Does Iodine Influence the Metabolism of Glucose?
Abstract
:1. Introduction
2. Iodine and Thyroid Function/Disease
3. The Thyroid and Diabetes
4. I2 and Glycemia/Diabetes
Country | Subjects | Main Finding(s) |
---|---|---|
China [34] | N: 1315 men | FPG > 100 mg/dL was noted in 34% of subjects with UIC < 100 μg/L, in 27.8% of those with UIC: 100–199 μg/L and in 2.6% of subjects with UIC > 200 μg/L (p = 0.002) |
China [35] | N: 51795 adults | U-shaped curve of UIC vs. IGT Subjects with UIC of 500–799 μg/L showed an OR of 0.753 to 0.838 (95% CI: 0.612–0.939) for IGT against those with lower or higher UIC |
United States of America [36] | N: 620 women | With UIC < 100 μg/L vs ≥ 100 μg/L: OR for FPG > 100 mg/dL was 1.73 (95% CI: 1.09–2.72) & OR for HOMA-IR ≥ 2.6 was 0.56 (95% CI: 0.32–0.99) |
Kingdom of Saudi Arabia [37] | N: 260 adults | UIC was inversely correlated to FPG and insulin levels (r= −0.40 & −0.16, p < 001) |
Belgium [38] | N: 471 pregnant women | GDM decreased with increasing placental I2 (OR: 0.82, 95% CI: 0.72–0.93, p = 0.003) |
China [3] | N: 567 adults | Inverse correlation between UIC and risk of DM2 (r: −0.26, p < 0.001 and OR: 1.01, 95% CI; 1.00–1.03, p = 0.009) |
China [4] | N: 144 pregnant women | In women with Ι2 excess (MUI > 500μg/L) vs. those with adequate I2 (MUI: 150–250 μg/L), the OR for hyperglycemia (FPG > 110 mg/dL) was 0.411 (95% CI: 0.172–0.983) |
China [4] | N: 237 breastfeeding women | In women with Ι2 excess (MUI > 300μg/L) vs. those with adequate I2 (MUI: 100–299 μg/L), the OR for hyperglycemia (FPG > 110 mg/dL) was 0.330 (95% CI: 0.141–0.771) |
Country | Subjects | Main Finding(s) |
---|---|---|
France [39] | N: 71264 women | The risk for DM * was increased from the third UIC quintile and upwards (HR: 1.20 to 1.28, 95% CI: 1.05–1.53) * defined as FPG ≥ 126 mg/dL, random Glu ≥ 200 mg/dL, A1c > 7% or receiving antidiabetic Rx |
Finland [2] | N: 448 women | The authors found no association between UIC and the appearance of GDM |
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dubey, P.; Thakur, V.; Chattopadhyay, M. Role of Minerals and Trace Elements in Diabetes and Insulin Resistance. Nutrients 2020, 12, 1864. [Google Scholar] [CrossRef] [PubMed]
- Bell, G.A.; Männistö, T.; Liu, A.; Kannan, K.; Yeung, E.H.; Kim, U.J.; Suvanto, E.; Surcel, H.M.; Gissler, M.; Mills, J.L. The joint role of thyroid function and iodine concentration on gestational diabetes risk in a population-based study. Acta Obstet. Gynecol. Scand 2019, 98, 500–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuo, Y.; Ling, L.; Sun, Z.; Huang, W.; Hong, Z.; Zhang, Y.; Peng, X.; Liu, X.; Yuan, W.; Xu, W.Y. Vitamin D and iodine status was associated with the risk and complication of type 2 diabetes mellitus in China. Open Life Sci. 2021, 16, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Wan, S.; Liu, P.; Meng, F.; Zhang, X.; Ren, B.; Qu, M.; Wu, H.; Shen, H.; Liu, L. Relationship between excess iodine, thyroid function, blood pressure, and blood glucose level in adults, pregnant women, and lactating women: A cross-sectional study. Ecotoxicol. Environ. Saf. 2021, 208, 111706. [Google Scholar] [CrossRef]
- Chen, C.; Chen, Y.; Zhai, H.; Xia, F.; Han, B.; Zhang, W.; Wang, Y.; Wan, H.; Wang, N.; Lu, Y. Iodine nutrition status and its association with microvascular complications in urban dwellers with type 2 diabetes. Nutr. Metab. 2020, 17, 70. [Google Scholar] [CrossRef]
- Sorrenti, S.; Baldini, E.; Pironi, D.; Lauro, A.; D’Orazi, V.; Tartaglia, F.; Tripodi, D.; Lori, E.; Gagliardi, F.; Praticò, M.; et al. Iodine: Its Role in Thyroid Hormone Biosynthesis and Beyond. Nutrients 2021, 13, 4469. [Google Scholar] [CrossRef]
- Zbigniew, S. Role of Iodine in Metabolism. Recent Pat. Endocr. Metab. Immune Drug. Discov. 2017, 10, 123–126. [Google Scholar] [CrossRef]
- Biban, B.G.; Lichiardopol, C. Iodine Deficiency, Still a Global Problem? Curr. Health Sci. J. 2017, 43, 103–111. [Google Scholar] [CrossRef]
- Yun, A.J.; Doux, J.D. Iodine in the Ecosystem: An Overview. In Comprehensive Handbook of Iodine; Preedy, V.R., Burrow, G.N., Watson, R.R., Eds.; Academic Press: Cambridge, MA, USA; Elsevier: Burlington, MA, USA, 2009; pp. 119–123. [Google Scholar]
- Farebrother, J.; Zimmermann, M.B.; Andersson, M. Excess iodine intake: Sources, assessment, and effects on thyroid function. Ann. N. Y. Acad. Sci. 2019, 1446, 44–65. [Google Scholar] [CrossRef]
- Gray, R.S.; Irvine, W.J.; Clarke, B.F. Screening for thyroid dysfunction in diabetics. Br. Med. J. 1979, 2, 1439. [Google Scholar] [CrossRef]
- Anil, C.; Akkurt, A.; Ayturk, S.; Kut, A.; Gursoy, A. Impaired glucose metabolism is a risk factor for increased thyroid volume and nodule prevalence in a mild-to-moderate iodine deficient area. Metabolism 2013, 62, 970–975. [Google Scholar] [CrossRef] [PubMed]
- Mullur, R.; Liu, Y.Y.; Brent, G.A. Thyroid hormone regulation of metabolism. Physiol. Rev. 2014, 94, 355–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cicatiello, A.G.; Di Girolamo, D.; Dentice, M. Metabolic Effects of the Intracellular Regulation of Thyroid Hormone: Old Players, New Concepts. Front. Endocrinol. 2018, 9, 474. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, P.; Dos Santos, P.B.; Pazos-Moura, C.C. The role of thyroid hormone in metabolism and metabolic syndrome. Ther. Adv. Endocrinol. Metab. 2020, 11, 2042018820917869. [Google Scholar] [CrossRef]
- Hollowell, J.G.; Staehling, N.W.; Flanders, W.D.; Hannon, W.H.; Gunter, E.W.; Spencer, C.A.; Braverman, L.E. Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J. Clin. Endocrinol. Metab. 2002, 87, 489–499. [Google Scholar] [CrossRef] [PubMed]
- Klieverik, L.P.; Janssen, S.F.; van Riel, A.; Foppen, E.; Bisschop, P.H.; Serlie, M.J.; Boelen, A.; Ackermans, M.T.; Sauerwein, H.P.; Fliers, E.; et al. Thyroid hormone modulates glucose production via a sympathetic pathway from the hypothalamic paraventricular nucleus to the liver. Proc. Natl. Acad. Sci. USA 2009, 106, 5966–5971. [Google Scholar] [CrossRef] [Green Version]
- Brenta, G. Why can insulin resistance be a natural consequence of thyroid dysfunction? J. Thyroid Res. 2011, 2011, 152850. [Google Scholar] [CrossRef] [Green Version]
- Weinstein, S.P.; O’Boyle, E.; Fisher, M.; Haber, R.S. Regulation of GLUT2 glucose transporter expression in liver by thyroid hormone: Evidence for hormonal regulation of the hepatic glucose transport system. Endocrinology 1994, 135, 649–654. [Google Scholar] [CrossRef]
- Moeller, L.C.; Dumitrescu, A.M.; Walker, R.L.; Meltzer, P.S.; Refetoff, S. Thyroid hormone responsive genes in cultured human fibroblasts. J. Clin. Endocrinol. Metab. 2005, 90, 936–943. [Google Scholar] [CrossRef]
- Perros, P.; McCrimmon, R.J.; Shaw, G.; Frier, B.M. Frequency of thyroid dysfunction in diabetic patients: Value of annual screening. Diabet. Med. 1995, 12, 622–627. [Google Scholar] [CrossRef]
- Kordonouri, O.; Charpentier, N.; Hartmann, R. GADA positivity at onset of type 1 diabetes is a risk factor for the development of autoimmune thyroiditis. Pediatr. Diabetes 2011, 12, 31–33. [Google Scholar] [CrossRef]
- Radetti, G.; Paganini, C.; Gentili, L.; Bernasconi, S.; Betterle, C.; Borkenstein, M.; Cvijovic, K.; Kadrnka-Lovrencic, M.; Krzisnik, C.; Battelino, T.; et al. Frequency of Hashimoto’s thyroiditis in children with type 1 diabetes mellitus. Acta Diabetol. 1995, 32, 121–124. [Google Scholar] [CrossRef]
- Kordonouri, O.; Hartmann, R.; Deiss, D.; Wilms, M.; Grüters-Kieslich, A. Natural course of autoimmune thyroiditis in type 1 diabetes: Association with gender, age, diabetes duration, and puberty. Arch. Dis. Child. 2005, 90, 411–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisenbarth, G.S.; Gottlieb, P.A. Autoimmune polyendocrine syndromes. N. Engl. J. Med. 2004, 350, 2068–2079. [Google Scholar] [CrossRef]
- Hansen, M.P.; Matheis, N.; Kahaly, G.J. Type 1 diabetes and polyglandular autoimmune syndrome: A review. World J. Diabetes 2015, 6, 67–79. [Google Scholar] [CrossRef] [PubMed]
- Frommer, L.; Kahaly, G.J. Type 1 Diabetes and Autoimmune Thyroid Disease-The Genetic Link. Front. Endocrinol. 2021, 12, 618213. [Google Scholar] [CrossRef] [PubMed]
- Frommer, L.; König, J.; Chatzidou, S.; Chionos, G.; Längericht, J.; Kahaly, G.J. Recurrence risk of autoimmune thyroid and endocrine diseases. Best Pract. Res. Clin. Endocrinol. Metab. 2022, 101636. [Google Scholar] [CrossRef]
- Bullard, K.M.; Cowie, C.C.; Lessem, S.E.; Saydah, S.H.; Menke, A.; Geiss, L.S.; Orchard, T.J.; Rolka, D.B.; Imperatore, G. Prevalence of Diagnosed Diabetes in Adults by Diabetes Type—United States, 2016. MMWR Morb. Mortal. Wkly Rep. 2018, 67, 359–361. [Google Scholar] [CrossRef]
- Sarkar, D.; Chakraborty, A.; Saha, A.; Chandra, A.K. Iodine in excess in the alterations of carbohydrate and lipid metabolic pattern as well as histomorphometric changes in associated organs. J. Basic Clin. Physiol. Pharmacol. 2018, 29, 631–643. [Google Scholar] [CrossRef]
- Pearce, E.N.; Caldwell, K.L. Urinary iodine, thyroid function, and thyroglobulin as biomarkers of iodine status. Am. J. Clin. Nutr. 2016, 104 (Suppl. 3), 898S–901S. [Google Scholar] [CrossRef]
- Liu, T.; Li, Y.; Teng, D.; Shi, X.; Yan, L.; Yang, J.; Yao, Y.; Ye, Z.; Ba, J.; Chen, B.; et al. The Characteristics of Iodine Nutrition Status in China After 20 Years of Universal Salt Iodization: An Epidemiology Study Covering 31 Provinces. Thyroid 2021, 31, 1858–1867. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Codling, K.; Chang, S.; Zhang, S.; Shen, H.; Su, X.; Chen, Z.; Scherpbier, R.W.; Yan, J. Eliminating Iodine Deficiency in China: Achievements, Challenges and Global Implications. Nutrients 2017, 9, 361. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Su, Y.; Zhang, J.A.; Fang, M.; Liu, X.; Jia, X.; Li, X. Inverse Association Between Iodine Status and Prevalence of Metabolic Syndrome: A Cross-Sectional Population-Based Study in a Chinese Moderate Iodine Intake Area. Diabetes Metab. Syndr. Obes. 2021, 14, 3691–3701. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Zhang, Z.; Li, Y.; Teng, D.; Shi, X.; Ba, J.; Chen, B.; Du, J.; He, L.; Lai, X.; et al. U-Shaped Associations Between Urinary Iodine Concentration and the Prevalence of Metabolic Disorders: A Cross-Sectional Study. Thyroid 2020, 30, 1053–1065. [Google Scholar] [CrossRef]
- Ezemaduka Okoli, C.B.; Woldu, H.G.; Peterson, C.A. Low Urinary Iodine Concentration Is Associated with Increased Risk for Elevated Plasma Glucose in Females: An Analysis of NHANES 2011-12. Nutrients 2021, 13, 4523. [Google Scholar] [CrossRef]
- Al-Attas, O.S.; Al-Daghri, N.M.; Alkharfy, K.M.; Alokail, M.S.; Al-Johani, N.J.; Abd-Alrahman, S.H.; Yakout, S.M.; Draz, H.M.; Sabico, S. Urinary iodine is associated with insulin resistance in subjects with diabetes mellitus type 2. Exp. Clin. Endocrinol. Diabetes 2012, 120, 618–622. [Google Scholar] [CrossRef]
- Neven, K.Y.; Cox, B.; Cosemans, C.; Gyselaers, W.; Penders, J.; Plusquin, M.; Roels, H.A.; Vrijens, K.; Ruttens, A.; Nawrot, T.S. Lower iodine storage in the placenta is associated with gestational diabetes mellitus. BMC Med. 2021, 19, 47. [Google Scholar] [CrossRef]
- Mancini, F.R.; Rajaobelina, K.; Dow, C.; Habbal, T.; Affret, A.; Balkau, B.; Bonnet, F.; Boutron-Ruault, M.C.; Fagherazzi, G. High iodine dietary intake is associated with type 2 diabetes among women of the E3N-EPIC cohort study. Clin. Nutr. 2019, 38, 1651–1656. [Google Scholar] [CrossRef]
- Eales, J.G. The relationship between ingested thyroid hormones, thyroid homeostasis and iodine metabolism in humans and teleost fish. Gen. Comp. Endocrinol. 2019, 280, 62–72. [Google Scholar] [CrossRef]
- Mondal, S.; Raja, K.; Schweizer, U.; Mugesh, G. Chemistry and Biology in the Biosynthesis and Action of Thyroid Hormones. Angew. Chem. Int. Ed. Engl. 2016, 55, 7606–7630. [Google Scholar] [CrossRef]
- Sellitti, D.F.; Suzuki, K. Intrinsic regulation of thyroid function by thyroglobulin. Thyroid 2014, 24, 625–638. [Google Scholar] [CrossRef] [Green Version]
- Hoehn, K.L.; Salmon, A.B.; Hohnen-Behrens, C.; Turner, N.; Hoy, A.J.; Maghzal, G.J.; Stocker, R.; Van Remmen, H.; Kraegen, E.W.; Cooney, G.J.; et al. Insulin resistance is a cellular antioxidant defense mechanism. Proc. Natl. Acad. Sci. USA 2009, 106, 17787–17792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aceves, C.; Anguiano, B.; Delgado, G. The extrathyronine actions of iodine as antioxidant, apoptotic, and differentiation factor in various tissues. Thyroid 2013, 23, 938–946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winkler, R. Iodine—A Potential Antioxidant and the Role of Iodine/Iodide in Health and Disease. Nat. Sci. 2015, 7, 548–557. [Google Scholar] [CrossRef] [Green Version]
- Abikenova, F.S.; Meyramov, G.; Zhautikova, S.; Abdikadirova, K.; Zhienbayeva, C.; Talaspekova, Y.; Baryshnikova, I.; Karipova, A.; Suleimenova, B. Investigation of Antidiabetogenic Effect of the Iodine-Selenium Concentrate in Animals with Chronic Alloxan Diabetes of Varying Severity. Open Access Maced. J. Med. Sci. 2021, 9, 535–540. [Google Scholar] [CrossRef]
- Straub, L.G.; Efthymiou, V.; Grandl, G.; Balaz, M.; Challa, T.D.; Truscello, L.; Horvath, C.; Moser, C.; Rachamin, Y.; Arnold, M.; et al. Antioxidants protect against diabetes by improving glucose homeostasis in mouse models of inducible insulin resistance and obesity. Diabetologia 2019, 62, 2094–2105. [Google Scholar] [CrossRef] [Green Version]
- Vincent, H.K.; Bourguignon, C.M.; Weltman, A.L.; Vincent, K.R.; Barrett, E.; Innes, K.E.; Taylor, A.G. Effects of antioxidant supplementation on insulin sensitivity, endothelial adhesion molecules, and oxidative stress in normal-weight and overweight young adults. Metabolism 2009, 58, 254–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurrle, S.; Hsu, W.H. The etiology of oxidative stress in insulin resistance. Biomed. J. 2017, 40, 257–262. [Google Scholar] [CrossRef]
- Asmat, U.; Abad, K.; Ismail, K. Diabetes mellitus and oxidative stress-A concise review. Saudi Pharm. J. 2016, 24, 547–553. [Google Scholar] [CrossRef] [Green Version]
- Tsalamandris, S.; Antonopoulos, A.S.; Oikonomou, E.; Papamikroulis, G.A.; Vogiatzi, G.; Papaioannou, S.; Deftereos, S.; Tousoulis, D. The Role of Inflammation in Diabetes: Current Concepts and Future Perspectives. Eur. Cardiol. 2019, 14, 50–59. [Google Scholar] [CrossRef]
- Zimmermann, M.B.; Jooste, P.L.; Pandav, C.S. Iodine-deficiency disorders. Lancet 2008, 372, 1251–1262. [Google Scholar] [CrossRef]
- Aceves, C.; Mendieta, I.; Anguiano, B.; Delgado-González, E. Molecular Iodine Has Extrathyroidal Effects as an Antioxidant, Differentiator, and Immunomodulator. Int. J. Mol. Sci. 2021, 22, 1228. [Google Scholar] [CrossRef]
- Steinbrenner, H.; Duntas, L.H.; Rayman, M.P. The role of selenium in type-2 diabetes mellitus and its metabolic comorbidities. Redox. Biol. 2022, 50, 102236. [Google Scholar] [CrossRef] [PubMed]
- Arthur, J.R.; Beckett, G.J.; Mitchell, J.H. The interactions between selenium and iodine deficiencies in man and animals. Nutr. Res. Rev. 1999, 12, 55–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Triggiani, V.; Tafaro, E.; Giagulli, V.A.; Sabbà, C.; Resta, F.; Licchelli, B.; Guastamacchia, E. Role of iodine, selenium and other micronutrients in thyroid function and disorders. Endocr. Metab. Immune Disord. Drug Targets 2009, 9, 277–294. [Google Scholar] [CrossRef]
- Cardoso, B.R.; Braat, S.; Graham, R.M. Selenium Status Is Associated With Insulin Resistance Markers in Adults: Findings From the 2013 to 2018 National Health and Nutrition Examination Survey (NHANES). Front. Nutr. 2021, 8, 696024. [Google Scholar] [CrossRef]
- Jablonska, E.; Reszka, E.; Gromadzinska, J.; Wieczorek, E.; Krol, M.B.; Raimondi, S.; Socha, K.; Borawska, M.H.; Wasowicz, W. The Effect of Selenium Supplementation on Glucose Homeostasis and the Expression of Genes Related to Glucose Metabolism. Nutrients 2016, 8, 772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.A.B.; Hashim, M.J.; King, J.K.; Govender, R.D.; Mustafa, H.; Al Kaabi, J. Epidemiology of Type 2 Diabetes—Global Burden of Disease and Forecasted Trends. J. Epidemiol. Glob. Health 2020, 10, 107–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ittermann, T.; Albrecht, D.; Arohonka, P.; Bilek, R.; de Castro, J.J.; Dahl, L.; Filipsson Nystrom, H.; Gaberscek, S.; Garcia-Fuentes, E.; Gheorghiu, M.L.; et al. Standardized Map of Iodine Status in Europe. Thyroid 2020, 30, 1346–1354. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilias, I.; Milionis, C.; Zabuliene, L.; Rizzo, M. Does Iodine Influence the Metabolism of Glucose? Medicina 2023, 59, 189. https://doi.org/10.3390/medicina59020189
Ilias I, Milionis C, Zabuliene L, Rizzo M. Does Iodine Influence the Metabolism of Glucose? Medicina. 2023; 59(2):189. https://doi.org/10.3390/medicina59020189
Chicago/Turabian StyleIlias, Ioannis, Charalampos Milionis, Lina Zabuliene, and Manfredi Rizzo. 2023. "Does Iodine Influence the Metabolism of Glucose?" Medicina 59, no. 2: 189. https://doi.org/10.3390/medicina59020189
APA StyleIlias, I., Milionis, C., Zabuliene, L., & Rizzo, M. (2023). Does Iodine Influence the Metabolism of Glucose? Medicina, 59(2), 189. https://doi.org/10.3390/medicina59020189