Evolution of Medical Modeling and 3D Printing in Microvascular Midface Reconstruction: Literature Review and Experience at MD Anderson Cancer Center
Abstract
:1. Introduction
1.1. Preoperative Evaluation
1.2. Customized Titanium Plates
1.3. Intraoperative Technique
1.4. Free Flap Donor Site Selection
1.5. Alternative Vascularized Bone Flaps
2. Discussion
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chang, E.I.; Hanasono, M.M. State-of-the-art reconstruction of midface and facial deformities. J. Surg. Oncol. 2016, 113, 962–970. [Google Scholar] [CrossRef]
- Day, K.M.; Kelley, P.K.; Harshbarger, R.J.; Dorafshar, A.H.; Kumar, A.R.; Steinbacher, D.M.; Patel, P.; Combs, P.D.; Levine, J.P. Advanced Three-Dimensional Technologies in Craniofacial Reconstruction. Plast. Reconstr. Surg. 2021, 148, 94e–108e. [Google Scholar] [CrossRef] [PubMed]
- May, M.M.; Howe, B.M.; O’Byrne, T.J.; Alexander, A.E.; Morris, J.M.; Moore, E.J.; Kasperbauer, J.L.; Janus, J.R.; Van Abel, K.M.; Dickens, H.J.; et al. Short and long-term outcomes of three-dimensional printed surgical guides and virtual surgical planning versus conventional methods for fibula free flap reconstruction of the mandible: Decreased nonunion and complication rates. Head Neck. 2021, 43, 2342–2352. [Google Scholar] [CrossRef] [PubMed]
- Levine, J.P.; Bae, J.S.; Soares, M.; Brecht, L.E.; Saadeh, P.B.; Ceradini, D.J.; Hirsch, D.L. Jaw in a day: Total maxillofacial reconstruction using digital technology. Plast. Reconstr. Surg. 2013, 131, 1386–1391. [Google Scholar] [CrossRef] [PubMed]
- Myers, P.L.; Nelson, J.A.; Rosen, E.B.; Allen, R.J., Jr.; Disa, J.J.; Matros, E. Virtual Surgical Planning for Oncologic Mandibular and Maxillary Reconstruction. Plast. Reconstr. Surg. Glob. Open 2021, 9, e3672. [Google Scholar] [CrossRef]
- Hanasono, M.M.; Jacob, R.F.; Bidaut, L.; Robb, G.L.; Skoracki, R.J. Midfacial reconstruction using virtual planning, rapid prototype modeling, and stereotactic navigation. Plast. Reconstr. Surg. 2010, 126, 2002–2006. [Google Scholar] [CrossRef]
- Runyan, C.M.; Sharma, V.; Staffenberg, D.A.; Levine, J.P.; Brecht, L.E.; Wexler, L.H.; Hirsch, D.L. Jaw in a Day: State of the Art in Maxillary Reconstruction. J. Craniofac. Surg. 2016, 27, 2101–2104. [Google Scholar] [CrossRef]
- Stranix, J.T.; Stern, C.S.; Rensberger, M.; Ganly, I.; Boyle, J.O.; Allen, R.J., Jr.; Disa, J.J.; Mehrara, B.J.; Garfein, E.S.; Matros, E. A Virtual Surgical Planning Algorithm for Delayed Maxillomandibular Reconstruction. Plast. Reconstr. Surg. 2019, 143, 1197–1206. [Google Scholar] [CrossRef]
- Rodby, K.A.; Turin, S.; Jacobs, R.J.; Cruz, J.F.; Hassid, V.J.; Kolokythas, A.; Antony, A.K. Advances in oncologic head and neck reconstruction: Systematic review and future considerations of virtual surgical planning and computer aided design/computer aided modeling. J. Plast. Reconstr. Aesthet. Surg. 2014, 67, 1171–1185. [Google Scholar] [CrossRef]
- Nyirjesy, S.C.; Heller, M.; von Windheim, N.; Gingras, A.; Kang, S.Y.; Ozer, E.; Agrawal, A.; Old, M.O.; Seim, N.B.; Carrau, R.L.; et al. The role of computer aided design/computer assisted manufacturing (CAD/CAM) and 3-dimensional printing in head and neck oncologic surgery: A review and future directions. Oral. Oncol. 2022, 132, 105976. [Google Scholar] [CrossRef]
- Shenaq, D.S.; Matros, E. Virtual planning and navigational technology in reconstructive surgery. J. Surg. Oncol. 2018, 118, 845–852. [Google Scholar] [CrossRef]
- Tran, K.L.; Yang, D.H.; Wang, E.; Ham, J.I.; Wong, A.; Panchal, M.; Dial, H.S.; Durham, J.S.; Prisman, E. Dental implantability of mandibular reconstructions: Comparing freehand surgery with virtual surgical planning. Oral. Oncol. 2023, 140, 106396. [Google Scholar] [CrossRef] [PubMed]
- Ettinger, K.S.; Morris, J.M.; Alexander, A.E.; Nathan, J.M.; Arce, K. Accuracy and Precision of the Computed Tomographic Angiography Perforator. Technique for Virtual Surgical Planning of Composite Osteocutaneous Fibular Free Flaps in Head and Neck Reconstruction. J. Oral. Maxillofac. Surg. 2022, 80, 1434–1444. [Google Scholar] [CrossRef] [PubMed]
- Garvey, P.B.; Chang, E.I.; Selber, J.C.; Skoracki, R.J.; Madewell, J.E.; Liu, J.; Yu, P.; Hanasono, M.M. A prospective study of preoperative computed tomographic angiographic mapping of free fibula osteocutaneous flaps for head and neck reconstruction. Plast. Reconstr. Surg. 2012, 130, 541e–549e. [Google Scholar] [CrossRef] [PubMed]
- Sink, J.; Hamlar, D.; Kademani, D.; Khariwala, S.S. Computer-aided stereolithography for presurgical planning in fibula free tissue reconstruction of the mandible. J. Reconstr. Microsurg. 2012, 28, 395–403. [Google Scholar] [CrossRef]
- Yang, W.F.; Choi, W.S.; Wong, M.C.; Powcharoen, W.; Zhu, W.Y.; Tsoi, J.K.; Chow, M.; Kwok, K.W.; Su, Y.X. Three-Dimensionally Printed Patient-Specific Surgical Plates Increase Accuracy of Oncologic Head and Neck Reconstruction Versus Conventional Surgical Plates: A Comparative Study. Ann. Surg. Oncol. 2021, 28, 363–375. [Google Scholar] [CrossRef]
- Taylor, E.M.; Vorstenbosch, J.; Morrison, E.; Janssen, P.L.; Kronstadt, K.L.; Randazzo, J.; Rosen, E.B.; Cordeiro, P.G.; Shahzad, F.; Ganly, I.; et al. Making the Case for Virtual Surgical Planning: Bilateral Sequential Fibula Flaps with Immediate Dental Implants for Maxillectomy. Plast. Reconstr. Surg, 2023; Online ahead of print. [Google Scholar] [CrossRef]
- Allen, R.J., Jr.; Nelson, J.A.; Polanco, T.O.; Shamsunder, M.G.; Ganly, I.; Boyle, J.; Rosen, E.; Matros, E. Short-Term Outcomes following Virtual Surgery-Assisted Immediate Dental Implant Placement in Free Fibula Flaps for Oncologic Mandibular Reconstruction. Plast. Reconstr. Surg. 2020, 146, 768e–776e. [Google Scholar] [CrossRef] [PubMed]
- Hanasono, M.M.; Skoracki, R.J. The omega-shaped fibula osteocutaneous free flap for reconstruction of extensive midfacial defects. Plast. Reconstr. Surg. 2010, 125, 160e–162e. [Google Scholar] [CrossRef]
- Le Clerc, N.; Baudouin, R.; Carlevan, M.; Khoueir, N.; Verillaud, B.; Herman, P. 3D titanium implant for orbital reconstruction after maxillectomy. J. Plast. Reconstr. Aesthet. Surg. 2020, 73, 732–739. [Google Scholar] [CrossRef]
- Kang, Y.F.; Liang, J.; He, Z.; Zhang, L.; Shan, X.F.; Cai, Z.G. Orbital floor symmetry after maxillectomy and orbital floor reconstruction with individual titanium mesh using computer-assisted navigation. J. Plast. Reconstr. Aesthet. Surg. 2020, 73, 337–343. [Google Scholar] [CrossRef]
- Yu, P.; Chang, E.I.; Hanasono, M.M. Design of a reliable skin paddle for the fibula osteocutaneous flap: Perforator anatomy revisited. Plast. Reconstr. Surg. 2011, 128, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Joo, Y.H.; Cho, K.J.; Park, J.O.; Kim, M.S. Usefulness of the anterolateral thigh flap with vascularized fascia lata for reconstruction of orbital floor and nasal surface after total maxillectomy. Laryngoscope 2013, 123, 2125–2130. [Google Scholar] [CrossRef] [PubMed]
- Swendseid, B.P.; Roden, D.F.; Vimawala, S.; Richa, T.; Sweeny, L.; Goldman, R.A.; Luginbuhl, A.; Heffelfinger, R.N.; Khanna, S.; Curry, J.M. Virtual Surgical Planning in Subscapular System Free Flap Reconstruction of Midface Defects. Oral. Oncol. 2020, 101, 104508. [Google Scholar] [CrossRef]
- Alwadeai, M.S.; Al-Aroomy, L.A.; Shindy, M.I.; Amin, A.A.; Zedan, M.H. Aesthetic reconstruction of onco-surgical maxillary defects using free scapular flap with and without CAD/CAM customized osteotomy guide. BMC Surg. 2022, 22, 362. [Google Scholar] [CrossRef] [PubMed]
- Jang, W.H.; Lee, J.M.; Jang, S.; Kim, H.D.; Ahn, K.M.; Lee, J.H. Mirror Image Based Three-Dimensional Virtual Surgical Planning and Three-Dimensional Printing Guide System for the Reconstruction of Wide Maxilla Defect Using the Deep Circumflex Iliac Artery Free Flap. J. Craniofac. Surg. 2019, 30, 1829–1832. [Google Scholar] [CrossRef]
- Kang, Y.F.; Lv, X.M.; Qiu, S.Y.; Ding, M.K.; Xie, S.; Zhang, L.; Cai, Z.G.; Shan, X.F. Virtual Surgical Planning of Deep Circumflex Iliac Artery Flap for Midface Reconstruction. Front. Oncol. 2021, 11, 718146. [Google Scholar] [CrossRef]
- Ismail, T.; Kurlander, D.E.; Lee, Z.H.; Lunger, A.; Shuck, J.W.; Largo, R.D.; Chang, E.I. The Medial Femoral Condyle Flap: A Novel Versatile Tool for Complex Microvascular Maxillofacial Reconstruction. Plast. Reconstr. Surg. 2023, 151, 115e–119e. [Google Scholar] [CrossRef]
- Sun, Q.; Soh, H.Y.; Zhang, W.B.; Yu, Y.; Wang, Y.; Mao, C.; Guo, C.B.; Yu, G.Y.; Peng, X. Long-term Effect of Individualized Titanium Mesh in Orbital Floor Reconstruction After Maxillectomy. Laryngoscope 2021, 131, 2231–2237. [Google Scholar] [CrossRef]
- Motiee-Langroudi, M.; Harirchi, I.; Amali, A.; Jafari, M. Reconstruction of Midface and Orbital Wall Defects After Maxillectomy and Orbital Content Preservation With Titanium Mesh and Fascia Lata: 3-Year Follow-Up. J. Oral. Maxillofac. Surg. 2015, 73, 2447.e1-5. [Google Scholar] [CrossRef]
- Nguyen, S.; Tran, K.L.; Wang, E.; Britton, H.; Durham, J.S.; Prisman, E. Maxillectomy defects: Virtually comparing fibular and scapular free flap reconstructions. Head Neck. 2021, 43, 2623–2633. [Google Scholar] [CrossRef]
- Modest, M.C.; Moore, E.J.; Abel, K.M.; Janus, J.R.; Sims, J.R.; Price, D.L.; Olsen, K.D. Scapular flap for maxillectomy defect reconstruction and preliminary results using three-dimensional modeling. Laryngoscope 2017, 127, E8–E14. [Google Scholar] [CrossRef] [PubMed]
- Kraft, C.T.; Hanasono, M.M.; Skoracki, R.J. The Free Serratus-Rib Flap for Orbital Floor Reconstruction After Oncologic Resection. Ann. Plast. Surg. 2020, 84, 409–412. [Google Scholar] [CrossRef] [PubMed]
- Grinsell, D.; Catto-Smith, H.E. Modifications of the deep circumflex iliac artery free flap for reconstruction of the maxilla. J. Plast. Reconstr. Aesthet. Surg. 2015, 68, 1044–1053. [Google Scholar] [CrossRef] [PubMed]
- Maricevich, M.; Lin, L.O.; Liu, J.; Chang, E.I.; Hanasono, M.M. Interposition Vein Grafting in Head and Neck Free Flap Reconstruction. Plast. Reconstr. Surg. 2018, 142, 1025–1034. [Google Scholar] [CrossRef]
- Cordeiro, P.G.; Chen, C.M. A 15-year review of midface reconstruction after total and subtotal maxillectomy: Part I. Algorithm and outcomes. Plast. Reconstr. Surg. 2012, 129, 124–136. [Google Scholar] [CrossRef]
- Vanesa, V.; Irene, M.P.; Marta, A.S.; Francisco José, P.F.; Miguel, B.S.; Mireia, R.M.; Josep, R.P. Accuracy of virtually planned mandibular distraction in a pediatric case series. J. Craniomaxillofac. Surg. 2021, 49, 154–165. [Google Scholar] [CrossRef]
- Kalmar, C.L.; Xu, W.; Zimmerman, C.E.; Vu, G.H.; Humphries, L.S.; Swanson, J.W.; Bartlett, S.P.; Taylor, J.A. Trends in Utilization of Virtual Surgical Planning in Pediatric Craniofacial Surgery. J. Craniofac. Surg. 2020, 31, 1900–1905. [Google Scholar] [CrossRef]
- Salinas, C.A.; Morris, J.M.; Sharaf, B.A. Craniomaxillofacial Trauma: The Past, Present and the Future. J. Craniofac. Surg. 2023, 34, 1427–1430. [Google Scholar] [CrossRef]
- Sharaf, B.; Leon, D.E.; Wagner, L.; Morris, J.M.; Salinas, C.A. Virtual Planning and 3D Printing in the Management of Acute Orbital Fractures and Post-Traumatic Deformities. Semin. Plast. Surg. 2022, 36, 149–157. [Google Scholar] [CrossRef]
- Glas, H.H.; Vosselman, N.; de Visscher, S.A.H.J. The use of 3D virtual surgical planning and computer aided design in reconstruction of maxillary surgical defects. Curr. Opin. Otolaryngol. Head Neck Surg. 2020, 28, 122–128. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Fan, S.; Zhang, H.Q.; Lin, Z.Y.; Ye, J.T.; Li, J.S. Virtual Surgical Planning in Precise Maxillary Reconstruction With Vascularized Fibular Graft After Tumor Ablation. J. Oral. Maxillofac. Surg. 2016, 74, 1255–1264. [Google Scholar] [CrossRef] [PubMed]
- Xue, R.; Lai, Q.; Sun, S.; Lai, L.; Tang, X.; Ci, J.; Zhang, Z.; Wang, Y. Application of Three-Dimensional Printing Technology for Improved Orbital-Maxillary-Zygomatic Reconstruction. J. Craniofac. Surg. 2019, 30, e127–e131. [Google Scholar] [CrossRef] [PubMed]
- Vehmeijer, M.; van Eijnatten, M.; Liberton, N.; Wolff, J. A Novel Method of Orbital Floor Reconstruction Using Virtual Planning, 3-Dimensional Printing, and Autologous Bone. J. Oral Maxillofac. Surg. 2016, 74, 1608–1612. [Google Scholar] [CrossRef]
- Nelson, J.A.; Allen, R.J., Jr.; Rosen, E.B.; Matros, E. Cost-Effectiveness and Virtual Surgical Planning in Head and Neck Reconstruction: Measuring What Matters Most. Plast. Reconstr. Surg. 2021, 147, 1091e–1092e. [Google Scholar] [CrossRef] [PubMed]
- Kurlander, D.E.; Garvey, P.B.; Largo, R.D.; Yu, P.; Chang, E.I.; Hanasono, M.M.; Mericli, A.F. The Cost Utility of Virtual Surgical Planning and Computer-Assisted Design/Computer-Assisted Manufacturing in Mandible Reconstruction Using the Free Fibula Osteocutaneous Flap. J. Reconstr. Microsurg. 2023, 39, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Han, H.H.; Shim, J.H.; Lee, H.; Kim, B.Y.; Lee, J.S.; Jung, J.W.; Yun, W.S.; Baek, C.H.; Rhie, J.W.; Cho, D.W. Reconstruction of Complex Maxillary Defects Using Patient-specific 3D-printed Biodegradable Scaffolds. Plast. Reconstr. Surg. Glob. Open 2018, 6, e1975. [Google Scholar] [CrossRef]
- Vranckx, J.J.; Desmet, O.; Bila, M.; Wittesaele, W.; Wilssens, N.; Poorten, V.V. Maxillomandibular Reconstruction Using Insourced Virtual Surgical Planning and Homemade CAD/CAM: A Single-Center Evolution in 75 Patients. Plast. Reconstr. Surg. 2023, 152, 143e–154e. [Google Scholar] [CrossRef]
- Johal, M.; Ma, J.N.B.; Parthasarathi, K.; Dunn, M.; Howes, D.; Wallace, C.; Palme, C.E.; Leinkram, D.; Cheng, K.; Clark, J.R. Institutional-based and commercial virtual surgical planning in maxillomandibular reconstruction—Comparing the digital plan and postoperative scan. J. Plast. Reconstr. Aesthet. Surg. 2022, 75, 1399–1407. [Google Scholar] [CrossRef]
- Pang, J.H.; Brooke, S.; Kubik, M.W.; Ferris, R.L.; Dhima, M.; Hanasono, M.M.; Wang, E.W.; Solari, M.G. Staged Reconstruction (Delayed-Immediate) of the Maxillectomy Defect Using CAD/CAM Technology. J. Reconstr. Microsurg. 2018, 34, 193–199. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shuck, J.W.; Largo, R.D.; Hanasono, M.M.; Chang, E.I. Evolution of Medical Modeling and 3D Printing in Microvascular Midface Reconstruction: Literature Review and Experience at MD Anderson Cancer Center. Medicina 2023, 59, 1762. https://doi.org/10.3390/medicina59101762
Shuck JW, Largo RD, Hanasono MM, Chang EI. Evolution of Medical Modeling and 3D Printing in Microvascular Midface Reconstruction: Literature Review and Experience at MD Anderson Cancer Center. Medicina. 2023; 59(10):1762. https://doi.org/10.3390/medicina59101762
Chicago/Turabian StyleShuck, John W., Rene D. Largo, Matthew M. Hanasono, and Edward I. Chang. 2023. "Evolution of Medical Modeling and 3D Printing in Microvascular Midface Reconstruction: Literature Review and Experience at MD Anderson Cancer Center" Medicina 59, no. 10: 1762. https://doi.org/10.3390/medicina59101762
APA StyleShuck, J. W., Largo, R. D., Hanasono, M. M., & Chang, E. I. (2023). Evolution of Medical Modeling and 3D Printing in Microvascular Midface Reconstruction: Literature Review and Experience at MD Anderson Cancer Center. Medicina, 59(10), 1762. https://doi.org/10.3390/medicina59101762