A.; Skoda, E.-M. Increased generalized anxiety, depression and distress during the COVID-19 pandemic: A cross-sectional study in Germany. J. Public Health 2020, 42, 672–678. [Google Scholar] [CrossRef]
- Bueno-Notivol, J.; Gracia-Garcia, P.; Olaya, B.; Lasheras, I.L.; Lopez-Anton, R.; Santabarbara, J. Prevalence of depression during the COVID-19 outbreak: A meta-analysis of community-based studies. Int. J. Clin. Health Psychol. 2021, 21, 100196. [Google Scholar] [CrossRef]
- Masmoudi, J.; Damak, R.; Zouari, H.; Ouali, U.; Mechri, A.; Zouari, N.; Jaoua, A. Prevalence and impact of anxiety and depression on type 2 diabetes in tunisian patients over sixty years old. Depress. Res. Treat. 2013, 2013, 341782. [Google Scholar] [CrossRef]
- Hajure, M.; Tariku, M.; Mohammedhussein, M.; Dule, A. Depression, anxiety and associated factors among chronic medical patients amid covid-19 pandemic in Mettu Karl Referral hospital, Mettu, Ethiopia, 2020. Neuropsychiatr. Dis. Treat. 2020, 16, 2511–2518. [Google Scholar] [CrossRef]
- Hillson, R. COVID-19: Psychological issues for people with diabetes and health care staff. Pract. Diabetes 2020, 37, 101–104. [Google Scholar] [CrossRef]
- Palmer, K.; Monaco, A.; Kivipelto, M.; Onder, G.; Maggi, S.; Michel, J.-P.; Prieto, R.; Sykara, G.; Donde, S. The potential long-term impact of the COVID-19 outbreak on patients with non-communicable diseases in Europe: Consequences for healthy ageing. Aging Clin. Exp. Res. 2020, 32, 1189–1194. [Google Scholar] [CrossRef]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef] [PubMed]
- Spitzer, R.L.; Kroenke, K.; Williams, J.B.; Lowe, B. A brief measure for assessing generalized anxiety disorder: The GAD-7. Arch. Intern. Med. 2006, 166, 1092–1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Studied Variable | N | Value (%) |
---|---|---|
Gender | ||
Men | 30 | 26.30% |
Women | 84 | 73.70% |
Residence | ||
Urban | 26 | 22.80% |
Rural | 88 | 77.20% |
Occupation | ||
Employee | 70 | 61.40% |
Freelancer | 8 | 7.00% |
Retired | 29 | 25.40% |
Student | 4 | 3.50% |
Unemployed | 3 | 2.60% |
Education | ||
Primary School | 3 | 2.60% |
Highschool | 33 | 28.90% |
University degree | 40 | 35.10% |
Master or PhD | 38 | 33.30% |
Family Income | ||
Very low | 1 | 0.90% |
Low | 24 | 21.10% |
Average | 31 | 27.20% |
High | 26 | 22.80% |
Very high | 8 | 7.00% |
No answer | 16 | 14.00% |
Internet access | ||
Multiple times per day | 110 | 96.50% |
Sporadic | 4 | 3.50% |
Most used device for internet access | ||
PC/laptop | 29 | 25.40% |
Tablet | 3 | 2.60% |
Smartphone | 82 | 71.90% |
Diabetes category | ||
Type 1 diabetes | 51 | 44.70% |
Type 2 diabetes | 43 | 37.70% |
Patient of a child with type 1 diabetes | 20 | 17.50% |
Diabetes duration | ||
Less than 1 year | 5 | 4.40% |
1 to 5 years | 39 | 34.20% |
6 to 10 years | 19 | 16.70% |
More than 10 years | 51 | 44.70% |
Depression | ||
Without severe depression | 89 | 78.10% |
With severe depression | 25 | 21.90% |
Anxiety | ||
Without severe anxiety | 96 | 84.20% |
With severe anxiety | 18 | 15.80% |
Studied Variable | N | Value (%) |
---|---|---|
Diabetes treatment | ||
Oral antidiabetic drugs | 34 | 29.80% |
Oral and injectable non-insulin antidiabetic drugs | 4 | 3.50% |
Oral antidiabetic drugs and insulin | 8 | 7.00% |
Only diet | 4 | 3.50% |
Only insulin | 40 | 35.10% |
Insulin pump | 24 | 21.10% |
Glycemic monitoring | ||
Multiple times per day | 66 | 57.90% |
Once per day | 23 | 20.20% |
Once per week | 17 | 14.90% |
Once every few weeks | 5 | 4.40% |
Once every few months | 1 | 0.90% |
Never | 2 | 1.80% |
Device used for glycemic monitoring | ||
A glucometer accompanied by writing down the result in a diabetes journal/notebook | 38 | 33.30% |
A glucometer without writing down the result | 34 | 29.80% |
Continuous glucose monitors | 39 | 34.20% |
Laboratory tests | 1 | 0.90% |
No monitoring | 2 | 1.80% |
Admissions for diabetes | ||
Due to a very increased glycemic level | 27 | 23.70% |
Due to a hypoglycemia | 5 | 4.40% |
Due to a very increased glycemic level, due to a hypoglycemia | 3 | 2.60% |
Due to a diabetes complication | 11 | 9.60% |
Due to a diabetes complication, due to a hypoglycemia | 1 | 0.90% |
No admissions for diabetes | 67 | 58.80% |
HbA1c periodicity | ||
Once every 3 months | 45 | 39.50% |
Once every 6 months | 30 | 26.30% |
Once a year | 29 | 25.40% |
Once every few years | 9 | 7.90% |
Never | 1 | 0.90% |
Exercise | ||
5–7 days | 50 | 43.90% |
3–4 days | 22 | 19.30% |
1–2 days | 28 | 24.60% |
No exercise routine | 14 | 12.30% |
Diet | ||
1–2 days | 21 | 18.40% |
3–4 days | 43 | 37.70% |
5–7 days | 41 | 36.00% |
No healthy diet | 9 | 7.90% |
Component | Median [Interquartile Distance] | Skewness | Kurtosis |
---|---|---|---|
Desirability | 114 [11] | −2.048 | 5.563 |
Acceptability | 17 [4] | −0.558 | −0.179 |
Adherence | 34 [7] | −1.106 | 1.436 |
QTelemeDiab score | 166 [17] | −1.738 | 3.967 |
Without Severe Depression (n = 89) | With Severe Depression (n = 25) | p | |
---|---|---|---|
Acceptability | 18 [15; 19] | 15 [15; 19] | 0.359 |
Desirability | 115 [111; 119] | 101 [89; 110] | <0.001 |
Adherence | 35 [32; 37] | 30 [26; 34] | <0.001 |
QtelemeDiab score | 167 [160; 172] | 148 [128; 162] | <0.001 |
Without Severe Anxiety (n = 96) | With Severe Anxiety (n = 18) | p | |
---|---|---|---|
Acceptability | 18 [15; 20] | 15 [14; 19] | 0.141 |
Desirability | 114 [109; 119] | 104 [83; 115] | 0.008 |
Adherence | 34 [31; 37] | 30 [26; 34] | 0.012 |
QTelemeDiab score | 166 [158; 171] | 150 [124; 166] | 0.004 |
Factors Analyzed | p-Value for Comparison of Variable’s Distribution According to the Analyzed Factor | |||
---|---|---|---|---|
Desirability | Acceptability | Adherence | QTelemeDiab Score | |
Gender * | 0.552 | 0.341 | 0.776 | 0.834 |
Residence * | 0.626 | 0.022 | 0.107 | 0.149 |
Occupation ** | 0.908 | 0.612 | 0.193 | 0.879 |
Education ** | 0.056 | 0.162 | 0.647 | 0.498 |
Family income ** | 0.487 | 0.485 | 0.677 | 0.567 |
Diabetes category ** | 0.566 | 0.219 | 0.116 | 0.149 |
Glycemic monitoring ** | 0.553 | 0.472 | 0.657 | 0.589 |
Admissions for diabetes ** | 0.676 | 0.184 | 0.814 | 0.827 |
HbA1c periodicity ** | 0.168 | 0.042 | 0.200 | 0.081 |
Exercise ** | 0.763 | 0.798 | 0.887 | 0.846 |
Diet ** | 0.644 | 0.107 | 0.813 | 0.649 |
Severe Depression * | <0.001 | 0.359 | <0.001 | <0.001 |
Severe Anxiety | 0.008 | 0.141 | 0.012 | 0.004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patrascu, R.; Albai, A.; Braha, A.; Gaita, L.; Lazar, S.; Potre, O.; Timar, B. Factors Influencing the Desirability, Acceptability, and Adherence of Patients with Diabetes to Telemedicine. Medicina 2022, 58, 997. https://doi.org/10.3390/medicina58080997
Patrascu R, Albai A, Braha A, Gaita L, Lazar S, Potre O, Timar B. Factors Influencing the Desirability, Acceptability, and Adherence of Patients with Diabetes to Telemedicine. Medicina. 2022; 58(8):997. https://doi.org/10.3390/medicina58080997
Chicago/Turabian StylePatrascu, Raul, Alin Albai, Adina Braha, Laura Gaita, Sandra Lazar, Ovidiu Potre, and Bogdan Timar. 2022. "Factors Influencing the Desirability, Acceptability, and Adherence of Patients with Diabetes to Telemedicine" Medicina 58, no. 8: 997. https://doi.org/10.3390/medicina58080997
APA StylePatrascu, R., Albai, A., Braha, A., Gaita, L., Lazar, S., Potre, O., & Timar, B. (2022). Factors Influencing the Desirability, Acceptability, and Adherence of Patients with Diabetes to Telemedicine. Medicina, 58(8), 997. https://doi.org/10.3390/medicina58080997